
Citation: Yang, Y.; Song, P.; Wang, Y.;

Cao, L. Re-Parameterization After

Pruning: Lightweight Algorithm

Based on UAV Remote Sensing Target

Detection. Sensors 2024, 24, 7711.

https://doi.org/10.3390/s24237711

Received: 29 October 2024

Revised: 27 November 2024

Accepted: 29 November 2024

Published: 2 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Re-Parameterization After Pruning: Lightweight Algorithm
Based on UAV Remote Sensing Target Detection
Yang Yang 1, Pinde Song 1, Yongchao Wang 2 and Lijia Cao 1,3,4,*

1 School of Automation & Information Engineering, Sichuan University of Science & Engineering, Yibin 644000,
China; 322081104111@stu.suse.edu.cn (Y.Y.); tsingachieve@gmail.com (P.S.)

2 School of Aerospace Science and Technology, Xidian University, Xi’an 710071, China; ycwang9103@126.com
3 Artificial Intelligence Key Laboratory of Sichuan Province, Yibin 644000, China
4 Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of

Things, Yibin 644000, China
* Correspondence: caolj@suse.edu.cn

Abstract: Lightweight object detection algorithms play a paramount role in unmanned aerial vehicles
(UAVs) remote sensing. However, UAV remote sensing requires target detection algorithms to
have higher inference speeds and greater accuracy in detection. At present, most lightweight
object detection algorithms have achieved fast inference speed, but their detection precision is not
satisfactory. Consequently, this paper presents a refined iteration of the lightweight object detection
algorithm to address the above issues. The MobileNetV3 based on the efficient channel attention
(ECA) module is used as the backbone network of the model. In addition, the focal and efficient
intersection over union (FocalEIoU) is used to improve the regression performance of the algorithm
and reduce the false-negative rate. Furthermore, the entire model is pruned using the convolution
kernel pruning method. After pruning, model parameters and floating-point operations (FLOPs) on
VisDrone and DIOR datasets are reduced to 1.2 M and 1.5 M and 6.2 G and 6.5 G, respectively. The
pruned model achieves 49 frames per second (FPS) and 44 FPS inference speeds on Jetson AGX Xavier
for VisDrone and DIOR datasets, respectively. To fully exploit the performance of the pruned model,
a plug-and-play structural re-parameterization fine-tuning method is proposed. The experimental
results show that this fine-tuned method improves mAP@0.5 and mAP@0.5:0.95 by 0.4% on the
VisDrone dataset and increases mAP@0.5:0.95 by 0.5% on the DIOR dataset. The proposed algorithm
outperforms other mainstream lightweight object detection algorithms (except for FLOPs higher
than SSDLite and mAP@0.5 Below YOLOv7 Tiny) in terms of parameters, FLOPs, mAP@0.5, and
mAP@0.5:0.95. Furthermore, practical validation tests have also demonstrated that the proposed
algorithm significantly reduces instances of missed detection and duplicate detection.

Keywords: lightweight; object detection; re-parameterization; pruning; UAV remote sensing

1. Introduction

Neural network-based object detection methods are essential in various application
scenarios, including face detection [1], traffic sign detection [2], vehicle detection [3], re-
mote sensing images [4–6], and unmanned aerial vehicles (UAVs) remote sensing [7–10].
Especially on edge computing devices with limited computing power carried by UAVs, de-
tection algorithms for UAVs and remote sensing tasks require higher real-time performance
and accuracy.

Contemporary object detection techniques leveraging convolutional neural networks
(CNNs) can be broadly classified into two primary categories: dual-phase and single-phase
detection algorithms. These approaches represent cutting-edge methodologies in the field
of automated visual object recognition. Over the past decade, several two-stage object
detection algorithms have been proposed, including Region-CNN (R-CNN) [11], Faster

Sensors 2024, 24, 7711. https://doi.org/10.3390/s24237711 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24237711
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3074-4727
https://doi.org/10.3390/s24237711
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24237711?type=check_update&version=4

Sensors 2024, 24, 7711 2 of 22

R-CNN [12], and Mask R-CNN [13]. However, these methods tend to have intricate net-
work structures and are not lightweight, which can hinder their deployment in real-time
applications and embedded devices. In contrast, the one-stage object detection method,
for instance, you only look one (YOLO) [14] and Single-Shot Detector (SSD) [15], achieves
an improved equilibrium between computational efficiency and recognition precision.
YOLO, in particular, has emerged as a prevalent algorithm extensively employed in diverse
downstream detection tasks. Despite significant efforts in developing SOTA algorithms
such as YOLO9000 [16], YOLOv3 [17], YOLOv4 [18], YOLOv5, and YOLOX [19], these
algorithms still require substantial computational resources to achieve high accuracy and
faster inference speed, resulting in significant hurdles for real-world integration in real-time
on edge computing devices. To address this challenge, researchers have undertaken com-
prehensive investigations into lightweight object detection algorithms, aiming to develop
more lightweight models while maintaining satisfactory detection performance.

There are two commonly used methods to reduce the parameters of a detection
algorithm: engineering compact architectures through backbone network substitution or
developing lighter architectures, and model pruning.

Huang et al. [20] devised a detection method based on YOLO9000 by redesigning its
network architecture, specifically aimed at efficient operation on non-GPU devices. Redmon
et al. proposed YOLOv3-Tiny based on YOLOv3, which reduces the number of layers and
detection heads, resulting in improved inference performance compared to YOLOv3. Wong
et al. [21] proposed YOLO leveraged depth-wise separable convolutions in its network
architecture design. Compared to YOLOv2-Tiny and YOLOv3-Tiny, YOLO Nano achieves
higher detection accuracy with lower parameters. Bochkovskiy et al. [18] proposed YOLOv4
and also released YOLOv4-Tiny, a lightweight variant. Another significant contribution
is YOLOv5, proposed by the Ultralytics company. YOLOv5 adopts a parameter control
mechanism and manages the total of parameters and floating-point operations (FLOPs)
through width and depth parameters. This approach enables fine-grained control over the
computational efficiency of the neural architecture. Two lightweight versions, YOLOv5s
and YOLOv5n, have been released. Moreover, several other notable YOLO algorithms
have also released their respective lightweight versions. For example, YOLOv6n [22],
YOLOv7-Tiny [23], YOLOX-Tiny, and YOLOv8s have all proposed lightweight detectors by
directly designing simple network models. A balance between parameter parsimony and
detection prowess is achieved in these models.

As lightweight networks evolve at an unprecedented pace, there is an increasing adop-
tion of lightweight backbone networks in object detection algorithms. For example, Sandler
et al. [24] devised a minimally resource-intensive object method based on MobileNetV2 and
SSD. Zhang et al. [25] devised the ShuffleNet lightweight model and used it as the backbone
network of the Faster-RCNN. Howard et al. [26] devised MobileNetV3 and used it as a
drop-in replacement for the backbone feature extractor in SSDLite. Han et al. [27] proposed
the GhostNet and applied it to RetinaNet. These backbone networks have significantly
reduced the parameters and FLOPs of object detection algorithms, striking an optimal
equilibrium between precision in detection and computational efficiency. Sun et al. [28]
proposed a lightweight dual Siamese network (SiamOHOT) for airborne hyperspectral
target tracking.

Both directly designed object detection algorithms and improved object detection
algorithms based on lightweight backbone networks have showcased remarkable inference
performance. However, ensuring the accuracy of these object detection algorithms poses
a challenge due to the constrained number of variables in their network and the limited
content they can learn.

Weight pruning techniques have been demonstrated as one of the most effective
strategies to decrease intensive computations and memory requirements while preserv-
ing model accuracy. By eliminating redundant weights, models with structural sparsity
improved memory and power efficiency, as well as reduced inference latency. Notably, Li
et al. [29] successfully addressed the issue of large parameters in YOLOv3 through pruning,

Sensors 2024, 24, 7711 3 of 22

which, through innovative design choices, achieved a leaner parameter of YOLOv3 by three
times. Wu et al. [30] applied a channel pruning method to prune the backbone network
of YOLOv4, achieving a remarkable 96.7% reduction in parameters. Zhang et al. [31]
employed pruning on YOLOv5l, resulting in a significant reduction of 63.8% in parameters
and 37.4% in FLOPs, striking a favorable parity between computational resource utilization
and detection exactitude. Additionally, Gupta et al. [32] proposed a pruning fine-tuning
algorithm for YOLOv6, which boosted the frame per second (FPS) of the pruned model by
1.9 times compared to the YOLOv6 baseline.

The aforementioned methods have made significant contributions to lightweight object
detection algorithms. However, the following problems remain:

(1) Redundant parameters: Despite employing lightweight models as backbone net-
works for object detection algorithms, there remains a substantial number of redundant
parameters within the detector model. This redundancy hampers the overall efficiency of
the detection algorithm.

