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Abstract: Deep learning models, such as recurrent neural network (RNN) models, are suitable
for modeling and forecasting non-stationary time series but are not interpretable. A prediction
model with interpretability and high accuracy can improve decision makers’ trust in the model and
provide a basis for decision making. This paper proposes a double decomposition strategy based on
wavelet decomposition (WD) and empirical mode decomposition (EMD). We construct a prediction
model of high-order fuzzy cognitive maps (HFCM), called the WE-HFCM model, which considers
interpretability and strong reasoning ability. Specifically, we use the WD and EDM algorithms to
decompose the time sequence signal and realize the depth extraction of the signal’s high-frequency,
low-frequency, time-domain, and frequency domain features. Then, the ridge regression algorithm
is used to learn the HFCM weight vector to achieve modeling prediction. Finally, we apply the
proposed WE-HFCM model to stationary and non-stationary datasets in simulation experiments.
We compare the predicted results with the autoregressive integrated moving average (ARIMA) and
long short-term memory (LSTM) models.For stationary time series, the prediction accuracy of the
WE-HFCM model is about 45% higher than that of the ARIMA, about 35% higher than that of the
SARIMA model, and about 16% higher than that of the LSTM model. For non-stationary time
series, the prediction accuracy of the WE-HFCM model is 69% higher than that of the ARIMA and
SARIMA models.

Keywords: non-stationary time series prediction; high-order cognitive fuzzy map; wavelet
decomposition; empirical mode decomposition; ridge regression

1. Introduction

Time series forecasting can help enterprises and governments to make reasonable
economic decisions and is widely used in various fields. For example, in the economic
field, it can be used to predict future sales, stock prices, economic growth rates, etc. [1].
A time series forecasting model in meteorology can predict future temperature, rainfall,
and other meteorological conditions to help people make reasonable travel and production
plans [2]. In transportation, it can be used to predict future traffic flow and help traffic
management departments carry out traffic scheduling and planning [3]. The time series
prediction model in the energy field can predict elements of future power generation, such
as power consumption, and provide a reasonable basis for decisions in power-dispatching
departments-making [4–6]. In addition, time series prediction models have been widely
used in medicine [7,8], tourism [9], industry [10], and other fields. Therefore, the study of
time series prediction is of great significance.

Time series can be divided into stationary time series and non-stationary time series.
The observed values of stationary series fluctuate at a fixed level. Although the fluctuation
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degree differs in different periods, there is no specific rule, and the fluctuation can be
regarded as random. A non-stationary sequence is a sequence of trends, seasonality, or
periodicity, which may contain only one or a combination of several components [11].
Ghaderpour et al. [12] proposed the mathematical derivation of the underlying probability
distribution function for the normalized least squares wavelet spectrogram. It can simul-
taneously estimate trend and seasonal components in the time series, considering their
correlation, which significantly improves the component estimation. Baidya et al. [13]
proposed a novel TSF model designed to address the challenges posed by real-life data,
delivering accurate forecasts in both multivariate and univariate settings. In real life,
the non-stationary sequence is the majority, and the smoothness of the sequence is an
essential premise for time series prediction modeling. However, dealing with large-scale,
non-stationary time series with changing trends and rapid changes is still challenging.
Explaining the potential features of non-stationary time series and their correlation is still a
complex problem.

In recent years, because of the rapid development of deep learning, deep learning has
also been widely used in various fields of time series prediction. Using the black box theory,
researchers have developed several time series prediction models with excellent perfor-
mance; examples include a time series prediction model based on long short-term memory
(LSTM) [8,14], a time series prediction model based on convolutional neural network
(CNN) [15], and a time series prediction model based on Transformer [16]. Li et al. [17]
converted time series values into images, which were then predicted as inputs to the CNN.
Nie et al. [18] used a CNN to predict the residual life of rolling bearings and proved that
the proposed model is superior to the traditional model in experiments. This is because
CNN results in information loss when there are too many layers. Zan et al. [19] used the
TCN-TPA prediction model to predict fusion meteorological data, avoiding the problems
of gradient disappearance and gradient explosion. Some researchers have applied artifi-
cial neural networks to traffic flow prediction [20] and room temperature prediction [21].
Compared with the traditional time series prediction model, the time series prediction
model based on deep learning can mine more feature information. However, it has the
characteristics of a black box and a long training time, which makes it difficult for people
to understand. Therefore, designing a model with interpretability and good prediction
accuracy is of great importance.

