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Abstract: With the compelling popularity of integrated sensing and communication (ISAC), Wi-Fi
sensing has drawn increasing attention in recent years. Starting from 2010, Wi-Fi channel state
information (CSI)-based wireless sensing has enabled various exciting applications such as indoor
localization, target imaging, activity recognition, and vital sign monitoring. In this paper, we
retrospect the latest achievements of Wi-Fi sensing using commodity-off-the-shelf (COTS) devices
from the past 5 years in detail. Specifically, this paper first presents the background of the CSI
signal and related sensing models. Then, recent studies are categorized from two perspectives,
i.e., according to their application scenario diversity and the corresponding sensing methodology
difference, respectively. Next, this paper points out the challenges faced by Wi-Fi sensing, including
domain dependency and sensing range limitation. Finally, three imperative research directions
are highlighted, which are critical for realizing more ubiquitous and practical Wi-Fi sensing in
real-life applications.

Keywords: Wi-Fi sensing; CSI; commodity-off-the-shelf; integrated sensing and communication

1. Introduction

The demand for ubiquitous internet connection has catalyzed the vast deployment
of Wi-Fi infrastructures over the past decades, making Wi-Fi signal available almost ev-
erywhere. With the rapid progress of wireless communication and signal processing
techniques, researchers have successfully reused Wi-Fi as a sensing platform beyond its
traditional use as a pure communication medium, which further gives birth to the idea of
integrated sensing and communication (ISAC) with Wi-Fi [1–3]. After years of persistent re-
search, Wi-Fi sensing is drawing huge attention from both academia and industry [4]. Both
communities recognize ISAC as a compelling technology capable of improving spectrum
efficiency and reducing the hardware cost [5]. It is worth mentioning that, starting from
2020, the IEEE 802.11 working group established an IEEE 802.11bf standardization group
for encompassing wireless sensing within the new version of 802.11 standard, turning
Wi-Fi sensing into reality.

The basic rational behind Wi-Fi sensing is quite straightforward [6]. When wireless sig-
nal propagates from the transmitter to the receiver through multiple paths, a phenomenon
called multi-path effect occurs, whereby the superimposed receiving signal intrinsically
contains the signal component reflected or diffracted by the sensing target. Therefore,
by analyzing the target “modulated” receiving signals, researchers can recover the rich
information regarding the target, such as location and activity. Compared with classic
sensor-based and vision-based sensing paradigms, Wi-Fi wireless sensing has the advan-
tages of low-cost ubiquity, wide coverage, non-intrusiveness, and privacy-protection. Due
to its appealing superiority, numerous Wi-Fi sensing applications have been developed,
ranging from coarse-grained motion detection [7] and activity recognition [8] to fine-grained
localization [9] and breath monitoring [10].
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Inspired by existing survey papers [11–15], this paper investigates the thrilling achieve-
ments made within the last 5 years and presents an in-depth analysis of these sensing
systems, aiming to facilitate further research in the Wi-Fi sensing field. This paper first di-
vides existing works according to different application scenarios, including localization and
tracking, activity recognition, vital sign monitoring, and target imaging. For each category,
both application-specific problems and solutions are compared and summarized. Then,
this paper further classifies recent studies based on the methodology adopted, whether it
is model-based, handcrafted pattern extraction-based, or deep learning-based, pointing
out the pros and cons of each method. Furthermore, this paper highlights the remaining
challenges of current works such as generalization issues and large-scale perception. Fu-
ture research directions and the need for further study are discussed in the end. The main
contributions of this work are summarized as follows:

• To the best of our knowledge, this is the latest comprehensive survey in the Wi-Fi
sensing field, covering the greatest and most recent progresses made over the past
5 years.

• We categorize existing studies from two distinct perspectives, i.e., application-based
and methodology-based, and present an in-depth analysis of recent works.

• We highlight the key challenges encountered in existing studies and present a thorough
discussion about three promising research directions for Wi-Fi sensing.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the
concept of channel state information (CSI) and explain several popular sensing models.
In Section 3, we classify state-of-the-art works with regard to two criteria, i.e., application
variety and methodology difference. Practical limitations and challenges are analyzed
in Section 4. In Section 5, a detailed discussion about future trends in Wi-Fi sensing is
provided. Finally, we conclude this article in Section 6.

2. Preliminary

Before analyzing Wi-Fi sensing, we briefly introduce the necessary background of
channel state information (CSI) and several general signal sensing models.

2.1. Channel State Information

Serving as a key metric of a communication system, CSI depicts how a signal propa-
gates through a wireless channel. Indeed, a wireless communication channel can be defined
as follows:

Y = H × X + N (1)

where X and Y are the transmitted and received signal, respectively. H is the channel matrix
representing CSI and N denotes the channel noise.

In a typical indoor environment, shown in Figure 1, a signal sent by the transmitter (Tx)
travels through multiple paths before arriving at the receiver (Rx), which is also known as
the multi-path effect. Therefore, assuming there are L different paths, the wireless channel
H can be mathematically expressed as channel impulse response (CIR) [6], as follows:

h(t) =
L

∑
i=1

aie−jθi δ(t − τi) (2)

where ai, θi, and τi are the complex amplitude attenuation, phase shift, and propagation
time delay of the i-th path, respectively; δ(t) is the Dirac delta function. Each impulse in
the summation of Equation (2) represents a delayed multi-path component, multiplied by
its corresponding amplitude and phase variation.
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Figure 1. Typical indoor multi-path Wi-Fi propagation.

As shown in Figure 1, when a person moves inside the signal zone, the human body
will inevitably alter the specific propagation path, thus changing the CIR. Hence, the under-
lying principle of wireless sensing is analyzing human-induced channel variation. However,
CIR cannot be precisely measured with commodity Wi-Fi devices, especially given the
limited bandwidth of Wi-Fi. Fortunately, with the adoption of the orthogonal frequency
division multiplex (OFDM) technique in present IEEE 802.11 standard, researchers resorted
to studying channel frequency response (CFR), an equivalent channel representation of
CIR in the frequency domain.