(2) Performance exploration: While fine-tuning can restore the performance of pruned
models, further enhancements in network learning capability can be achieved by optimizing
the pruned models before fine-tuning. This allows for an improved equilibrium between
predictive performance and computational efficiency.

In an effort to thoroughly investigate the efficacy of the streamlined model and attain
an optimal equilibrium between detection fidelity and processing velocity, we proposed
a lightweight version of the object detection model, PR-YOLO, which is based on the
YOLOv5m architecture. The primary advancements put forth by this study can be summa-
rized as follows:

(1) To address the issue of redundant parameters mentioned above, the MobileNetV3
improved with the efficient channel attention (ECA) [33] mechanism module is introduced
into the backbone network of YOLOv5m. This replaces the lightweight backbone network
to reduce the number of model parameters.

(2) For the problem of air-to-ground target detection, focal and efficient intersection
over union (FocalEIoU) [34] is used as the regression loss function for bounding boxes to
optimize the model’s localization capability during training.

(3) To further explore improvements in model performance, an optimization pruning
fine-tuning algorithm based on reparameterization is proposed to further enhance the
performance of the fine-tuned model. Specifically, before fine-tuning the pruned model,
branch expansion was performed on the pruned model (i.e., converting a single branch into
multiple branches). Once the model regains its accuracy through fine-tuning, the multiple
branches are merged back into a single branch using structural re-parameterization to
further enhance the model’s performance.

The subsequent sections of this manuscript are structured in the following manner.
Section 2 introduces the related work. Section 3 provides details of our proposed PR-YOLO
and a pruning fine-tuning method based on re-parameterization. Section 4 discusses the
experimental implementation, results, and comparison with other mainstream lightweight
algorithms. Section 5 is the discussion. The conclusion of our work is in Section 6.

2. Materials
2.1. Lightweight CNN Models

Lightweight models with fewer parameters and lower computational complexity
have been developed rapidly. This development can be traced back to the proposed
SqueezeNet by Iandola et al. [35] in 2016, which addressed the issue of large network
parameters in AlexNet. MobileNetV1’s framework leverages a combination of depth-wise
and point-wise convolutional layers to significantly reduce the computational complexity
of the model, resulting in improved network inference speed [36]. ShuffleNet addresses
the problem of irrelevant channel information in depth-wise convolution by employing
channel shuffle. MobileNetV2 takes this further by introducing residual connections to
the lightweight model and constructing an inverted residual structure, leading to higher

Sensors 2024, 24, 7711 4 of 22

accuracy and faster inference speed [24]. Tan et al. [37] and Howard et al. [26] devised
MnasNet and MobileNetV3, which are lightweight models that have been developed
through the utilization of neural architecture search (NAS). These models demonstrate
excellent performance with respect to both speed and precision. Han et al. [27] devised
the lightweight GhostNet by analyzing redundant information in the feature maps and
replacing half of the convolution channels with cheaper operations. So far, lightweight
networks such as GhostNetV2 [38], MobileOne [39], and FasterNet [40] have achieved good
performance in object detection tasks.

2.2. Model Pruning

Pruning methods play a crucial role in reducing redundant parameters within net-
works, and they can be categorized into unstructured pruning and structured pruning.

Unstructured pruning can obtain higher pruning rates, and any weight in the model
can be pruned. However, unstructured pruning can result in irregular sparsity in the
weight matrix, which is difficult to accelerate by general hardware acceleration. Conversely,
the application of unstructured pruning maintains the network’s depth and width intact.
Therefore, the acceleration effect of the pruned model using this method is limited.

Structured pruning prunes the entire channels or filters of weights. The filter pruning
removes the whole filter of the weight matrix, while channel pruning removes channels
with identical sequences in different filters. Therefore, structured pruning can effectively
compress network parameters, thereby improving the inference speed of the model.

2.3. Model Re-Parameterization

The idea of re-parameterization is first proposed by Zagoruyko et al. [41] in DiracNets.
The model removes skip connections by changing the kernel weight in ResBlock. It can
be defined as Ŵ = diag(a)Wnorm + diag(b)I, where Ŵ is the merged convolutional kernel
weight, a and b are learnable variables, Wnorm is the weight of the convolutional kernel
before merging. DiracNets provides an important approach for re-parameterization, but
this method does not gain in model performance.

Zhang et al. [25] proposed an efficient inference rule for networks: the fewer branches
a model has, the faster its speed. Therefore, single-branch networks are often used in
embedded devices with limited computing resources. Although single-branch networks
have excellent inference performance, their learning capability is not as good as multi-
branch networks. How can we address the problem if we want the network to have
excellent performance and efficient inference speed? RepVGG [42] provides a solution
method. It builds a training model using a multi-branch during training and then converts
the multi-branch to a single branch during inference. The principle of RepVGG is presented
in Figure 1.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 24

Figure 1. Structural re-parameterization of a RepVGG module.

As shown in Figure 1, there are three branches during the training process. The
()3 3 3out inC C

W
  

 denotes the weight of a 3 3 conv layer, and the ()1 1 1out inC C
W

  


denotes the weight of 1 1 conv layer, where
inC is the input channels and

outC is the

output channels. In the BN layer,
()k

 denote bias,
()k

 denote learned scaling

factor,
()k

 denote accumulated mean, ()k
 denote standard deviation, where k for

the convolutional kernel size. Suppose the size of the input feature map is
() in in inin N C H W

F
  

 , and the size of the output feature map is
() out out outout N C H W

F
  

 ; 

is the convolution operator. If
in outC C= ,

in outW W= ,
in outH H= , we have the following:

() () () () () ()() () () () () () ()()0 0 0 0

1 3

out in in k k k k k

k ,

F BN F , , , BN F W , , ,       
=

= +  (1)

Upon completion of the model’s training phase, a crucial step involves merging the

convolution and batch normalization layers. The mathematical formulation of the Batch

Normalization (BN process can be expressed as follows:

() ()BN F , , , , F


     


= − + (2)

The convolution operator without bias can be defined as follows:

()in
F F W =  (3)

where W  is the weight of the convolution kernel. The fuse result can be computed as

follows:

() ()in
BN F, , , , F W

 
     

 

 
=  + − 

 
 (4)

Then it is easy to simplify Equation(1). It can be simplified as follows:

() () ()
()

()

() ()
()

()

() () ()3 3

0 1 3 0 1 3

k k
out in k k k in

k k
k , , k , ,

F F W F W b
 

 
 = =

 
=  + − =  +  

 
  (5)

where ()k
W indicates the weight of convolutional kernel, ()3

W indicates the weight of

convolution kernel after merging multi-branch, and ()3
b indicates the bias of convolution

kernel. The merged result is the single branch in Figure 1.

Figure 1. Structural re-parameterization of a RepVGG module.

Sensors 2024, 24, 7711 5 of 22

As shown in Figure 1, there are three branches during the training process. The
W(3) ∈ RCout×Cin×3×3 denotes the weight of a 3× 3 conv layer, and the W(1) ∈ RCout×Cin×1×1

denotes the weight of 1 × 1 conv layer, where Cin is the input channels and Cout is the
output channels. In the BN layer, β(k) denote bias, γ(k) denote learned scaling factor, µ(k)

denote accumulated mean, σ(k) denote standard deviation, where k for the convolutional
kernel size. Suppose the size of the input feature map is F(in) ∈ RN×Cin×Hin×Win , and the
size of the output feature map is F(out) ∈ RN×Cout×Hout×Wout ; ∗ is the convolution operator.
If Cin = Cout,Win = Wout,Hin = Hout, we have the following:

F(out) = BN
(

F(in), µ(0)σ(0), γ(0), β(0)
)
+ ∑

k=1,3
BN
(

F(in) ∗ W(k), µ(k)σ(k), γ(k), β(k)
)

(1)

Upon completion of the model’s training phase, a crucial step involves merging the
convolution and batch normalization layers. The mathematical formulation of the Batch
Normalization BN process can be expressed as follows:

BN(F, µ, σ, γ, β) = (F − µ)
γ

σ
+ β (2)

The convolution operator without bias can be defined as follows:

F = F(in) ∗ W ′ (3)

where W ′ is the weight of the convolution kernel. The fuse result can be computed
as follows:

BN(F, µ, σ, γ, β) = F(in) ∗ W ′ γ

σ
+
(

β − µ
γ

σ

)
(4)

Then it is easy to simplify Equation (1). It can be simplified as follows:

F(out) = F(in) ∗ ∑
k=0,1,3

W(k) γ(k)

σ(k)
+ ∑

k=0,1,3

(
β(k) − µ(k) γ(k)

σ(k)

)
= F(in) ∗ W(3) + b(3) (5)

where W(k) indicates the weight of convolutional kernel, W(3) indicates the weight of
convolution kernel after merging multi-branch, and b(3) indicates the bias of convolution
kernel. The merged result is the single branch in Figure 1.