Some scholars have proposed that fuzzy cognitive maps (FCMs) [22] can be applied to
time series prediction. FCMs have a strong ability to carry out fuzzy reasoning and semantic
understanding; they are a powerful tool for constructing interpretable time series prediction
models. The nodes of FCMs represent events, features, or targets; the connections between
nodes represent relationships; and the values of nodes and the connections between nodes
can be represented as fuzzy values. Because of their interpretability and causal reasoning
ability, FCMs have been widely used in time series prediction in recent years. Stach et al. [23]
used real-coded genetic algorithms to learn fuzzy cognitive maps and make numerical and
linguistic predictions of time series. In order to improve the prediction accuracy of the FCM
model, Lu et al. [24] designed a high-order fuzzy cognitive map to model and predict time
series. In order to solve the problems of low precision, sensitivity to hyperparameters, and
unrobust prediction results of time series based on FCMs, Jin et al. [25] proposed an SO2
concentration prediction method based on EMD and LSTM. The results show that EMD can
effectively reduce the non-stationarity of the original time series and improve prediction
accuracy. Some scholars have also proposed dealing with non-stationary time series using
wavelet transform. Aussem et al. [26] proposed a wavelet-based feature decomposition
strategy and combined it with recurrent neural network financial forecasting.

In order to construct an interpretable model and to solve the problem of ignoring the
frequency-domain features in time series data, in this paper, we apply wavelet decompo-
sition (WD), EMD, and HFCM to time series prediction. The high-frequency component
of the wavelet decomposition is still non-stationary. Since empirical mode decomposi-
tion (EMD) can reduce the non-stationarity of the sequence, EMD is used to decompose
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the high-frequency components after wavelet decomposition. Finally, the low-frequency
component of wavelet decomposition and the high component of empirical mode decom-
position are taken as the input of HFCM, and the ridge regression algorithm optimizes the
parameters. We call this model WE-HFCM. Using the ridge regression algorithm to learn
HFCM weights, this algorithm can effectively optimize model parameters when dealing
with large-scale time series. Therefore, WE-HFCM can be effectively applied to large-scale
time series with hundreds or thousands of data points. Finally, to show the prediction
model’s performance, this paper compares the performance of this model with the classical
time series prediction model, autoregressive integrated moving average (ARIMA), and the
deep learning model, LSTM, on two non-stationary time series datasets and two stationary
time series datasets.

The main contributions are as follows:

(1) We design a double decomposition stage, which extracts the low-frequency and
high-frequency features of the time series by wavelet decomposition and EMD decom-
position and smoothes the non-stationary time series.

(2) We construct a WE-HFCM model to increase the interpretability of the model. By
aggregating the eigenvalues of different frequencies and making better use of the
critical information of the potential features of time series, the representation learning
of node relations is realized, and the high-order fuzzy cognitive map (HFCM) is
constructed for prediction.

(3) Based on the comparison and ablation experiments, the proposed method can better
predict the non-stationary univariate time series.

2. Materials and Methods
2.1. Datasets

We select benchmark time series with different statistical characteristics from different
fields to test the validity of the proposed model. Non-stationary time series include stock
opening price (open-price) and wind speed (wind-speed) datasets. The open-price dataset
recorded the opening price of stocks every day from 25 November 2015 to 17 November
2017, with a total of 500 data pieces. The wind-speed dataset is used by this research group
to participate in a competition, recording the wind speed of a place from 2 January 2021 to
11 January 2021 every 15 min, with a total of 1000 data pieces. The stationary time series
includes sunspots and daily minimum temperature datasets (min-temp). Sunspot records a
time series of annual sunspots from 1700 to 1987, with 289 observations. Min-temp contains
800 data items. The three datasets, open-price, sunspot, and min-temp, are available on
Baidu’s website.

2.2. Wavelet Decomposition

WD decomposes the original signal into high-frequency (HF) and low-frequency (LF)
components through wavelet basis functions. HF represents changes in the details of
the original signal data, and LF represents the overall trend of the original signal data.
The decomposition and refactoring process is shown in Figure 1. The corresponding fast
algorithm in wavelet decomposition reconstruction is called the Mallat algorithm [27],
expressed as follows: {

LFi+1(t) = d× Ci(t)
HFi+1(t) = g× Ci(t)

(1)

where i = 0, 1, 2, . . . , N. d is a low-pass filter for low-frequency signals. g is a high-pass
filter for high-frequency signals. N is the number of decomposition layers. t is the time
point. C0(t) is the original time series of the input.