CFR( f ) = |CFR( f )|ej∠CFR( f ) (3)

where |CFR( f )| and ∠CFR( f ) represent the amplitude–frequency and phase–frequency
response of CFR, respectively. With proper driver modifications, researchers have been able
to obtain an OFDM-based sampling version of CFR with a commercial-off-the-shelf (COTS)
Wi-Fi network interface card (NIC) since 2010 [16,17], greatly prompting the development
of Wi-Fi sensing [12]. To be specific, the extracted CFR depicts the amplitude and phase of
different subcarriers, which can be expressed as follows:

H( fi) = |H( fi)|ej∠H( fi) (4)

where H( fi) is the CFR sampled at the i-th subcarrier with the central frequency of fi. In
fact, the CSI data H = {H( fi)|i ∈ [1, N]} used in most research papers refers directly to
the definition given by Equation (4), i.e., a sampled version of CFR at the granularity of a
subcarrier level.

Generally speaking, this sampled CFR lays the foundations for advanced Wi-Fi sensing,
paving the way for the feasibility of various modern applications. CSI data contains rich
information on signal propagation, and we will use CSI to simply signify the raw Wi-Fi
data for brevity in the following part.

2.2. Signal Sensing Models
2.2.1. Fresnel Zone-Based Reflection Model

Taking one pair of the Tx-Rxlink as an example, Fresnel zones are concentric ellipses
with two foci corresponding to the Tx and Rx, as P1 and P2, shown in Figure 2. For a
given radio length λ, the n-th Fresnel zone boundary containing n ellipses can be defined
as follows:

|PiQn|+ |QnP2| − |P1P2| = nλ/2 (5)

where Qn is a point on the n-th Fresnel zone boundary. The n-th Fresnel zone refers to
the elliptic annulus between the (n−1)-th and n-th ellipse boundary, while the innermost
ellipse is called the first Fresnel zone (FFZ). Equation (5) indicates that the path length of
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the signal reflected through the n-th Fresnel zone boundary is nλ/2 is longer than that of
the Line-of-Sight (LOS) path, i.e., |P1P2|.
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Figure 2. Geometry of Fresnel zone reflection sensing [18].

The Fresnel zone-based reflection model [18] characterizes how the amplitude and
phase of CSI change when a target moves outside the FFZ. The key property of the reflection
sensing model is when a target moves across a series of Fresnel zone boundaries, CSI
amplitude and phase will show a continuous sinusoidal-like pattern, which can be utilized
for sensing applications such as respiration and walking direction detection [19].

2.2.2. Fresnel Zone-Based Diffraction Model

According to the RF propagation theory, more than 70% of the signal energy is
transferred via the FFZ. Therefore, when a target moves inside the FFZ, signal diffrac-
tion becomes more important and dominates the received signal variation. As shown in
Figure 3, the Fresnel zone-based diffraction model [20] depicts how the amplitude and
phase of CSI change when a target moves inside the FFZ. The key property is when sensing
activity inside the FFZ, the CSI amplitude variation will show different shapes, be it either
monotonically decreased or non-monotonous, “W”, depending on the target size. Apart
from respiration monitoring, the diffraction sensing model has also been proved effective
for recognizing exercise and daily exercise [8].
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2.2.3. Scattering Sensing Model

One main limitation of the previous models is that the simple reflection or diffraction
assumption may not hold true when considering complex target motions, in cases where
signals are scattered from multiple human body parts. Different from the Fresnel zone-
based model, the scattering sensing model treats all objects as scatters, taking into account
all multi-paths together. As marked as red circles in Figure 4, intuitively, the scattering
model considers each scatter point as a virtual Tx, e.g., the static walls, and the arm and leg
of the moving human. Given numerous multi-paths are considered, the scattering model is
in fact a statistical model generally applicable to complex indoor scenarios. The scattering
sensing model has been adopted in various speed-oriented tasks [21,22], achieving robust
performance even with non-line-of-sight (NLOS) occlusion.
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3. Wi-Fi Sensing

Serving as a key property in future wireless systems, Wi-Fi sensing has enabled various
important applications. In this section, we categorize recent works based on two aspects,
i.e., whether they are application-oriented or methodology-oriented. Since there are quite
a few references in this section, for the reader’s convenience, we provide an index of all
mentioned references in Table A1 of Appendix A.

3.1. Wi-Fi Sensing Applications

In this section, we divide the related works into seven categories, i.e., presence detec-
tion, gait recognition, gesture recognition, activity recognition, localization and tracking,
vital sign monitoring, and pose construction and imaging, as shown in Tables 1–7. In each
table, “Application” implies detailed application demand, “User number” signifies the
number of sensing targets supported by the study, “Device type” indicates the specific
sensing equipment used, and “NLOS” shows whether the sensing system can work in a
non-line-of-sight scenario or not.

Table 1. Presence detection.

Year Reference Application Performance User Number Device Type NLOS

2022 WiCPD [23] In-car child
presence detection

96.56–100% real-time
detection rate 1 NXP Wi-Fi chipset Y

2023 Hu et al. [24] Proximity detection

95% and 99% true
positive rate for

distance-based and
room-based detection

1 NXP Wi-Fi chipset Y

2024 Zhu et al. [25]
Human and
non-human

differentiation

95.57% average
accuracy 1 human or pet COTS device Y

2024 WI-MOID [26]

Edge device-based
human and
non-human

differentiation

97.34% accuracy and
1.75% false alarm rate

1 human or
non-human

subject
Wi-Fi edge device Y

Presence detection. Presence detection determines whether a target exists or not
within the sensing area and serves as the prerequisite for further sensing tasks. Target
presence detection could enable many modern applications, such as security systems and
smart homes. Although usually included as a detector module in most studies, there
have been some new applications based on presence detection. As shown in Table 1,
WiCPD [23] studied child presence detection in a smart car scenario, preventing potential
harm to children if left alone in a vehicle. Hu et al. [24] considered target location relative
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to the sensing device, supporting more intelligent control systems using this area-aware
context. In addition, Zhu et al. [25] and WI-MOID [26] further differentiated human from
non-human targets to mitigate influence from unwanted objects, avoiding unnecessary
false alarms.