3. Methods
3.1. Proposed the PR-YOLO Model

Striving for an optimal equilibrium between detection capability and processing
celerity, a computationally efficient detection method based on YOLOv5m is proposed.
Figure 2 shows the improved YOLOv5m structure. The improved MobileNetV3, replacing
the squeeze and excitation (SE) module by ECA, is integrated into the YOLOv5m backbone
network. In addition, the FocalEIoU as the bonding box regression loss function is also
introduced into the YOLOv5m. The proposed ECA module is characterized by its minimal
parameter footprint and substantial performance enhancement (better accuracy and less
inference time). The purpose of FocalEIoU is to enhance the regression capability.

Except for the modules already labeled in Figure 2, the green diagonal-striped modules
represent BN, the bright green modules represent the SilU activation function, and the gray
modules are the unmodified YOLOv5m.

Sensors 2024, 24, 7711 6 of 22

Sensors 2024, 24, x FOR PEER REVIEW 6 of 24

3. Methods

3.1. Proposed the PR-YOLO Model

Striving for an optimal equilibrium between detection capability and processing

celerity, a computationally efficient detection method based on YOLOv5m is proposed.

Figure 2 shows the improved YOLOv5m structure. The improved MobileNetV3, replacing

the squeeze and excitation (SE) module by ECA, is integrated into the YOLOv5m

backbone network. In addition, the FocalEIoU as the bonding box regression loss function

is also introduced into the YOLOv5m. The proposed ECA module is characterized by its

minimal parameter footprint and substantial performance enhancement (better accuracy

and less inference time). The purpose of FocalEIoU is to enhance the regression capability.

Figure 2. The architecture of the PR-YOLO.

Except for the modules already labeled in Figure 2, the green diagonal-striped

modules represent BN, the bright green modules represent the SilU activation function,

and the gray modules are the unmodified YOLOv5m.

3.1.1. Backbone Network Improvement

The MV3 module is proposed in MobileNetV3. It uses the inverted residual structure

to extract features and introduces the SE attention module to enhance inter-channel

information exchange. Compared to the C3 module of YOLOv5, its parameters and

computational cost are relatively low. The structure of the C3 module and the MV3

module are shown in Figures 2 and 3.

Figure 2. The architecture of the PR-YOLO.

3.1.1. Backbone Network Improvement

The MV3 module is proposed in MobileNetV3. It uses the inverted residual structure
to extract features and introduces the SE attention module to enhance inter-channel informa-
tion exchange. Compared to the C3 module of YOLOv5, its parameters and computational
cost are relatively low. The structure of the C3 module and the MV3 module are shown in
Figures 2 and 3.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 24

Figure 3. The structure of the C3 module.

The architectural configuration of the C3 module is delineated in Figure 3. Suppose

the size input feature map is
c h wI   , the dimensions of the resultant feature map is

c h wO   , and the quantity of stack is n , where h is the height of the feature map,

w is the width of the feature map, and c is the channel quantity of input and output

feature maps. Excluding the batch normalization layer parameters, we can compute the

C3 module’s parameter count as follows:

() 2

3 3 3 2.5 2
2 2 2 2 2 2

C

c c c c c c
P c c c c n n n c=  +  +  +   +     = + (6)

The computational complexity of the C3 module, expressed in FLOPs, can be derived

using the following method:

() 2

3 2 2.5 2.5 2CF h w c c n h w c c n hwc=    +     = + (7)

From Figure 3, ignoring the SE module and BN layer, the parameters of the MV3

component can be computed as follows:

22dP c e k k e e c ce ek=  +   +  = + (8)

where k indicates the dimensions of convolution kernel, e indicates hidden channel.

In an analogous manner, we can derive the computational complexity of the MV3

component, expressed in FLOPs, as follows:

()22 2dF h w c e k k h w e c k ehw=    +     = + (9)

Comparing the C3 component with the parameters, and the FLOPs of the MV3

component, The analytical expression for the theoretical ratio is determined as follows:

()

()

2

3

2

2.5 2

2

C

d

n cP
r

P c k e

+
= =

+
 (10)

In the MV3 module, the minimum ratio of the output channel to the hidden channel

is approximately 0.17 and the maximum ratio is 1.0. When the channel ratio is 0.17, we set

n to 6. Similarly, when the channel ratio is 1.0, n is 1. If 3k = and 64c = , we have the

following:

1.2 2.1r  (11)

Figure 3. The structure of the C3 module.

The architectural configuration of the C3 module is delineated in Figure 3. Suppose
the size input feature map is I ∈ Rc×h×w, the dimensions of the resultant feature map is
O ∈ Rc×h×w, and the quantity of stack is n, where h is the height of the feature map, w is the
width of the feature map, and c is the channel quantity of input and output feature maps.

Sensors 2024, 24, 7711 7 of 22

Excluding the batch normalization layer parameters, we can compute the C3 module’s
parameter count as follows:

PC3 = c × c
2
+ c × c

2
+ c × c +

c
2
× c

2
× n + 3 × 3 × c

2
× c

2
× n = (2.5n + 2)c2 (6)

The computational complexity of the C3 module, expressed in FLOPs, can be derived
using the following method:

FC3 = 2h × w × c × c + 2.5n × h × w × c × c = (2.5n + 2)hwc2 (7)

From Figure 3, ignoring the SE module and BN layer, the parameters of the MV3
component can be computed as follows:

Pd = c × e + k × k × e + e × c = 2ce + ek2 (8)

where k indicates the dimensions of convolution kernel, e indicates hidden channel.
In an analogous manner, we can derive the computational complexity of the MV3

component, expressed in FLOPs, as follows:

Fd = 2h × w × c × e + k × k × h × w × e =
(

2c + k2
)

ehw (9)

Comparing the C3 component with the parameters, and the FLOPs of the MV3 com-
ponent, The analytical expression for the theoretical ratio is determined as follows:

r =
PC3

Pd
=

(2.5n + 2)c2

(2c + k2)e
(10)

In the MV3 module, the minimum ratio of the output channel to the hidden channel
is approximately 0.17 and the maximum ratio is 1.0. When the channel ratio is 0.17, we
set n to 6. Similarly, when the channel ratio is 1.0, n is 1. If k = 3 and c = 64, we have
the following:

1.2 < r < 2.1 (11)

According to the Equation (11), swapping the C3 component with the MV3 component
can effectively mitigate the overall parameters and FLOPs of the component.

In MobileNetV3, the SE component is used in some of the MV3 components to enhance
the focus on the channel information of the algorithm. Although the SE component
enhances the performance of the algorithm, the component is not lightweight. In addition,
convolutional layers are the most time-consuming part during both training and inference
processes. Therefore, reducing the number of convolutional layers constitutes a primary
determinant of optimizing the inference performance of model. As illustrated in Figure 2,
the SE component in MobileNetV3 is exchanged for the ECA component to reduce the
number of convolution layers. The ECA module can be calculated as follows:

F = σ
(
We ∗ Favg

)
× Fin (12)

where Fin denotes input feature maps, Favg denotes the features of average pooling, We
indicates the weight of convolution kernel, σ denotes the sigmoid function, F denotes the
output feature maps.

3.1.2. Regression Loss Function Improvement

The function utilized for quantifying bounding box regression error is defined as the
CIoU in YOLOv5. It can be defined as follows:

Sensors 2024, 24, 7711 8 of 22

LCIoU = 1 − IoU +
ρ2(b,bgt)

c2 + αν

ν = 4
π2

(
arctan ωgt

hgt − arctan ω
h

)2

α = v
(1−IoU)+v

(13)

where α stands for the weighting constant, ρ for the Euclidean distance, ν for the pro-
portional correspondence of dimensions between forecasted and actual results, c for the
Euclidean distance along the diagonal axis between the hypothesized and actual bounding
boxes, bgt for the spatial data of reference bounding boxes, b for the spatial data of estimated
object regions, and intersection over union (IOU) is the intersection percentage of reference
bounding area and prediction result.

The Complete Intersection over Union (CIoU) metric enhances traditional IOU by
incorporating an aspect ratio penalty term. This addition aims to minimize the shape
discrepancy between model-generated zones and validated target areas by accounting for
their dimensional differences. However, by analyzing the derivative of ν, it is found that w
and h cannot increase or decrease simultaneously, which leads to the inefficiency issue of
the spatial boundary adjustment process.

Due to the limitation of the CIoU, which only penalizes the relative aspect ratios and
fails to consider the size variations between reference and model-generated bounding
areas, as well as the imbalance issue of hard positive and negative samples. Given its
effectiveness, FocalEIoU has been selected as the regression loss metric for the object
detection task outlined in this research. The FocalEIoU can be defined as follows:

LEIoU = 1 − IoU +
ρ(b,bgt)

c2 +
ρ(w,wgt)

c2
w

+
ρ(h,hgt)

c2
h

LFocalEIoU = IoUγLEIoU

(14)

where cw and ch indicate the horizontal and vertical extents of the minimum enclosing
rectangle that contains both bounding boxes, w and wgt indicate the width of the ground
truth box and prediction box, h and hgt indicate the height of the ground truth box and
prediction box, γ denotes a hyperparameter.