The wavelet coefficients and the length of the component after passing WD are incon-
sistent and do not have the characteristics of the actual sequence, so the component needs
to be reconstructed and solved, as shown in Figure 1a.

CN = d∗ × Ad+2 + g∗ × Dd+1 (2)
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where d = N − 1, N − 2, . . . , 0. d∗ and g∗ are the dual operators of d and g, respectively.
The reconstructed time series C

′
0 is expressed as follows:

C
′
0 = CN + D1 + D2 + . . . + DN (3)

Figure 1. Wavelet decomposition and reconstruction: (a) wavelet decomposition (b) wavelet reconstruction.

2.3. EMD

EMD [28] is a powerful tool that decomposes a time series into intrinsic mode functions
(IMFs) and residuals. This method, which arranges the details of the time series in sequence
from high frequency to low frequency, has clear advantages in handling unstable and
aperiodic signals. These advantages include that the maximum difference between the
number of extreme points of a local signal and the number of zeros is one and that there is
symmetry between the upper and lower envelope of every part of the curve.

Wavelet decomposition (WD) plays a crucial role in generating low-frequency A and
high-frequency D. Since the high-frequency part is still a non-stationary sequence, it is
summated and denoted Cd(t). We perform EMD decomposition for Cd(t) [20,29] as follows.

(1) We interpolate the time series Cd(t) with cubic splines and connect the extreme points
to form the upper and lower envelope emin(t) and emax(t). The average envelope mt is
calculated as in (4).

(3) The intrinsic mode function (IMF)d1 is defined as the difference between the time
series Cd(t) and the mean envelope mt, as shown in (5).

(3) The component of the maximum frequency of time series Cd(t) is determined as ci,
(i = 1, 2, . . . , n), and separated from Cd(t), as shown in Equation (6). We continue the
decomposition with r1 as input. The complete decomposition formula is shown in (7).

m(t) = (emin(t) + emax(t))/2 (4)

d1 = Cd(t)−m(t) (5)

r1 = Cd(t)− c1 (6)

Cd(t) = ∑n
i=1di(t) + rn (7)

where Cd(t) is the sum of the high-frequency part of the wavelet decomposition sequence,
m(t) is the average of the upper and lower envelope of the extreme point, di(t) is the
decomposed IMFi, d1 is IMF1, c1 is the maximum frequency of the input sequence, r1 is
the Cd(t) sequence with the c1 part removed, and rn is the residual term.



Sensors 2024, 24, 7272 5 of 15

2.4. FCMs

FCMs [22] are developed by Kosko based on Axelord cognitive maps, extending the
ternary relation between concepts (1, 0, 1) to the fuzzy relation on the interval [−1, 1]. This
makes the FCMs more informative. FCMs are a graph structure that connect causal events,
participation values, goals and trends in a fuzzy feedback dynamic system through arcs
between concepts. The nodes are concepts, entities, etc., and the arcs represent causal
relationships between concepts or entities. The degree of causal influence can be expressed
by fuzzy values [0, 1] or described by natural language, such as weak, very weak, medium,
and strong.

The semantics contained in standard FCMs are represented by a 4-tuple (C, W, A, f ).
This representation is a crucial aspect of FCM, which consists of n nodes, X = {X1, X2, . . . , Xn}
is a set of n nodes, and W is a weight matrix of n× n dimensions:

W =

W11 . . . W1n
...

. . .
...

Wn1 . . . Wnn

 (8)

The status value of the Xi node at time t + 1 is affected by the status value and weight
value of all nodes connected to it at time t. In this paper, X is the di(t) set obtained by
decomposing the low-frequency component A in WD and EMD. The state value of the Xi
node at time t + 1 can be expressed by (9).

Ai(t + 1) = f

(
n

∑
j=1

wji Ai(t)

)
(9)

where Ai(t) and Ai(t + 1) represent the status value of node Xi at time t and time t + 1,
respectively, t = {1, 2, 3, . . . , T}. f is the activation function.

wji > 0

wji = 0 , wji ∈ [−1, 1]

wji < 0

(10)

The weight wji in (10) can reflect the degree and direction of causal influence between
node Xi and node Xj. If wji > 0, the two nodes are positively correlated. If wji < 0, the two
nodes are negatively correlated. If wji = 0, there is no relationship between the two nodes.