Table 2. Gait recognition.

Year Reference Application Performance User Number Device Type NLOS

2021 GaitSense [27] Gait-based human
identification

93.2% for 5 users and
76.2% for 11 users 11 Intel 5300 N

2021 GaitWay [28] Gait speed estimation 0.12 m median error 1 Intel 5300 Y

2022 CAUTION [29] Gait-based human
authentication 93.06 average accuracy 15 TP-Link N750 router N

2022 Wi-PIGR [30] Gait recognition 93.5% for single user and
77.15% for 50 users 1–50 Intel 5300 N

2023 Auto-Fi [31] Gesture and gait
recognition

86.83% for gesture; 79.61%
for gait 1 Atheros chipset N

2023 GaitFi [32] Gait recognition 94.2% accuracy 12 TP-Link N750 router N

2024 Wi-Diag [33] Multi-subject abnormal
gait diagnosis 87.77% average accuracy 4 Intel 5300 N

Gait recognition. Gait, a unique biomarker, refers to the distinctive walking char-
acter of different people and has been used for human identification and authentication
applications. Early gait sensing works usually required users to walk on fixed trajecto-
ries within restricted areas, while recent studies, e.g., GaitSense [27], GaitWay [28], and
Wi-PIGR [30], aimed for path independent gait recognition where users can walk along
arbitrary paths even in a through-the-wall scenario. In addition, CAUTION [29], Auto-
Fi [31], and GaitFi [32] tried to realize robust gait recognition with limited training data,
while Wi-Diag [33] further studied more challenging multi-human recognition problems.
As depicted in Table 2, all these works greatly contribute to more ubiquitous gait-based
sensing applications.

Table 3. Gesture recognition.

Year Reference Application Performance User Number Device Type NLOS

2021 Kang et al. [34] Gesture recognition 3–12.7% improvement 1 Widar Dataset N

2021 WiGesture [35] Gesture recognition 92.8–94.5% accuracy 1 Intel 5300 N

2022 HandGest [36] Handwriting
recognition 95% accuracy 1 Intel 5300 N

2022 DPSense-
WiGesture [37] Gesture recognition 94% average accuracy 1 Intel 5300 N

2022 Niu et al. [38] Gesture recognition 96% accuracy 1 Intel 5300 Y

2022 Widar 3.0 [39] Cross-domain gesture
recognition

92.7% in-domain and
82.6–92.4% cross-
domain accuracy

1 Intel 5300 N

2022 WiFine [40] Gesture recognition 96.03% accuracy in 0.19 s 1 Raspberry Pi 4B N

2023 UniFi [41] Gesture recognition
99% and 90–98% accuracy

for in-domain and
cross-domain recognition

1 Widar dataset N

2023 WiTransformer [42] Gesture recognition 86.16% accuracy 1 Widar dataset N

2024 AirFi [43] Gesture recognition 90% accuracy 1 TP-Link N750 router N

2024 WiCGesture [44] Continuous gesture
recognition

89.6% for digits and 88.3%
for Greek letters 1 Intel 5300 N
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Gesture recognition. Wireless gesture recognition has emerged as an important
part of modern human computer interaction, enabling wide applications including smart
home control and virtual reality. Previous studies tried to learn the intricate pattern
between signal variation and human gesture under the one-to-one mapping assumption.
However, this assumption does not hold, since the received signal is highly dependent on
the relative location and orientation of users, as proven by the Fresnel reflection model [18].
Thus, recent works mainly focused on realizing a position-independent robust gesture
recognition system, as illustrated in Table 3. Kang et al. [34], Widar 3.0 [39], UniFi [41],
WiTransformer [42], and AirFi [43] leverage various deep learning methods, e.g., adversarial
learning, multi-view network, and few-shot learning, to realize a robust and efficient
recognition. On the other hand, WiGesture [35], HandGest [36], DPSense-WiGesture [37],
Niu et al. [38], and WiCGesture [44] attempted to extract distinct and consistent features
from a hand-oriented perspective, realizing reliable and continuous recognition either
through more fine-grained signal segmentation or signal quality assessment. In addition,
WiFine [40] managed to realize real-time gesture recognition using low-end edge devices,
e.g., Raspberry Pi. Overall, these methods bring Wi-Fi gesture recognition one step closer
to more practical uses.

Table 4. Activity recognition.