3.2. Re-Parameterization Towards the Larger Kernel

In recent years, structural re-parameterization methods have been widely applied
in backbone network design. Network models such as MobileOne, RepGhost [43], and
RepVGG have utilized structural re-parameterization methods to enhance model perfor-
mance. However, during the training process, these models primarily focused on the
impact of 1 × 1 convolution branches and BN branches on model performance, while
overlooking the potential impact of larger convolution kernels on model performance. Tak-
ing the RepGhost as an example, despite sharing consistent design paradigms in network
structure with MobileNetV3 and utilizing larger convolutional kernels (5 × 5). RepGhost,
when optimizing GhostNet using structural re-parameterization, does not consider the
performance impact of the 3 × 3 convolution branch on the 5 × 5 convolution branch.
To address the aforementioned issue, this study focuses on the MobileNetV3 backbone
network and utilizes structural re-parameterization to optimize the network branches,
endeavoring to further ameliorate the effectiveness of the model. Figures 4 and 5 show the
structure of the MV3 module in the course of the training and inference process.

Figure 4 illustrates that throughout the model’s training iteration, the 5 × 5 convolution
branch in the MobileNetV3 backbone network is expanded into parallel 5 × 5, 3 × 3, and
BN branches. However, during the inference phase, all the parallel branches are merged
into a single 5 × 5 branch. The transformation method of the 3 × 3 convolution branch in
Figure 5 is the same as that in Figure 4. The black dashed lines and X in Figures 4 and 5
indicate that the branch has been deleted.

Sensors 2024, 24, 7711 9 of 22

Sensors 2024, 24, x FOR PEER REVIEW 9 of 24

() () ()
2 2 2

, , ,
1

gt gt gt

EIoU

w h

FocalEIoU EIoU

b b w w h h
L IoU

c c c

L IoU L

  
= − + + +

=

 (14)

where wc
 and hc

 indicate the horizontal and vertical extents of the minimum

enclosing rectangle that contains both bounding boxes, w and
gtw indicate the width

of the ground truth box and prediction box, h and
gth indicate the height of the ground

truth box and prediction box,


 denotes a hyperparameter.

3.2. Re-Parameterization Towards the Larger Kernel

In recent years, structural re-parameterization methods have been widely applied in

backbone network design. Network models such as MobileOne, RepGhost [43], and

RepVGG have utilized structural re-parameterization methods to enhance model

performance. However, during the training process, these models primarily focused on

the impact of 1 × 1 convolution branches and BN branches on model performance, while

overlooking the potential impact of larger convolution kernels on model performance.

Taking the RepGhost as an example, despite sharing consistent design paradigms in

network structure with MobileNetV3 and utilizing larger convolutional kernels (5 × 5).

RepGhost, when optimizing GhostNet using structural re-parameterization, does not

consider the performance impact of the 3 × 3 convolution branch on the 5 × 5 convolution

branch. To address the aforementioned issue, this study focuses on the MobileNetV3

backbone network and utilizes structural re-parameterization to optimize the network

branches, endeavoring to further ameliorate the effectiveness of the model. Figures 4 and

5 show the structure of the MV3 module in the course of the training and inference

process.

Figure 4. The training and inference structure of 5 × 5 convolutional branches. Figure 4. The training and inference structure of 5 × 5 convolutional branches.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 24

Figure 5. The training and inference structure of 3 × 3 convolutional branches.

Figure 4 illustrates that throughout the model’s training iteration, the 5 × 5

convolution branch in the MobileNetV3 backbone network is expanded into parallel 5 ×

5, 3 × 3, and BN branches. However, during the inference phase, all the parallel branches

are merged into a single 5 × 5 branch. The transformation method of the 3 × 3 convolution

branch in Figure 5 is the same as that in Figure 4. The black dashed lines and X in Figures

4 and 5 indicate that the branch has been deleted.

Taking Figure 4 as an example, suppose that the input, the output, the number of

channels, and BN layer parameters are consistent with those in Figure 1. The calculation

formulas for training branches are as follows:

() () () () () ()() () () () () () ()()0 0 0 0

3 5

out in in k k k k k

k ,

F BN F , , , BN F W , , ,       
=

= +  (15)

According to Equations (2)– (4), the inference branch can be computed as follows:

() () ()
()

()

() ()
()

()

() () ()5 5

0 3 5 0 3 5

k k
out in k k k in

k k
k , , k , ,

F F W F W b
 

 
 = =

 
=  + − =  +  

 
  (16)

where
()5

W denotes the numerical parameters defining the convolution operator,
()5

b

denotes the bias of the convolution kernel.

Compared to RepVGG, MobileOne, and RepGhost, the 1 × 1 convolution branch is

not used in our proposed structural re-parameterization of MV3 module. Why do not use

the 1 × 1 convolution branch? Through experiments, it was found that the 1 × 1 convolution

branch is useless and can even reduce model performance when the main branch is depth-

wise convolution.

3.3. Pruning and Fine-Tuning Process Improvement

Structured pruning is commonly used to compress the width of a model. Liu et al.

[44] introduced a scaling factor  for each channel and performed sparsity training on

the network, pruning unimportant convolution kernels and output channels. After

completing the model pruning, the fine-tuning method is applied to further restore the

predictive precision of the algorithm, thus achieving the entire pruning process. The

sequential stages of neural network dimensionality reduction are delineated in Figure 6.

Figure 5. The training and inference structure of 3 × 3 convolutional branches.

Taking Figure 4 as an example, suppose that the input, the output, the number of
channels, and BN layer parameters are consistent with those in Figure 1. The calculation
formulas for training branches are as follows:

F(out) = BN
(

F(in), µ(0)σ(0), γ(0), β(0)
)
+ ∑

k=3,5
BN
(

F(in) ∗ W(k), µ(k)σ(k), γ(k), β(k)
)

(15)

According to Equations (2)–(4), the inference branch can be computed as follows:

F(out) = F(in) ∗ ∑
k=0,3,5

W(k) γ(k)

σ(k)
+ ∑

k=0,3,5

(
β(k) − µ(k) γ(k)

σ(k)

)
= F(in) ∗ W(5) + b(5) (16)

Sensors 2024, 24, 7711 10 of 22

where W(5) denotes the numerical parameters defining the convolution operator, b(5)

denotes the bias of the convolution kernel.
Compared to RepVGG, MobileOne, and RepGhost, the 1 × 1 convolution branch is

not used in our proposed structural re-parameterization of MV3 module. Why do not
use the 1 × 1 convolution branch? Through experiments, it was found that the 1 × 1
convolution branch is useless and can even reduce model performance when the main
branch is depth-wise convolution.

3.3. Pruning and Fine-Tuning Process Improvement

Structured pruning is commonly used to compress the width of a model. Liu et al. [44]
introduced a scaling factor γ for each channel and performed sparsity training on the
network, pruning unimportant convolution kernels and output channels. After completing
the model pruning, the fine-tuning method is applied to further restore the predictive
precision of the algorithm, thus achieving the entire pruning process. The sequential stages
of neural network dimensionality reduction are delineated in Figure 6.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 24

Figure 6. Original pruning and fine-tuning process.

After pruning, the number of parameters in the pruned model often drops

dramatically, precipitating a decline in the system’s performance metrics. Then, fine-

tuning can be used to further restore the accuracy of the model; it can even achieve higher

accuracy than the model before pruning. Generally, the pruned model has fewer

parameters and FLOPs, which means that the learning and generalization ability of the

network is reduced. Given this challenge, we are considering whether there is an

approach to further boost the learning capacity of the model so that the pruned model can

achieve higher accuracy through fine-tuning. Inspired by the approach of structural re-

parameterization, we propose an enhanced process of pruning and fine-tuning, further

investigating the performance of a lightweight model. The enhanced pruning and fine-

tuning process is illustrated in Figure 7.

Figure 7. Improved pruning and fine-tuning process.

As illustrated in Figure 7, we convert the single branch of the MV3 module in the

pruned MF-YOLO model into a multi-branch before fine-tuning. When the model

recovers accuracy through fine-tuning, structural re-parameterization is used to

transform a multi-branch structure into a single branch. Figure 4 illustrates the specific

conversion process.

4. Experiments

To assess the performance of the devised solution, two datasets, namely the DIOR

dataset and the VisDrone dataset, are utilized in the experiment. This section presents a

comprehensive description of the algorithm implementation, training settings, and the

experimental results.

Figure 6. Original pruning and fine-tuning process.