The current state of the FCM is not only determined by the state of the previous
moment but also affected by the state of the past. Stach et al. [30] introduced higher-order
state values into the FCM model to enhance its approximation ability. The calculation of
the HFCM of order k is shown in (11).

Ai(t + 1) = f

(
n

∑
j=1

(
w1

ji Aj(t) + w2
ji Aj(t− 1) + · · ·+ wk

ji Aj(t− k + 1)
)
+ wi0

)
(11)

where wk
ji represents the relation of the j-th node to the i-th node at the time step and is the

constant deviation of the i-th node relative to the 0-th node.
Figure 2 shows a fuzzy cognitive graph with five nodes and a weight matrix. A

one-way arrow pointing from X2 to X1 indicates that node X2 is correlated with node X1,
and its weight is X21.
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(a) (b)

Figure 2. (a) Fuzzy cognitive map with five nodes. (b) The weight matrix of FCM.

2.5. WE-HFCM Prediction Model

The HFCM’s node and relationship weights are two key factors. Obtaining meaningful
nodes and a node relation matrix is a challenging research problem. The univariate time
series, being a one-dimensional numerical series, cannot directly form the multi-node
structure of HFCM. This paper proposes a double decomposition strategy based on WD
and EMD to solve the time series prediction problem through the HFCM framework.
The resulting WE-HFCM framework has the potential to impact the field of time series
prediction significantly.

Figure 3 illustrates the meticulous process of time series prediction using WE-HFCM.
The original time series is first normalized, and the numerical data are transformed into
HFCM nodes through WD and EMD decomposition. WD decomposes the time series into
two parts, the low-frequency component and high-frequency component, and EMD further
decomposes the high-frequency component into multiple IMFs through accumulation. The
input of HFCM is the set of low-frequency components and multiple IMFs. The weight
matrix of HFCM is then optimized using the rigorous ridge regression algorithm. Finally,
in each time step, the values of all nodes are summed, and the predicted value is output.
This comprehensive process ensures the reliability of the WE-HFCM model.

Figure 3. Basic framework of the WE-HFCM prediction model.

2.5.1. Double Decomposition of Time Series

Wavelet decomposition provides signal analysis in time and frequency, allowing
decision makers to observe time series at different resolution levels. However, there are
still non-stationary subsequences in the high-frequency components obtained by wavelet
decomposition, and EMD decomposition has apparent advantages in dealing with unstable
and non-periodic signals. Therefore, this paper introduces EMD to further decompose the
high-frequency part of WD decomposition. The double decomposition of the time series is
shown in Figure 4. We first normalize the input time series and map it to the range [−1, 1].
Then, through discrete wavelet transformation and reconstruction, the normalized time
series is decomposed into low-frequency component A and high-frequency component D
by (1) and (2). The low-frequency component represents the overall trend information of
the input time series, and the high-frequency part represents the detailed information of
the input time series. As far as we know, previous studies only focus on the low-frequency
component, ignoring the high-frequency information in the time series. Therefore, this
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paper sums up the high-frequency components and decomposes them through EMD to
obtain multiple IMFs, reflecting the time series’ intrinsic characteristics.

Figure 4. Double decomposition frame.

2.5.2. Ridge Regression for Learning HFCM

Ridge regression is a regularization method of linear regression, which has a good ad-
vantage in dealing with datasets with correlation between predictors [31]. Ridge regression
works to add a penalty term based on the least squares method and impose a penalty by
adjusting the size of the coefficient to solve the shortcomings of linear regression.