Year Reference Application Performance User Number Device Type NLOS

2020 Wang et al. [45] People counting
and recognition 86% average accuracy 4 COTS devices N

2021 Ma et al. [46] Activity recognition 97% average accuracy 1 Intel 5300 N

2021 MCBAR [47] Activity recognition 90% average accuracy 1 Atheros chipset N

2021 WiMonitor [48] Location and
activity monitoring Not applicable 1 Intel 5300 Y

2022 DeFall [49] Fall detection 95% detection rate and 1.5%
false alarm rate 1 Intel 5300 Y

2022 Ding et al. [50] Activity recognition 96.85% average accuracy 1 Intel 5300 N

2022 EfficientFi [51] Activity recognition 98% accuracy 1 TP-Link N750 router N

2022 TOSS [52] Activity recognition 82.69% average accuracy 1 Intel 5300 N

2023 FallDar [53] Fall detection 5.7% false alarm rate and
3.4% missed alarm rate 1 Intel 5300 Y

2023 SHARP [54] Activity recognition 95% average accuracy 1 ASUS RT-AC86U router N

2023 Liu et al. [55] Moving receiver-based
activity recognition

10◦, 1 cm and 98% accuracy
for direction, displacement,

and activity estimation
1 COTS WiFi 6 device N

2023 WiCross [56] Target passing detection 95% accuracy 1 Intel 5300 N

2024 i-Sample [57] Activity recognition 10% accuracy gain 1 Intel 5300 N

2024 MaskFi [58] Activity recognition 97.61% average accuracy 1 TP-Link N750 router N

2024 MetaFormer [59] Activity recognition
Improved accuracy in

various cross-
domain scenarios

1 SiFi, Widar, Wiar datasets N

2024 SAT [60] Activity recognition Improved accuracy
and robustness 1 Intel 5300 N

2024 SecureSense [61] Activity recognition
under adversarial attack

Robust performance under
various attacks 1 TP-Link N750 router N

2024 Luo et al. [62] Activity recognition 98.78% accuracy 1 UT-HAR dataset N

2024 WiSMLF [63] Activity recognition 92% average accuracy 1 Intel 5300 N

Activity recognition. Wi-Fi-based human activity recognition (HAR) has become the
most studied research topic over the past years, covering many applications including
people counting [45], fall detection [49,53], door-passing detection [56], and daily activities.
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Table 4 shows the summary of recent HAR works. Most works tried to address performance
degradation due to location, person, and environment dynamics, also known as domain-
dependent problems [46,47,50,52,54,57–59,62,63]. In addition, WiMonitor [48] studied
continuous long-term human activity monitoring, capturing user information such as
location change, activity intensity, and time. Moreover, EfficientFi [51] considered the signal
transfer-induced communication problem in a large-scale sensing scenario, providing a
cloud-enabled solution with efficient CSI compression, while SAT [60] and SecureSense [61]
proposed robust sensing schemes under various adversarial attacks. Liu et al. [55] proposed
a dynamic Fresnel zone sensing model using a moving receiver such as a smartphone,
filling the gap in existing fixed-location transceivers.

Table 5. Localization and tracking.

Year Reference Application Performance User
Number Device Type NLOS

2022 Niu et al. [64] Velocity estimation-
based tracing

9.38 cm/s, 13.42◦ and
31.08 cm median error in

speed, heading and
location estimation

1 Intel 5300 Y

2023 WiTraj [65] Human walking tracking 2.5% median tracking error 1 Intel 5300 N

2024 FewSense [66] Tracking 34 cm median error 1 Intel 5300 N

2023 Zhang et al. [67] Multi-person localization Sub-centimeter accuracy 1–3 COTS WiFi device + IRS N

2024 Zhang et al. [68] Passive localization 0.11 m average error 1 VNA N

2022 Fan et al. [69] Moving direction
estimation

6.9◦ median error for moving
direction estimation; 16.6◦

mean error for rotation
angle estimation

1 Atheros chipset Y

2022 Wi-Drone [70] Tracking-based indoor
drone flight control

26.1 cm average location
accuracy and 3.8◦

rotation accuracy
1 AR9580 NICs N

Localization and tracking. Due to the limited channel bandwidth and antenna number
of COTS Wi-Fi devices, there have not been many studies on Wi-Fi-based localization and
tracking, as shown in Table 5. Recent works tried to improve tracking performance through
more accurate target velocity estimations using a moving-induced Doppler Frequency Shift
(DFS). Niu et al. [64] optimized velocity estimation by devising a dynamic selection scheme,
which can choose the optimal set of receivers for tracking. To better track human walking,
WiTraj [65] intelligently combined multi-view information provided by different receivers
and differentiated walking with in-place activity to avoid tracking error accumulation.
FewSense [66] creatively fused phase and information for better DFS estimation, achieving
high accuracy even with fewer CSI samples. In addition to these works, Zhang et al. [67,68]
achieved sub-centimeter localization accuracy using the intelligent reflecting surface (IRS)
technique. By constructing an IRS, researchers can modulate the spatial distribution of
the Wi-Fi signal, improving the spatial resolution of Wi-Fi localization. While promis-
ing, their current prototype systems are realized using a vector network analyzer (VNA),
requiring further study with a COTS device. Apart from the device-free tracking men-
tioned above, Fan et al. [69] and Wi-Drone [70] studied device-based tracking applications.
Fan et al. [69] obtained accurate moving direction and in-place rotation angle estimation us-
ing a single access point, while Wi-Drone [70] realized the first Wi-Fi tracking-based indoor
drone flight control system, providing promising possible solutions for indoor localization
and navigation.
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Table 6. Vital sign monitoring.

Year Reference Application Performance User
Number Device Type NLOS

2020 MultiSense [71] Multi-person
respiration sensing 0.73 bpm mean error 4 Intel 5300 Y

2021 SMARS [72] Breath estimation and
sleep stage recognition

0.47 bpm median error and
88% accuracy 1 Atheros chipset Y

2021 WiFi-Sleep [73] Sleep stage monitoring 81.8% accuracy 1 Intel 5300 N

2021 WiPhone [74] Respiration monitoring 0.31 bpm average error 1
ASUS RT-AC86U router

and Google Nexus
5 smartphone

Y

2022 ResFi [75] Respiration detection 96.05% accuracy 1 ASUS RT-AC86U router N

2024 Xie et al. [76] Respiration sensing with
interfering individual

32% mean absolute
error reduction 1 VNA or Intel 5300 N

Vital sign monitoring. Vital signs play a crucial role in monitoring people’s health
and well-being, providing useful information for early prediction and interference with
potential diseases. As shown in Table 6, CSI-based vital sign detection mainly focused
on respiration estimation. MultiSense [71] studied the multi-person respiration sens-
ing problem, while SMARS [72] and WiFi-Sleep [73] integrated breath monitoring into
users’ sleep quality assessment. WiPhone [74] presented a smartphone-based sensing
system, achieving robust performance in NLOS scenarios. Xie et al. [76] addressed the
motion interference from nearby individuals, bringing respiration monitoring closer to
practical application.