After pruning, the number of parameters in the pruned model often drops dramatically,
precipitating a decline in the system’s performance metrics. Then, fine-tuning can be used
to further restore the accuracy of the model; it can even achieve higher accuracy than the
model before pruning. Generally, the pruned model has fewer parameters and FLOPs,
which means that the learning and generalization ability of the network is reduced. Given
this challenge, we are considering whether there is an approach to further boost the learning
capacity of the model so that the pruned model can achieve higher accuracy through
fine-tuning. Inspired by the approach of structural re-parameterization, we propose an
enhanced process of pruning and fine-tuning, further investigating the performance of a
lightweight model. The enhanced pruning and fine-tuning process is illustrated in Figure 7.

As illustrated in Figure 7, we convert the single branch of the MV3 module in the
pruned MF-YOLO model into a multi-branch before fine-tuning. When the model recovers
accuracy through fine-tuning, structural re-parameterization is used to transform a multi-
branch structure into a single branch. Figure 4 illustrates the specific conversion process.

Sensors 2024, 24, 7711 11 of 22

Sensors 2024, 24, x FOR PEER REVIEW 11 of 24

Figure 6. Original pruning and fine-tuning process.

After pruning, the number of parameters in the pruned model often drops

dramatically, precipitating a decline in the system’s performance metrics. Then, fine-

tuning can be used to further restore the accuracy of the model; it can even achieve higher

accuracy than the model before pruning. Generally, the pruned model has fewer

parameters and FLOPs, which means that the learning and generalization ability of the

network is reduced. Given this challenge, we are considering whether there is an

approach to further boost the learning capacity of the model so that the pruned model can

achieve higher accuracy through fine-tuning. Inspired by the approach of structural re-

parameterization, we propose an enhanced process of pruning and fine-tuning, further

investigating the performance of a lightweight model. The enhanced pruning and fine-

tuning process is illustrated in Figure 7.

Figure 7. Improved pruning and fine-tuning process.

As illustrated in Figure 7, we convert the single branch of the MV3 module in the

pruned MF-YOLO model into a multi-branch before fine-tuning. When the model

recovers accuracy through fine-tuning, structural re-parameterization is used to

transform a multi-branch structure into a single branch. Figure 4 illustrates the specific

conversion process.

4. Experiments

To assess the performance of the devised solution, two datasets, namely the DIOR

dataset and the VisDrone dataset, are utilized in the experiment. This section presents a

comprehensive description of the algorithm implementation, training settings, and the

experimental results.

Figure 7. Improved pruning and fine-tuning process.

4. Experiments

To assess the performance of the devised solution, two datasets, namely the DIOR
dataset and the VisDrone dataset, are utilized in the experiment. This section presents a
comprehensive description of the algorithm implementation, training settings, and the
experimental results.

4.1. Experimental Details

The devised algorithm is operationalized by the PyTorch deep learning framework,
and the running environment of the algorithm is based on the Ubuntu 18.04 operating
system. The test of the embedded platform is based on Jetson AGX Xavier. Table 1 displays
the hardware devices used for training and testing.

Table 1. Training and testing hardware devices.

Type Training Server Embedded Platform

Device name DELL Precision R7920 Jetson AGX Xavier

CPU Intel Xeon(R) Gold 6254 CPU
@ 3.10 GHz × 72 64-bit 8-core CPU (ARMv8.2)

GPU Quadro RTX 8000 48 G × 2 512-core Volta GPU with Tensor Cores
RAM DELL 64G × 2 16 G

The software version is Python3.6.15, CUDA10.2, and CUDNN8.4.0 in the training
server. In Jetson AGX Xavier, the Jetpack version is 4.6.5.

The YOLOv5 is an object detection algorithm, and it is based on anchor boxes. There-
fore, prior to training on a new model, it is essential to perform anchor box clustering on
the dataset. In YOLOv5, the algorithm utilizes k-means to cluster the anchor boxes in the
dataset and then employs a genetic algorithm to mutate the width and height of the anchor
boxes in order to obtain optimal results. In this study, the anchor box for the VisDrone [43]
and DIOR [44] datasets were computed using the k-means clustering algorithm. However,
for the VisDrone dataset, the generated anchor boxes were not subjected to mutation using
a genetic algorithm due to inferior results. The anchor box configurations for both the
VisDrone and DIOR datasets are shown in Table 2.

Table 2. The anchor box of the VisDrone and the DIOR dataset.

Dataset Anchor Box

VisDrone 5, 5 7, 11 15, 9 12, 19 29, 16 22, 31 54, 30 38, 55 91, 76
DIOR 10, 15 30, 12 15, 36 46, 37 55, 109 130, 127 119, 252 340, 208 323, 412

Sensors 2024, 24, 7711 12 of 22

The model’s training process comprises three stages.: conventional training, sparsity
training, and fine-tuning training. In the conventional training stage, the linear learning
rate is employed in the training process of the model. In the fine-tuning stage, a one-cycle
learning rate is used to train the model. The linear learning rate function and the one-cycle
learning rate can be defined as Equations (17) and (18). The hyperparameters of different
training stages are shown in Table 3.

Llinear =
(

1 − e
300

)
×
(

1 − l f

)
+ l f (17)

Lone−cycle = 0.5 ×
(

l f − 1
)(

1 − cos
(eπ

300

))
+ 1 (18)

where e denotes current epoch, l f denotes the final learning rate.

Table 3. The training hyperparameter.

Hyperparameter Conventional Training Sparse Training Fine-Tuning Training

Optimizer SGD Adam AdamW
Batch size 32 32 32
Input size 640 × 640 640 × 640 640 × 640

Mosaic True True True
Initial learning rate 0.01 0.01 0.0032
Final learning rate 0.01 0.01 0.12
Warmup epochs 3 3 2

Warmup bias
learning rate 0.1 0.1 0.05

Warmup momentum 0.8 0.8 0.5
Weight decay 0.0005 0.0005 0.00036
Momentum 0.937 0.937 0.843

Evaluating Indicators

To assess the effectiveness of the suggested technique, several indicators are uti-
lized as measurement indicators. These indicators include precision, recall, mAP@0.5,
mAP@0.5:0.95, inference time, the count of parameters, FLOPs, and FPS. The precision can
be defined as follows:

P =
TP

TP + FP
(19)

where TP stands for the total of correct positive specimens, and FP for the number of
incorrect positive specimens.

Recall is the proportion of correctly identified positive specimens to the total positive
specimens within a specific class. It can be defined as follows:

R =
TP

TP + FN
(20)

where FN denotes undetected positive samples.
The AP is a metric that quantifies the region under the precision-recall trajectory and

is used to assess the overall effectiveness of each category in a detection task. Conversely,
mAP computes the arithmetic mean of all AP values throughout various classifications.
The formulas for calculating AP and mAP are as follows:

AP =
∫ 1

0
P(R)dR (21)

mAP =

N
∑

i=1
APi

N
(22)

Sensors 2024, 24, 7711 13 of 22

According to the defined mAP, when the IOU threshold is 0.5, the mAP is equal to
mAP@0.5. When the IOU varies from 0.5 to 0.95 with a step size of 0.5, the mAP is identified
as mAP@0.5:0.95.

FPS represents the total of images that can be detected in a second. The testing of these
algorithms is based on Jetson AGX Xavier.

4.2. Training and Validation Datasets

Edge computing devices have extensive applications in various domains such as
autonomous driving, UAV inspections, and telemetry. Therefore, this study evaluates
the performance of the proposed method in UAVs and remote sensing scenes using the
VisDrone and the DIOR datasets. The VisDrone dataset comprises 10 categories, containing
6471 images for training and 548 for validation. It ranks as one of the most extensively
utilized datasets for detecting objects in UAV imagery. Meanwhile, the DIOR dataset acts
as a comprehensive benchmark for detecting objects in optical remote sensing images. The
dataset comprises 5862 training images and 5863 validation images, covering 20 object
classes. Both datasets share a common characteristic: they contain a significant number of
small object instances.

4.3. Experimental Results
4.3.1. Ablation Experiments

The design of ablation experiments is used to verify the contribution of each module
to the network. The results are shown in Table 4.

Table 4. Ablation experiment results of algorithm improvements on Jetson AGX Xavier.

V3 ECA FocalEIoU OPF RPF Params
(M)

FLOPs
(G)

mAP@0.5
(%)

mAP@0.5:0.95
(%)

FPS
(Frame/s)

20.9 48.0 38.1/79.4 21.8/57.8 29/17
✔ 11.9 20.0 33.5/79.1 18.3/56.6 37/27
✔ ✔ 10.4 20.0 34.1/79.4 18.7/56.6 38/27
✔ ✔ ✔ 10.4 20.0 34.3/79.0 19.3/57.5 38/27

✔ ✔ ✔ ✔
1.2/1.5 6.2/6.5

35.8/79.8 20.3/58.1
49/44

✔ ✔ ✔ ✔ 36.2/79.8 20.7/58.6

The bold denotes the optimal value. V3 denotes the MobileNetV3 backbone network, ECA denotes the efficient
channel attention mechanism, OPF denotes pruning and fine-tuning, and RPF denotes pruning and fine-tuning
with structural re-parameterization. The left side of the slash denotes the test results on the VisDrone dataset, and
the dexter portion denotes the experimental outcomes on the DIOR dataset.