The multivariate time series obtained from wavelet decomposition and EMD decompo-
sition are used to learn the weight matrix of HFCM. In the following, we use second-order
HFCM as an example to illustrate how to learn HFCM weights by ridge regression. The
proposed method can be easily extended to HFCM learning in any order. Wu et al. [32]
pointed out that the problem of learning the weight matrix for FCM can be reduced to the
problem of learning the local connections of the nodes separately. As shown in Figure 5,
different spheres represent different nodes, we also use the same decomposition strategy
in the HFCM learning method. Firstly, a subnetwork is constructed between node i and
its neighboring nodes, and the HFCM learning problem with four nodes is decomposed
into four subproblems, one for each subnetwork. The modeling of each subproblem is
essentially a signal reconstruction problem, including the difference between the available
sequence and the generated sequence and the sparse structure from all nodes to a specific
node. Each subproblem is optimized by ridge regression. Taking node X2 as an example,
we use a lasso to learn the structure of node X2 from nodes X1, X2, X3, and X4 and return
the relationship from node X2 to node X1with W21 = 0.68. Finally, after learning all nodes’
neighboring nodes, we combine the local connections into the whole HFCM.

The nonlinear dynamic equation of HFCM is linearized by inverse transformation,
expressed as

ϕ−1(Ai(t + 1)) =
n

∑
j=1

(
w1

ij Aj(t) + w2
ij Aj(t− 1) + wi0

)
(12)

where ϕ−1 is the inverse of the transfer function ϕ. Once a time series of length L at
different time steps t is available, the transformed dynamic Equation (12) can be rewritten
in vector form.

Yi = XWi (13)

where Yi is the vector containing ϕ−1(Ai(t + 1)), X is the state matrix of all states Aj(t)
of different t nodes, and wi is the weight vector between all nodes and the i-th node.
Equations (14)–(16) show the three variables’expression.

Yi =


ϕ−1(Ai(3))
ϕ−1(Ai(4))

...
ϕ−1(Ai(5))

 (14)
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WT
i =

[
w1

i1 w2
i1 w1

i2 w2
i2 . . . w1

iNc
w2

iNc
wi0

]
(15)

X =


A1(2) . . . ANc(1) 1
A1(3) . . . ANc(2) 1

...
...

...
...

A1(L− 1) . . . ANc(L− 1) 1

 (16)

Figure 5. The learning process of HFCM with four node.

Ridge regression is used to solve the following optimization problems, improve the
generalization ability of the WE-HFCM model, and determine the local connection of the
i-th node.

min
Wi

{
(1/2L)‖Yi − XWi‖2

2 + ∂‖Wi‖2

}
(17)

where ‖Wi‖2 =
√

∑k W2
ik. ∂ is a regularized parameter that is generally non-negative. The

greater the value of ∂, the greater the shrinkage and the stronger the model’s robustness to
collinearity. And k denotes a higher-order fuzzy cognitive map of order k. Equation (17)
determines the weight vector Wi between all nodes and the i-th node. We used ridge
regression [33] from the Python library Scikit-learn to learn the weight vector.

2.6. Data Preprocessing and Evaluation Indicators
2.6.1. Data Preprocessing

The amplitude signal of the time series is used as input to the proposed model, and we
need to normalize it. This paper uses the Min-Max normalization method to normalize the
input time series and map it uniformly to the range [−1, 1]. The maximum and minimum
values of the original time series are set to Xmax and Xmin, respectively, and the maximum
and minimum values of the normalized time series are Xhigh and Xlow, respectively. We
normalize the time series from range [Xmin, Xmax] to range [Xlow, Xhigh ] by (18).

X̄ = (X− Xmin)
(

Xhigh − Xlow

)
/(Xmax − Xmin) + Xlow (18)
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Here, X represents the original time series, and X̄represents the normalized time series.
This paper divides the normalized time series data into three subsets: training set,

validation set, and test set, as shown in Table 1. The training dataset is used to learn the
weight matrix of the HFCM prediction model, the validation dataset is used to select the
best model, and the test dataset is employed to evaluate the prediction accuracy.

Table 1. Data set partitioning.

Dataset Total Length Training Set
Length

Validation Set
Length

Test Set
Length

open-price 500 319 79 102
sunspot 289 177 44 67

min-temp 800 448 112 240
windspeed 1000 640 160 200

2.6.2. Evaluation Indicators

In this paper, three evaluation criteria are used to evaluate the performance of the
method: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean
Absolute Percentage Error (MAPE). MAE and RMSE measure the absolute value of the
predicted deviation from the actual value. MAE does not consider the positive or negative
of the predicted value and pays more attention to the size of the absolute error. RMSE is
easy to understand, convenient to calculate, and sensitive to outliers. The MAPE measures
the relative magnitude (i.e., percentage) by which the predicted values deviate from the
actual values. MAE and MAPE are relatively less susceptible to extreme values. However,
RMSE uses the square of the error, amplifying the prediction error, making it more sensitive
to outlier data, and highlighting the error values with significant influence. The smaller
the values of these criteria, the closer the prediction results are to the original time series
values. The evaluation formula is defined as follows.