Table 7. Pose construction and imaging.

Year Reference Application Performance User Number Device Type NLOS

2020 WiPose [77] Pose construction 2.83 cm average error 1 Intel 5300 N

2020 WiSIA [78] Target imaging Not applicable 1 Intel 5300 N

2022 GoPose [79] 3D human
pose estimation 4.7 cm accuracy 1 or 2 Intel 5300 Y

2022 Wiffract [80] Still object imaging 86.7% letter reading accuracy 1 Intel 5300 Y

2023 MetaFi++ [81] Pose estimation 97.3% for PCK@50 1 TP-Link N750 router N

2023 WiMeasure [82] Object size
measurement 2.6 mm median error 1 Intel 5300 N

2024 PowerSkel [83] Pose estimation 96.27% for PCK@50 1 ESP 32 IoT SoC N

2024 WiProfile [84] 2D target Profiling 1 cm median absolute error 1 target with
proper size range Intel 5300 N

Pose construction and imaging. Wi-Fi-based pose estimation and target imaging
provides a complementary solution to traditional camera-based perception. As listed in
Table 7, WiPose [77], GoPose [79], MetaFi++ [81], and PowerSkel [83] proposed different
3D human skeleton construction frameworks, while WiSIA [78], Wiffract [80], and WiPro-
file [84] further investigated how to recover target images with Wi-Fi signals. Alternatively,
WiMeasure [82] realized millimeter-level high-precision target size measurements, making
up for a missing piece of Wi-Fi sensing. It should be noted that in order to achieve fine-
grained imaging, the deployment of a high sampling rate and even a customized antenna
are usually required, as shown in the subsequent tables. Therefore, Wi-Fi imaging is only
applicable for specific application scenarios for the time being.

3.2. Wi-Fi Sensing Methodologies

In this section, we divide the related works into three categories, i.e., model-based
sensing, hand-crafted statistical pattern extraction-based sensing, and automatic deep
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pattern extraction-based sensing, as shown from Tables 8–10. In each table, “Methodology”
briefly describes the specific method adopted, and “Base signal” refers to the sensing signal
constructed with raw CSI, including autocorrelation function (ACF), power spectrum
density (PSD), Doppler frequency shift (DFS), body-coordinate velocity profile (BVP), and
so on. In addition, “Setting” specifies the signal sampling rate required, the number of
Tx-Rx pair used, and certain device settings used for the system implementation and
performance evaluation.

Model-based sensing. Since model-based sensing methods have the clear advantage
of interpretability, researchers have developed several models for describing the physical
relationship between CSI variation and target behavior, detailed in Section 2. As shown
in Table 8, the scattering model has been widely used for velocity and periodic pattern
extraction [28,49,72], while the diffraction model has been adopted in near-the-LOS scenar-
ios, i.e., within FFZ, for fine-grained sensing tasks [56,80,82,84]. Although less prevalent
in Table 8 [55], the Fresnel zone-based reflection model is in fact the most used model.
The reflection model is commonly implicitly incorporated in various sensing systems for
quantitatively analyzing signal variations and identifying sensing limitations, thus guiding
the implementation of more stable and reliable sensing systems [85–87].

Table 8. Model-based sensing.

Year Reference Methodology Performance Base Signal Sensing Range Setting

2021 GaitWay [28] Scattering model 0.12 m median error ACF of CSI 20 m × 23 m 1500 Hz; single pair
of Tx-Rx

2021 SMARS [72] Scattering model 0.47 bpm median error
and 88% accuracy ACF of CSI 10 m 30 Hz; single pair

of Tx-Rx

2022 DeFall [49] Scattering model 95% detection rate and
1.5% false alarm rate ACF of CSI Multi-room 1500 Hz; single pair

of Tx-Rx

2022 Wiffract [80] Keller’s Geometrical
Theory of Diffraction

86.7% letter
reading accuracy Power of CSI 1.5 m

Two pairs of Tx-Rx;
two-dimensional RX

grid synthesis

2023 Liu et al. [55] Dynamic Fresnel
zone model

10◦, 1 cm and 98%
accuracy for direction,

displacement and
activity estimation

CSI Single room 100 Hz; single pair
of Tx-Rx

2023 WiCross [56] Diffraction model-based
phase pattern extraction 95% accuracy CSI ratio 1 m 1000 Hz; single pair

of Tx-Rx

2023 WiMeasure [82] Diffraction model 2.6 mm median error CSI ratio Near the
LOS path

500 Hz; three pairs
of Tx-Rx

2024 WiProfile [84]
Diffraction effect-based

profiling + inverse
Fresnel transform

1 cm median
absolute error CSI 1.5 m × 1 m

500 Hz; single pair of
Tx-Rx; One reference

receiving antenna
connected to Rx via

feeder line

Hand-crafted statistical pattern extraction-based sensing. Derived from feature
engineering in traditional machine learning processes, researchers have come up with
various task-oriented feature extraction schemes, utilizing the in-depth analysis of activity
characteristics and advanced signal processing techniques. As shown in Table 9, along
with signal processing such as signal segmentation and signal energy estimation, statistical
features, such as Doppler frequency shift and speed estimation, motion navigation primitive
(MNP), dynamic phase vector (DPV) and motion rotation variable (MRV), have been
derived for various sensing tasks. Albeit promising, since feature extraction and selection
plays a key role in system performance, hand-crafted features are usually task-specific and
not reusable for new tasks, hindering their usage for ubiquitous sensing.
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Table 9. Hand-crafted statistical pattern-based sensing.