In Table 4, it is observed that when MobileNetV3 is employed as the backbone net-
work for YOLOv5m, the total of parameters and FLOPs are decreased by 43.1% and 58.3%,
correspondingly. As a result, the inference efficiency on the Jetson AGX Xavier device
experiences a notable improvement of 8 FPS and 10 FPS, respectively. The ECA atten-
tion mechanism decreases the model’s parameters by 1.5 M while also slightly improving
recognition accuracy. By swapping out the CIoU loss function for FocalEIoU, the proposed
algorithm achieved higher mAP@0.5:0.95 on the VisDrone and DIOR datasets, with respec-
tive improvements of 0.6% and 0.9%. Specifically, the mAP@0.5:0.95 reached 19.3% for
VisDrone and 57.5% for DIOR. When pruning the improved model, the total parameters
and FLOPs of the model on the VisDrone dataset and DIOR dataset are 1.2 Mand 1.5 M,
and 6.2 G and 6.5 G, respectively. After fine-tuning, the model achieves a mAP@0.5 of 35.8%
and 79.8%, and a mAP@0.5:0.95 of 20.3% and 58.1% on the respective datasets. Notably,
the pruned model achieves a significant increase in detection speed, with improvements of
9 FPS and 17 FPS on the VisDrone and DIOR datasets compared to the pre-pruned model,
respectively. Furthermore, when applying the structural re-parameterization fine-tuning
method to refine the models, the fine-tuned models demonstrate improvements of 0.4% in
mAP@0.5 and 0.4% in mAP@0.5:0.95 on the VisDrone dataset and 0.5% in mAP@0.5:0.95 on

Sensors 2024, 24, 7711 14 of 22

the DIOR dataset. Although the proposed method did not achieve the identical level of
detection precision as YOLOv5m, it demonstrates significant enhancements in inference
efficiency, providing new insights for fine-tuning the model and exploring the performance
of lightweight models.

4.3.2. Model Compression Experiment

The model compression evaluation is conducted based on the improved model in
Section 4.3.1. Different sparsity constants are utilized during the training stage of the model
to obtain the optimal sparsity model. For the VisDrone dataset, the sparsity constants are
set to 1, 10, and 50, making a gradual approach of the parameters in the BN layer to zero.
Similarly, for the DIOR, the sparsity constants are set to 0.01, 0.05, and 0.1, achieving the
same effect. After completing the sparsity training, pruning is applied to the sparsity model
with pruning rates of 50%, 60%, and 70%. The variations of parameters, FLOPs, and FPS
with model compression under different sparsity constants and pruning rates are shown in
Figure 8.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 24

4.3.2. Model Compression Experiment

The model compression evaluation is conducted based on the improved model in

Section 4.3.1. Different sparsity constants are utilized during the training stage of the

model to obtain the optimal sparsity model. For the VisDrone dataset, the sparsity

constants are set to 1, 10, and 50, making a gradual approach of the parameters in the BN

layer to zero. Similarly, for the DIOR, the sparsity constants are set to 0.01, 0.05, and 0.1,

achieving the same effect. After completing the sparsity training, pruning is applied to the

sparsity model with pruning rates of 50%, 60%, and 70%. The variations of parameters,

FLOPs, and FPS with model compression under different sparsity constants and pruning

rates are shown in Figure 8.

Figure 8. The results of the impact of pruning on model performance under different sparsity

parameters.

In Figure 8, regardless of the sparsity constant’s value, it’s clear that as the pruning

rate increases, both the parameters and FLOPs are reduced. Additionally, there is an

improvement in inference performance as the model parameters decrease. Specifically,

with the pruning rate at 70%, the parameters of the model can be compressed to

approximately 1 M from an initial value of 10 M, while the FLOPs decrease from 20 G to

around 5–6 G. Moreover, the pruned model achieves an FPS close to 50. Comparing these

results to the improved model in Table 4, both the parameters and FLOPs have been

Figure 8. The results of the impact of pruning on model performance under different sparsity parameters.

In Figure 8, regardless of the sparsity constant’s value, it’s clear that as the pruning
rate increases, both the parameters and FLOPs are reduced. Additionally, there is an im-
provement in inference performance as the model parameters decrease. Specifically, with

Sensors 2024, 24, 7711 15 of 22

the pruning rate at 70%, the parameters of the model can be compressed to approximately
1 M from an initial value of 10 M, while the FLOPs decrease from 20 G to around 5–6 G.
Moreover, the pruned model achieves an FPS close to 50. Comparing these results to the
improved model in Table 4, both the parameters and FLOPs have been reduced by ap-
proximately 90% and 75%, respectively. Furthermore, the FPS increased by approximately
23 FPS and 11 FPS on the VisDrone and DIOR datasets, respectively. Consequently, the
pruned model can run more efficiently on edge computing devices carried by UAVs.

4.3.3. Fine-Tuning and Re-Parameterization Experiment

To evaluate the influence of structural re-parameterization on the precision of pruned
models during the fine-tuning process, this study performs rigorous verification and
analysis. Different sparsity constants and pruning rates are employed to demonstrate the
effectiveness of the proposed method. The fine-tuning results are shown in Figure 9.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 24

reduced by approximately 90% and 75%, respectively. Furthermore, the FPS increased by

approximately 23 FPS and 11 FPS on the VisDrone and DIOR datasets, respectively.

Consequently, the pruned model can run more efficiently on edge computing devices

carried by UAVs.

4.3.3. Fine-Tuning and Re-Parameterization Experiment

To evaluate the influence of structural re-parameterization on the precision of pruned

models during the fine-tuning process, this study performs rigorous verification and

analysis. Different sparsity constants and pruning rates are employed to demonstrate the

effectiveness of the proposed method. The fine-tuning results are shown in Figure 9.

Figure 9. The results of structural re-parameterization on pruned models during fine-tuning.

In Figure 9, the fine-tuning results derived from the pruned model on the VisDrone

and DIOR datasets are shown. The red dashed line represents the accuracy achieved by

directly fine-tuning the pruned model, while the green solid line represents the accuracy

Figure 9. The results of structural re-parameterization on pruned models during fine-tuning.

Sensors 2024, 24, 7711 16 of 22

In Figure 9, the fine-tuning results derived from the pruned model on the VisDrone and
DIOR datasets are shown. The red dashed line represents the accuracy achieved by directly
fine-tuning the pruned model, while the green solid line represents the accuracy obtained
by fine-tuning the improved model with structural re-parameterization. From Figure 9a–c,
it becomes evident that employing structural re-parameterization for fine-tuning the model
achieved higher accuracy compared to the original fine-tuning model. Specifically, for
the VisDrone dataset, when λ is equal to one and the pruning rate is 70%, the model
with structural re-parameterization achieves a mAP@0.5 of 36.2% and a mAP@0.5:0.95 of
21.0%. This is 0.4% and 0.4% higher than the model without structural re-parameterization,
respectively. Similarly, the DIOR dataset of Figure 9d–f demonstrates that utilizing struc-
tural re-parameterization for fine-tuning also outperforms the conventional method on
the DIOR dataset. Notably, at λ equals 0.01 and a pruning rate of 60%, the introduced
method achieves a mAP@0.5 of 79.8% and a mAP@0.5:0.95 of 58.6%. The mAP@0.5:0.95
shows a 0.5% enhancement compared to the conventional fine-tuning method. Drawing
from the previously mentioned experimental outcomes, we can conclude that fine-tuning
the pruned model through structural re-parameterization allows for deeper exploration
of the feature extraction capabilities in lightweight models, thus improving the detection
algorithm’s accuracy.

4.3.4. The Comparison Results with Related Algorithms

To evaluate the proficiency of the proposed approach regarding model compression
and detection precision, this study performs an in-depth comparative analysis between
the proposed algorithms and leading lightweight detection algorithms on the Jetson AGX
Xavier device.

In Table 5, it is demonstrated that MobileNetV3 maintains a certain advantage in terms
of parameters, FLOPs, and feature extraction capability compared to other mainstream
lightweight backbone networks. When replacing the YOLOv5m backbone network with a
lightweight model, a significant decrease in parameters and FLOPs is attained, accompanied
by a notable increase in FPS. Comparing MobileNetV3 with other lightweight backbone
networks across parameters, FLOPs, FPS, and detection accuracy, it becomes evident that
utilizing the MobileNetV3 model as the backbone network for YOLOv5m is the most
suitable choice.

Table 5. Comparison of performance across various lightweight networks on the Jetson AGX Xavier.