RMSE =


√√√√ L

∑
i=1

(Xi − X̄i)

/L2 (19)

MAE =

(
L

∑
i=1
|Xi − X̄i|

)
/L (20)

MAPE =

(
L

∑
i=0
|(Xi − X̄i)/Xi|

)
/L (21)

where L is the time series length, and Xi and X̄i represent the normalized original and
predicted time series.

3. Result and Analysis

This section explores the influence of different parameter values on the prediction
performance of the WE-HFCM model and comprehensively evaluates its prediction perfor-
mance.

3.1. Model Parameters

To verify the prediction effect of the model proposed in this paper, the WE-HFCM
model was compared with the ARIMA and LSTM models. The model parameters are
shown in Table 2.

For different datasets, the optimal parameters of the model are different. The regular-
ized parameter ∂ is the best value selected by cross-validation, here ∂ = 1× 10−12. Figure 6
discusses the error comparison of the wavelet decomposition of 2 to 7 times, respectively,
in the four datasets’ second to seventh-order HFCM model. From Figure 6, we can see
that for the sunspot dataset, the optimal model parameters of HFCM are k = 4 and n = 2.
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For the min-temp dataset, the optimal model parameters of HFCM are k = 5 and n = 2.
For the wind-speed and open-price datasets, the optimal model parameters of HFCM are
k = 2 and n = 2. Generally, the order of the optimal parameters of the HFCM model on
non-stationary datasets is lower than that on stationary data sets.

Table 2. Model parameter.

Model Main Parameters Explanation

Wave N Number of WD levels

HFCM n Number of HFCM nodes
α Ridge regression parameters

(a) (b) (c)

(d) (e) (f)

Figure 6. The RMSE values of HFCM of 2–7 nodes in the four datasets correspond to the order
1–6 HFCM, respectively. (a) k = 1, (b) k = 2, (c) k = 3, (d) k = 4, (e) k = 5, (f) k = 6.

3.2. Analysis of Experimental Results

We meticulously tested the proposed model on four datasets, comparing the original
and predicted data. Following the model parameter setting in Section 3.1 we determined
the optimal WE-HFCM model parameters for each dataset. The prediction results of the
WE-HFCM model on the four datasets are presented in Figure 7. Figure 7a,b show the
prediction results of the proposed WE-HFCM model in non-stationary time series, and
Figure 7c,d show the prediction results of the WE-HFCM model in stationary time series.
As seen in Figure 7, the model’s prediction results follow the data trend and are accurate
for non-stationary and stationary time series.

In order to better reflect the effectiveness of the WE-HFCM model proposed in this
paper, it is compared with the classical time series prediction model ARIMA, SARIMA and
the deep learning model LSTM, and the results are shown in Table 3. The best-performing
result is indicated by bold skew, and the second best-performing result is indicated by
skew. This means that the model with the lowest error is considered the best-performing
model, and the second-lowest error is considered the second-best-performing model. The
experimental results show that on non-stationary datasets, the error of the WE-HFCM
model is much smaller than that of the ARIMA model. However, the prediction results
are slightly inferior to that of the LSTM prediction model. The prediction errors of the
WE-HFCM model on the stationary time series are higher than those of the non-stationary
time series. However, compared with the ARIMA and LSTM models, the prediction errors
of the WE-HFCM model are lower.
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(a) (b)

(c) (d)
Figure 7. WE-HFCM predictions on four datasets: (a) wind-speed, (b) open-price, (c) sunspot,
(d) min-temp.

Table 3. Comparison of the experimental results of four models.

Dataset Model RMSE MAE MAPE

wind-speed

WE-HFCM 0.509655 0.430687 12.18910
ARIMA 2.887541 2.618241 80.83926
LSTM 0.245350 0.201483 5.843880

SARIMA 2.035321 0.463132 16.63178

open-price

WE-HFCM 1.287810 1.056692 0.921886
ARIMA 128.4047 128.3749 99.96622
LSTM 0.614700 0.465886 0.388289

SARIMA 8.183435 7.234018 7.234018

min-temp

WE-HFCM 3.086318 2.414340 22.02933
ARIMA 8.039095 6.946333 65.90470
LSTM 4.204377 3.418290 31.70666

SARIMA 5.173325 4.050270 4.050270

sunspot

WE-HFCM 16.82442 11.45599 28.79121
ARIMA 55.01083 39.21089 154.4593
LSTM 62.51576 48.02626 218.0822

SARIMA 21.99944 16.3178 0.463132
The second best performance result is indicated in italics. The best-performing result is represented in bold
and italics.