Year Reference Methodology Performance Base Signal Sensing Range Setting

2020 MultiSense [71] ICA-based BSS 0.73 bpm mean error
Constructed

reference-CSI-
based signal ratio

4 m × 7.5 m 200 Hz; single
pair of Tx-Rx

2020 Wang et al. [45] Statistical pattern analysis 86% accuracy PSD of CSI 3.5 m 10 Hz; single pair
of Tx-Rx

2021 WiGesture [35] MNP feature extraction 92.8–94.5% accuracy CSI ratio 4 m × 7 m 400 Hz; two pairs
of Tx-Rx

2021 WiMonitor [48]
Doppler frequency and

activity intensity
pattern extraction

Not applicable CSI ratio Multi-room 200 Hz; single
pair of Tx-Rx

2021 WiPhone [74] Ambient reflection-based
pattern extraction 0.31 bpm average error CSI amplitude Multi-room

apartment

50 Hz; single pair
of Tx-Rx with
LOS blocked

2022 HandGest [36]
Hand-centric feature
extraction, i.e., DPV

and MRV
4.7 cm accuracy CSI ratio 1 m 500 Hz; two pairs

of Tx-Rx

2022 Niu et al. [64]
DFS-based velocity

estimation + receiver
selection

96.05% accuracy CSI ratio 7 m × 9.8 m 1000 Hz; six pairs
of Tx-Rx

2022 Fan et al. [69]
2D-antenna array-

based signal
parameter estimation

6.9◦ median error for
moving direction

estimation; 16.6◦ mean
error for rotation
angle estimation

Time-reversal
resonating strength

of CSI
28 m × 36.5 m

200 Hz; single
pair of Tx-Rx; half
octagonal array of

6 antennas

2022 Wi-Drone [70]

Rigid-body coordinate
transformation-based

absolute pose and relative
motion estimation

26.1 cm average
location accuracy and
3.8◦ rotation accuracy

CSI 32 m × 18 m Four pairs
of Tx-Rx

2022 DPSense-
WiGesture [37]

Signal segmentation +
sensing quality-based

signal processing
94% average accuracy CSI 1.2 m 400 Hz; two pairs

of Tx-Rx

2022 Niu et al. [38]

Position-independent
feature extraction, i.e.,

movement fragment and
relative motion

direction change

96% accuracy CSI ratio 2 m × 2 m 1000 Hz; 2 pairs
of Tx-Rx

2022 WiCPD [23]
Feature-based motion,

stationary and transition
target detector

96.56–100% real-time
detection rate ACF of CSI Car 30 Hz; single pair

of Tx-Rx

2023 Hu et al. [24]
Sub-carrier correlation
and covariance feature

extraction

95% and 99% true
positive rate for

distance-based and
room-based detection

Power of CSI Multi-room 30 Hz; single pair
of Tx-Rx

2023 WiTraj [65]

DFS extraction +
multi-view trajectory
estimation + motion

detection

2.5% median
tracking error CSI ratio 7 m × 6 m 400 Hz; three

pairs of Tx-Rx

2023 Zhang et al. [67] Intelligent reflecting
surface construction

Sub-centimeter
accuracy

Received signal
power 6 m × 6 m Single pair

of Tx-Rx

2024 Zhang et al. [68] Intelligent reflecting
surface construction 0.11 m average error Received signal

power 3 m × 3 m Single pair
of Tx-Rx

2024 Xie et al. [76]

Respiratory energy-based
interference detection

and convex
optimization-based

beam control

32% mean absolute
error reduction CSI 9 m × 6 m Single pair

of Tx-Rx
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Table 9. Cont.

Year Reference Methodology Performance Base Signal Sensing Range Setting

2024 WiCGesture [44]

Meta motion-based
signal segmentation
and back-tracking
searching-based

identification

89.6% for digits and
88.3% for Greek letters CSI ratio 1 m 400 Hz; Two pairs

of Tx-Rx

2024 FewSense [66] TD-CSI-based Doppler
speed estimation 34 cm median error Time domain

CSI difference 7 m × 7 m 1000 Hz; Two
pairs of Tx-Rx

2024 WI-MOID [26]
Physical and statistical

pattern extraction + SVM
+ state machine

97.34% accuracy and
1.75% false alarm rate ACF of CSI Multi-room 1500 Hz; single

pair of Tx-Rx

Automatic deep pattern extraction-based sensing. Since it is challenging to devise
effective sensing features, more and more studies have begun leveraging various deep learn-
ing models for better accuracy and robustness, such as the Convolution Neural Network
(CNN) and Recurrent Neural Network (RNN). As seen in Table 10, the combination of CNN
and RNN has been widely adopted in recent works [27,30,32,39,73,77,79] due to its advan-
tage in extracting spatial-temporal features from the CSI signal automatically. In addition,
to gain more general representation learning, adversarial learning and few-shot learning
have also been used for efficient and robust feature training [29,31,34,43,53,57,60,61]. The
end-to-end nature of deep learning has made network framework selection and design the
primary factor in sensing system implementations.

Table 10. Automatic deep pattern-based sensing.