Backbone Params
(M)

FLOPs
(G)

mAP@0.5
(%)

mAP@0.5:0.95
(%)

FPS
(Frame/s)

GhostNetV1 12.7 20.0 28.9/77.0 15.2/53.6 25/25
GhostNetV2 18.7 22.2 32.6/76.4 17.4/52.2 22/19
ShuffleNetV2 10.9 19.5 30.4/77.2 16.2/54.4 33/26

MobileOne 17.3 32.8 33.6/77.5 18.5/54.7 32/19
FasterNet 11.6 22.3 33.1/76.5 17.9/53.4 41/30

MobileNetV3 11.9 20.0 33.5/79.1 18.3/56.6 37/27
The bold represents the optimal value. The left side of the slash denotes the test results on the VisDrone dataset,
and the dexter portion denotes the experimental outcomes on the DIOR dataset.

In Table 6, a comparison is made between the proposed algorithm and SSDLite,
YOLOv3-MV2, YOLOv4-Tiny, YOLOv5s, YOLOv6n, YOLOv7-Tiny, YOLOXs, and YOLOv8n,
from the perspective of parameters and FLOPs. The proposed method exhibits parameters
of approximately 1–2 M and 6–7 G FLOPs, significantly lower than other mainstream
lightweight detection algorithms, excluding SSDLite. Moreover, the proposed method
demonstrates superior detection accuracy on both the VisDrone and DIOR datasets. No-
tably, it achieves mAP@0.5 values of 36.2% and 79.8% and mAP@0.5:0.95 values of 20.7%
and 58.6% for the VisDrone and DIOR datasets, respectively. In terms of inference per-
formance, our approach reaches a detection speed of 49 FPS on the VisDrone dataset and
44 FPS on the DIOR dataset. While the proposed algorithms lag behind YOLOv3-Tiny and

Sensors 2024, 24, 7711 17 of 22

YOLOv4-Tiny in terms of inference speed, they substantially outperform them in terms of
detection accuracy.

Table 6. Performance comparison of different lightweight detectors on the Jetson AGX Xavier.

Method Params
(M)

FLOPs
(G)

mAP@0.5
(%)

mAP@0.5:0.95
(%)

FPS
(Frame/s)

SSDLite-MV2 3.2 2.8 20.0/66.9 10.4/42.9 27/26
YOLOv3-MV2 3.7 6.6 24.8/70.0 11.7/43.1 31/29
YOLOv4-Tiny 5.9 16.2 24.3/68.3 13.5/42.4 48/49

YOLOv5s 7.0 16.0 33.1/78.3 17.6/54.3 45/39
YOLOv6n 4.6 11.3 31.9/40.7 18.3/24.4 42/41

YOLOv7-Tiny 6.0 13.1 37.1/78.3 18.9/55.4 45/44
YOLOv8n 3.0 8.1 34.3/78.5 20.2/58.1 -
YOLOXs 8.9 13.3 32.7/75.7 17.9/49.7 25/25

Ours 1.2/1.5 6.2/6.5 36.2/79.8 20.7/58.6 49/44
The bold represents the optimal value. The left side of the slash denotes the test results on the VisDrone dataset,
and the dexter portion denotes the experimental outcomes on the DIOR dataset.

Figures 10 and 11 show the performance contrast between the proposed algorithm and
different mainstream lightweight detection methods in UAV remote sensing and Satellite
remote sensing scenes.

Sensors 2024, 24, x FOR PEER REVIEW 19 of 24

Figure 10. The detection results of mainstream lightweight detection algorithms in UAVs remote

sensing scenes.
Figure 10. The detection results of mainstream lightweight detection algorithms in UAVs remote
sensing scenes.

Sensors 2024, 24, 7711 18 of 22

Figure 11. The detection results of mainstream lightweight detection algorithms in Satellite remote
sensing scenes.

Sensors 2024, 24, 7711 19 of 22

Figure 10 presents the detection consequences of the algorithm in this article and
different mainstream lightweight methods in UAV remote sensing scenes. In Figure 10a,
the YOLOv5s algorithm exhibits poor detection capability for small objects, resulting in
significant instances of missed detections. Similarly, both YOLOv6n and YOLOv7-Tiny
demonstrate instances of redundant detections for the same object. Additionally, YOLOv6n
shows a deficiency in detecting objects with prominent features. In contrast, the proposed
algorithm outperforms these methods by effectively addressing these issues.

Figure 11 illustrates the detection performance comparison between select mainstream
lightweight detection algorithms and the proposed algorithms in Satellite remote sensing
scenes. As shown in Figure 11a–c, YOLOv5s, YOLOv6n, and YOLOv7-Tiny models still face
the problem of missed identification for small targets in remote sensing scenes. Furthermore,
these lightweight detection algorithms are prone to redundant detections for the same
object (compared to Figures 10 and 11, YOLOv7-Tiny is more prone to this problem).

5. Discussion

Table 4 demonstrates the performance impact of MobileNetV3, the ECA module,
the FocalEIoU loss function, and the pruning fine-tuning method based on structural re-
parameterization through ablation experiments. MobileNetV3 is chosen as the backbone
network of YOLOv5m to lower the total algorithm coefficients, while the ECA module is
integrated to augment the efficacy of feature detection within the core network structure.
These optimizations reduce the computational cost of the model and improve the inference
performance. However, the detection precision of the enhanced model is inferior to that
of the baseline model. The reason is that the improved model has fewer parameters,
which leads to insufficient learning capacity of the backbone network. In addition, the
FocalEIoU loss function further enhances the detection capability of the YOLOv5 algorithm
and compensates for the limitation of the CIoU in independently regressing width and
height. The OPF refers to the original pruning fine-tuning method, while the RPF refers to
the pruning fine-tuning method based on structural re-parameterization. The assessment
results indicate that the RPF method can further enhance the performance of lightweight
models, thus boosting their feature extraction capability.

Regarding the choice of MobileNetV3 as the backbone network for YOLOv5m, Table 5
shows its strong performance with respect to parameters, FLOPs, detection precision,
and inference speed. In contrast, emerging networks like GhostNetV2, MobileOne, and
FasterNet have lightweight versions that cannot achieve the same level of accomplishment
as MobileNetV3 in practical applications.

By performing a comparative analysis of the evaluation results shown in Table 6, the
proposed method demonstrates remarkable achievements in various aspects, including
parameters, FLOPs, and other relevant metrics. Despite having lower FLOPs compared
to SSDLite, the proposed method significantly outperforms it regarding identification
precision metrics. On top of the UAV remote sensing scenes, the Satellite remote sensing
scenes were also harnessed for examining the competence of the formulated procedure.
The results, as shown in Figures 10 and 11, provide evidence of the proposed method
effectively addressing challenges related to missed detections and redundant detections,
surpassing other mainstream lightweight detection algorithms. This corroborates the
elevated performance and universality of the proposed method.

6. Conclusions

This study proposed a lightweight object method based on an optimized YOLOv5m
algorithm, specifically designed for UAV remote sensing scenes, with a focus on edge com-
puting devices carried by UAVs. The improved algorithm addresses the issue of imbalance
between parameters, computational complexity, and detection precision in conventional
object detection methods. To strengthen and optimize the attribute identification prowess
of the lightweight algorithm, a structural re-parameterization-based pruning fine-tuning
method is introduced. The MobileNetV3 architecture is employed as the backbone network

Sensors 2024, 24, 7711 20 of 22

for YOLOv5m by substituting the SE attention mechanism with the ECA module. Addi-
tionally, the FocalEIoU loss function is utilized for accurate bounding box regression and
makes up for shortcomings of CIoU. Pruning is applied to compress the parameter and
computational intricacy of the algorithm, while structural re-parameterization is used in
the backbone network to further enhance the learning competence of the model.

The results of the experiment indicate that the enhanced algorithm achieves mAP@0.5
of 36.2% and 79.8%, as well as mAP@0.5:0.95 of 20.7% and 58.6% on the VisDrone and
the DIOR datasets, respectively. Moreover, the inference speed on the Jetson AGX Xavier
reaches 49 FPS and 44 FPS for the respective datasets. In comparison with other main-
stream object detection methods, the improved algorithm exhibits advantages such as
reduced parameters and FLOPs, enhanced identification accuracy, and accelerated process-
ing velocity. Furthermore, the proposed algorithm holds potential for applications as an
upstream method in tasks such as UAV ground localization and UAV search and rescue
across diverse scenes.