RSME values, i.e., the root mean square error values, measure the differences between
values predicted by a model and observed values. The error value of the ARIMA model is
about two times that of the WE-HFCM, and the error value of the LSTM model is equal
to that of the WE-HFCM. In the final ablation experiment, the proposed model combines
wavelet decomposition and empirical mode decomposition to extract features. In order to
verify the effectiveness of dual decomposition, the RMSE values of the proposed model
WE-HFCM and the model Wave-HFCM that only uses wavelet decomposition for feature
decomposition are compared, as shown in Table 4. It can be seen that the error values of the
proposed model WE-HFCM are all smaller than those of the single decomposition model
Wave-HFCM, which verifies that the use of double decomposition can better improve the
prediction accuracy of the model. Table 5 records the RMSE of WE-HFCM on all datasets,
i.e., the training dataset, validation dataset, and test dataset, for each time series.

In order to reflect the interpretability of the WE-HFCM model proposed in this paper,
the min-temp dataset is taken as an example for analyzing the interpretability of the model.
The minimum, median, and maximum values of the min-temp time series are selected
as three fuzzy variables, and their corresponding semantic interpretations are defined as
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low-amplitude, medium-amplitude, and high-amplitude, respectively, as shown in Figure 8.
The top orange area represents high amplitude, the middle white area represents medium
amplitude, the bottom blue area represents low amplitude, and the purple line represents
the interval predicted value of the model. The experimental results show that the value
corresponding to the semantic “low amplitude” is 0, the value corresponding to “medium
amplitude” is 11.4, and the value corresponding to “high amplitude” is 26.3. From Figure 8,
we can obtain not only the predicted values of the time series data but also the prediction
intervals; in addition, we can obtain the semantic interpretation of the predicted values,
which is helpful for people to apply in practice.

Table 4. Results of RMSE comparison in the ablation experiment.

Dataset
Model

WE-HFCM Wave-HFCM

open-price 1.287810 1.984186

sunspot 16.82442 20.99618

min-temp 3.086318 3.389726

wind-speed 0.509655 0.520299
The second best performance result is indicated in italics. The best-performing result is represented in bold
and italics.

Table 5. RMSE of WE-HFCM on different subsets.

Dataset Stage RMSE

wind-speed

all 0.509655
training 0.509846

validation 0.473800
test 0.536034

open-price

all 1.287810
training 1.238265

validation 1.391657
test 1.343341

min-temp

all 3.086318
training 3.024576

validation 3.123155
test 3.181652

sunspot

all 16.82442
training 15.22556

validation 13.92508
test 21.92508

Figure 8. WE-HFCM interpretation analysis on the min-temp test dataset.
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4. Conclusions

To construct interpretable models and address the issue of previous research focusing
only on the time-domain features of time series data and neglecting frequency-domain
features, this paper mainly constructs a time series prediction model, WE-HFCM, for non-
stationary time series. The WE-HFCM model is designed to offer both interpretability
and high prediction accuracy. It stands out for its unique features, such as using a double
decomposition strategy to extract time series features. This strategy combines and exploits
the advantages of wavelet and EMD decomposition to extract multiple adequate time
series features. We then construct high-order fuzzy cognitive maps based on these features
and use the ridge regression algorithm to continuously learn and determine the optimal
model. Finally, we apply the WE-HFCM model to predict stationary and non-stationary
time series, comparing the results with those of the ARIMA and LSTM models. The
experimental results, obtained through rigorous validation, demonstrate the superiority of
the WE-HFCM model; it has a 45% higher accuracy than the ARIMA model, about a 35%
higher accuracy than the SARIMA model, and a 16% higher accuracy than the LSTM model
in predicting stationary series. In the prediction of non-stationary series, the WE-HFCM
model’s accuracy is 69% higher than that of the ARIMA and SARIMA models, providing a
robust solution for time series prediction.
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