Year Reference Methodology Performance Base Signal Sensing Range Setting

2020 WiPose [77] CNN + LSTM 2.83 cm
average error

3D velocity
profile of CSI Single room

1000 Hz; three pairs
of Tx-Rx;

distributed deployed
receiving Antennas

2020 WiSIA [78] cGAN Not applicable Power of CSI 2.1 m

1000 Hz; two pairs od
Tx-Rx; receiving

antennas orthogonal
to each other

2021 Kang et al. [34] Adversarial learning and
attention scheme 3–12.7% improvement DFS of CSI 2 m × 2 m Two pairs of Tx-Rx

from Widar dataset

2022 GaitSense [27]
CNN + LSTM + transfer

learning + data
augmentation

98% accuracy Gait-BVP of CSI 4.6 m × 4.4 m 1000 Hz; six pairs
of Tx-Rx

2021 Ma et al. [46] CNN + reinforcement
learning 97% average accuracy CSI amplitude 6.8 m × 4 m 100 Hz; single pair

of Tx-Rx

2021 MCBAR [47] GAN and semi-
supervised learning 90% average accuracy CSI amplitude 6.5 m × 6.3 m single pair

of Tx-Rx

2021 WiFi-Sleep [73]

Respiration and
movement pattern

extraction +
CNN-BiLSTM

81.8% accuracy CSI ratio Close to the bed 200 Hz; single pair
of Tx-Rx

2022 CAUTION [29] Few-shot learning 93.06 average
accuracy CSI amplitude 5.2 m × 7.2 m Single pair

of Tx-Rx

2022 Ding et al. [50] DCN + transfer learning 96.85% average
accuracy CSI 6 m × 8 m 200 Hz; single pair

of Tx-Rx

2022 EfficientFi [51] DNN 98% accuracy CSI amplitude 6.5 m × 5 m 500 Hz; single pair
of Tx-Rx
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Table 10. Cont.

Year Reference Methodology Performance Base Signal Sensing Range Setting

2022 GoPose [79] 2D AOA spectrum
+ CNN + LSTM

93.2% for 5 users and
76.2% for 11 users CSI phase 4 m × 4 m

1000 Hz; four pairs of
Tx-Rx; L-shaped

receiving antennas

2022 ResFi [75] CNN-based classification 95% accuracy CSI amplitude 1 m 10 Hz; single pair
of Tx-Rx

2022 TOSS [52] Meta learning + pseudo
label strategy

82.69% average
accuracy CSI Single room Single pair of Tx-Rx

2022 Widar 3.0 [39] BVP feature + CNN-RNN

92.7% in-domain and
82.6–92.4%

cross-domain
accuracy

BVP of CSI 2 m × 2 m 1000 Hz; six pairs
of Tx-Rx

2022 WiFine [40]

data enhancement-based
feature extraction +

lightweight
neural network

96.03% accuracy
in 0.19 s CSI Single room Single pair

of Tx-Rx

2022 Wi-PIGR [30] Spectrogram optimization
+ CNN + LSTM

93.5% for single user
and 77.15% for

50 users
CSI amplitude 5 m × 5 m 1000 Hz; two pairs

of Tx-Rx

2023 Auto-Fi [31]
Geometric self-supervised

learning + few-
shot calibration

86.83% for gesture;
79.61% for gait CSI amplitude Single room 100 Hz; single pair

of Tx-Rx

2023 GaitFi [32] RCN + LSTM +
feature fusion 94.2% accuracy CSI + video 2.1 m 800 Hz; single pair

of Tx-Rx

2023 MetaFi++ [81] CNN + Transformer 97.3% for PCK@50 CSI + video Single room 1000 Hz; single pair
of Tx-Rx

2023 FallDar [53]

Scattering model + VAE
generative model + DNN

adversarial
learning model

5.7% false alarm rate
and 3.4% missed

alarm rate
ACF of CSI 3.6 m × 8.4 m 1000 Hz; single pair

of Tx-Rx

2023 SHARP [54]
Phase correction-based

DFS extraction +
Nerual network

95% average accuracy CSI 5 m × 6 m 173 Hz; single pair
of Tx-Rx

2023 UniFi [41]

DFS extraction +
consistency-guided

multi-view deep network
+ mutual information-
based regularization

99% and 90–98%
accuracy for

in-domain and
cross-domain
recognition

CSI ratio 2 m × 2 m Widar dataset

2023 WiTransformer [42] Transformer 86.16% accuracy BVP of CSI 2 m × 2 m Widar dataset

2024 AirFi [43]
Data augmentation +
adversarial learning

+domain generalization
90% accuracy CSI amplitude 4 m × 4 m Single pair of Tx-Rx

2024 i-Sample [57]
Intermediate sample
generation + domain

adversarial adaptation
10% accuracy gain CSI Single room Single pair of Tx-Rx

2024 MaskFi [58]
Transformer-based

encoder + Gate Recurrent
Unit network

97.61% average
accuracy CSI + video Single room 1000 Hz; Single pair

of Tx-Rx

2024 MetaFormer [59]

Transformer-based
spatial-temporal feature

extraction + match-based
meta-learning approach

Improved accuracy in
various cross-

domain scenarios
CSI Single room SiFi, Widar,

Wiar datasets

2024 PowerSkel [83]

Knowledge distillation
network based on

collaborative learning and
self-attention

96.27% for PCK@50 CSI + Kinect
video Single room Three pairs of Tx-Rx
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Table 10. Cont.

Year Reference Methodology Performance Base Signal Sensing Range Setting

2024 SAT [60]

Calibrated
confidence-based

adversarial sample
selection + adversarial

learning

Improved accuracy
and robustness CSI Single room Single pair of Tx-Rx

2024 SecureSense [61] Consistency-guided
adversarial learning

Robust performance
under various attacks CSI amplitude 5 m × 6.5 m 1000 Hz; single pair