Author Contributions: Conceptualization, Y.Y. and P.S.; methodology, Y.Y. and P.S.; software, Y.Y. and
P.S.; validation, Y.Y. and P.S.; formal analysis, P.S.; investigation, Y.Y.; resources, P.S.; data curation, P.S.
and Y.W.; writing—original draft preparation, Y.Y. and P.S.; writing—review and editing, Y.Y., Y.W.,
P.S. and L.C.; visualization, Y.W. and P.S.; supervision, L.C.; project administration, L.C.; funding
acquisition, Y.Y., Y.W., P.S. and L.C. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 62303484), Sichuan Science and Technology Program (Grant No. 2024NSFSC2048), Scientific
Research and Innovation Team Program of Sichuan University of Science and Engineering (Grant
No. SUSE652A011), and Graduate Innovation Fund Project of Sichuan University of Science &
Engineering (Grant No. Y2023271).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors will provide the raw data supporting this article’s conclu-
sions upon request.

Conflicts of Interest: The authors state that they have no recognized financial conflicts of interest or
personal relationships that could have seemed to affect the work presented in this paper.

References
1. Yang, S.; Luo, P.; Loy, C.C.; Tang, X. Wider Face: A Face Detection Benchmark. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5525–5533.
2. Wang, J.; Chen, Y.; Dong, Z.; Gao, M. Improved YOLOv5 Network for Real-Time Multi-Scale Traffic Sign Detection. Neural

Comput. Appl. 2023, 35, 7853–7865. [CrossRef]
3. Dong, X.; Yan, S.; Duan, C. A Lightweight Vehicles Detection Network Model Based on YOLOv5. Eng. Appl. Artif. Intell. 2022,

113, 104914. [CrossRef]
4. Sun, X.; Wang, P.; Wang, C.; Liu, Y.; Fu, K. PBNet: Part-based Convolutional Neural Network for Complex Composite Object

Detection in Remote Sensing Imagery. ISPRS J. Photogramm. Remote Sens. 2021, 173, 50–65. [CrossRef]
5. Ma, A.; Wan, Y.; Zhong, Y.; Wang, J.; Zhang, L. SceneNet: Remote sensing scene classification deep learning network using

multi-objective neural evolution architecture search. ISPRS J. Photogramm. Remote Sens. 2021, 172, 171–188. [CrossRef]
6. Wan, Y.; Zhong, Y.; Ma, A.; Wang, J.; Zhang, L. E2SCNet: Efficient Multiobjective Evolutionary Automatic Search for Remote

Sensing Image Scene Classification Network Architecture. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 7752–7766. [CrossRef]
7. Liu, Z.; Chen, C.; Huang, Z.; Chang, Y.; Liu, L.; Pei, Q. A Low-Cost and Lightweight Real-Time Object-Detection Method Based

on UAV Remote Sensing in Transportation Systems. Remote Sens. 2024, 16, 3712. [CrossRef]
8. Liu, S.; Cao, L.; Li, Y. Lightweight Pedestrian Detection Network for UAV Remote Sensing Images Based on Strideless Pooling.

Remote Sens. 2024, 16, 2331. [CrossRef]
9. Tan, L.; Lv, X.; Lian, X.; Wang, G. YOLOv4_Drone: UAV image target detection based on an improved YOLOv4 algorithm.

Comput. Electr. Eng. 2021, 93, 107261. [CrossRef]
10. Zhang, J.; Zhang, Y.; Shi, Z.; Zhang, Y.; Gao, R. Unmanned Aerial Vehicle Object Detection Based on Information-Preserving and

Fine-Grained Feature Aggregation. Remote Sens. 2024, 16, 2590. [CrossRef]

https://doi.org/10.1007/s00521-022-08077-5
https://doi.org/10.1016/j.engappai.2022.104914
https://doi.org/10.1016/j.isprsjprs.2020.12.015
https://doi.org/10.1016/j.isprsjprs.2020.11.025
https://doi.org/10.1109/TNNLS.2022.3220699
https://doi.org/10.3390/rs16193712
https://doi.org/10.3390/rs16132331
https://doi.org/10.1016/j.compeleceng.2021.107261
https://doi.org/10.3390/rs16142590

Sensors 2024, 24, 7711 21 of 22

11. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014.

12. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

13. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017.

14. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

15. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings
of the 2016 European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham,
Switzerland, 2016.

16. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

17. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
18. Bochkovskiy, A.; Wang, C.; Liao, H.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.
19. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding Yolo Series in 2021. arXiv 2021, arXiv:2107.08430.
20. Huang, R.; Pedoeem, J.; Chen, C. YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers. In

Proceedings of the 2018 IEEE International Conference on Big Data, Seattle, WA, USA, 10–13 December 2018.
21. Wong, A.; Famuori, M.; Shafiee, M.J.; Li, F.; Chwyl, B.; Chung, J. YOLO Nano: A Highly Compact You Only Look Once

Convolutional Neural Network for Object Detection. In Proceedings of the 2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing—NeurIPS Edition, Vancouver, BC, Canada, 13 December 2019.

22. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, W.; Li, Y.; et al. YOLOv6: A Single-Stage Object Detection
Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976.

23. Wang, C.; Bochkovskiy, A.; Liao, H.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object
Detectors. In Proceedings of the In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475.

24. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23
June 2018.

25. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23
June 2018.

26. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.; Tan, M. Searching for MobileNetV3. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019.

27. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features From Cheap Operations. In Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020.

28. Sun, C.; Wang, X.; Liu, Z.; Wang, Y.; Zhang, L.; Zhong, Y. SiamOHOT: A Lightweight Dual Siamese Network for Onboard
Hyperspectral Object Tracking via Joint Spatial–Spectral Knowledge Distillation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12.
[CrossRef]

29. Li, X.; Wang, Z.; Geng, S.; Wang, L.; Zhang, H.; Liu, L.; Li, D. Yolov3-Pruning(transfer): Real-Time Object Detection Algorithm
Based on Transfer Learning. J. Real-Time Image Process. 2022, 19, 839–852. [CrossRef]

30. Wu, D.; Lv, S.; Jiang, M.; Song, H. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate
detection of apple flowers in natural environments. Comput. Electron. Agric. 2020, 178, 105742. [CrossRef]

31. Zhang, J.; Wang, P.; Zhao, Z.; Su, F. Pruned-YOLO: Learning Efficient Object Detector Using Model Pruning. In Proceedings of the
30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, 14–17 September 2021; Springer International
Publishing: Cham, Switzerland, 2021.

32. Gupta, C.; Gill, N.; Gulia, P.; Chatterjee, J. A Novel Finetuned YOLOv6 Transfer Learning Model for Real-Time Object Detection.
J. Real-Time Image Process. 2023, 20, 42. [CrossRef]

33. Iandola, F.; Han, S.; Moskewicz, M.; Ashraf, K.; Dally, W.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size. arXiv 2016, arXiv:1602.07360.

34. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

35. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q. MnasNet: Platform-Aware Neural Architecture Search
for Mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019.

36. Tang, Y.; Han, K.; Guo, J.; Xu, C.; Xu, C.; Wang, Y. GhostNetv2: Enhance Cheap Operation with Long-Range Attention. Adv.
Neural Inf. Process. Syst. 2022, 35, 9969–9982.

37. Vasu, A.; Gabriel, J.; Zhu, J.; Tuzel, O.; Ranjan, A. MobileOne: An Improved One Millisecond Mobile Backbone. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023.

https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TGRS.2023.3307052
https://doi.org/10.1007/s11554-022-01227-x
https://doi.org/10.1016/j.compag.2020.105742
https://doi.org/10.1007/s11554-023-01299-3

Sensors 2024, 24, 7711 22 of 22

38. Chen, J.; Kao, S.; He, H.; Zhuo, W.; Wen, S.; Lee, C.; Chan, S. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural
Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
17–24 June 2023.

39. Zagoruyko, S.; Komodakis, N. Diracnets: Training very deep neural networks without skip-connections. arXiv 2017,
arXiv:1706.00388.

40. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. RepVGG: Making VGG-style ConvNets Great Again. In Proceedings of the
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021.

41. Chen, C.; Guo, Z.; Zeng, H.; Xiong, P.; Dong, J. Repghost: A Hardware-Efficient Ghost Module via Re-parameterization. arXiv
2022, arXiv:2211.06088.

42. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017.

43. Cao, Y.; He, Z.; Wang, L.; Wang, W.; Yuan, Y.; Zhang, D. VisDrone-DET2021: The vision meets drone object detection challenge
results. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17
October 2021.

44. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark.
ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.isprsjprs.2019.11.023

	Introduction
	Materials
	Lightweight CNN Models
	Model Pruning
	Model Re-Parameterization

	Methods
	Proposed the PR-YOLO Model
	Backbone Network Improvement
	Regression Loss Function Improvement

	Re-Parameterization Towards the Larger Kernel
	Pruning and Fine-Tuning Process Improvement

	Experiments
	Experimental Details
	Training and Validation Datasets
	Experimental Results
	Ablation Experiments
	Model Compression Experiment
	Fine-Tuning and Re-Parameterization Experiment
	The Comparison Results with Related Algorithms

	Discussion
	Conclusions
	References