of Tx-Rx

2024 Luo et al. [62] Transformer 98.78% accuracy CSI Single room UT-HAR dataset

2024 Wi-Diag [33]

Independent component
analysis-based

blind source
separation + CycleGAN

87.77% average
accuracy CSI 7 m × 8 m 1000 Hz; single pair

of Tx-Rx

2024 WiSMLF [63]

High frequency
energy-based sensing

scheme selection +
VGG/LSTM-based

multi-level feature fusion

92% average accuracy CSI Single room 100 Hz; single pair
of Tx-Rx

2024 Zhu et al. [25] ResNet18 95.57% average
accuracy

Amplified ACF
of CSI 6 m × 6.5 m 1500 Hz; single pair

of Tx-Rx

Apart from the above differences, we can obtain several additional findings from
Tables 1–10. First, apart from the CSI amplitude and phase information, several new base
signals, such as the BVP of CSI, ACF of CSI, and CSI ratio, have been used for alleviating
the intrinsic errors of COTS WiFi devices [88]. Among these base signals, the CSI ratio is
drawing more attention since it can not only remove the CSI offset, but it can also increase
the sensing signal-to-noise rate (SNR) [89]. Second, some works have tried to combine a
pattern-based scheme with model-based scheme to ensure the performance and reliability
of complex sensing applications. Third, many systems have been developed for single
human sensing under constrained deployment, i.e., single room sensing area with the LOS
condition satisfied.

4. Challenges

Despite the above endeavors devoted to bringing Wi-Fi sensing from laboratory study
to real-life applications, either by improving sensing granularity or exploring application
scenarios, most of the existing works still face great practical challenges. Specifically,
making Wi-Fi sensing system readily available for wide real-world deployment, easily
adaptable to different environments, and with enough sensing coverage is of vital im-
portance. This section presents two key challenges faced in existing works, i.e., the do-
main dependent issue and the sensing range limitation, and it discusses related potential
solution explorations.

Domain dependent issue. As the superposition result of multi-path signals, Wi-Fi is
highly sensitive to various factors, such as locations, orientations, targets, and environments.
This is also known as the domain-dependence problem [15,18,86]. For example, the same
human activity will lead to quite different CSI variations if the location or orientation of the
target changes, as revealed by the Fresnel zone model. Moreover, different sensing environ-
ments and device settings will make this inconsistent phenomenon even worse. A sensing
system lacking resilience to domain variations is in fact of little practical use for ubiquitous
sensing. Thus, in order to make Wi-Fi sensing reusable and robust among different settings,
researchers have explored various methods, as summarized in Table 11. Since training effort
accounts for a great part of the system deployment cost, Table 11 classifies the related works
into three categories, i.e., training-free, training-once, and training + Calibration/Retrained.
As seen in Table 11, the training-free scheme is mainly used for simple presence detection
tasks [23,24], where a motion-induced threshold is predetermined without training. In
addition, for the training-once scheme, the domain-independent feature extraction is the
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most studied, and it is mainly used along model-based sensing, as listed in Table 8 due
to clear interpretability. Moreover, with the increasing complexity of sensing tasks and
environments, system recalibration would become inevitable, promoting researchers to
reduce the system retraining cost, e.g., utilizing data augmentation, transfer learning, and
few-shot learning, as shown in Table 11. It can also be observed that domain-independent
feature extraction can be used alone or further integrated with other retraining algorithms.
Drawn from the above discussions, for these complex applications, it is expected that
combining the strengths of model-based and auto deep learning model-based methods can
enable a more general and robust Wi-Fi sensing realization.

Table 11. Cross-domain Wi-Fi sensing.

Training Cost Cross-Domain Scheme Related Work

Training-free Domain-independent feature extraction [23,24]

Training-once Domain-independent feature extraction [25–28,30,34–39,41,42,44,49,53,54,64–66,72]

Training + Calibration/Retrained

Generative adversarial network [33,47,53,61]

Transfer learning [27,31,34,43,50,57,60]

Few-shot learning [29,31,43,52]

Data augmentation [27,43,57]

CNN +LSTM/GRU/Transformer [25,30,32,39,41,42,46,58,59,62,81]

Sensing range limitation. As illustrated in the tables of last section, the existing
sensing range is usually just 6–8 m within a single room, while the communication range of
Wi-Fi can reach tens of meters, greatly hindering real-world applications. The short sensing
range is mainly because Wi-Fi sensing relies on target-induced reflection signal variation,
which is much weaker compared to direct LOS signal and contains intrinsic hardware
noise. To be more specific, due to hardware imperfections and clock synchronization errors,
the raw CSI amplitude contains high impulse and burst noise, while the raw randomly
corrupted CSI phase is even more unusable in practice. To deal with this limitation, some
researchers proposed employing a new base signal derived from the raw CSI, namely the
CSI ratio as seen in Tables 8 and 9. Defined as the quotient of CSI readings between two
receiver antennas, the CSI ratio can remove the amplitude noise and phase noise effectively.
More specifically, since different antennas on the same receiver share the same RF chain
and clock, the division operation can cancel out most of the noise, gaining a more ideal
amplitude and a phase signal with a high signal-to-noise ratio (SNR). The higher SNR and
phase usability of the CSI ratio serve as the key enablers for the longer sensing range and
higher sensing accuracy. FarSense [90] first increased fine-grained sensing range to 8 m
using the CSI ratio signal, while Zeng et al. [91] and DiverSense [92] further boosted the
sensing range to 18 m and 40 m by fully utilizing the spatial and frequency diversity. In
addition to constructing a new base signal, Wang et al. [93] studied the effect of device
placement on sensing SNR and doubly expanded the sensing range by properly placing
the transmitter and receiver. Overall, sensing range enlargement is pivoted to large-scale
sensing applications and is still in its infancy, requiring further exploration and validation
in complex real-world scenario deployments.

5. Future Research Trend Discussion

Despite the great effort spent on Wi-Fi sensing over the past years, there still exists a
great gap for its pervasive real-life application. Based on the detailed analysis above, we
point out three critical barriers that require further research in this section.
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Table 12. CSI extraction tools.

Year CSI Extraction Tool IEEE Standard Related Work

2011 802.11n CSI Tool [17] 802.11n [27,28,30,33,35–39,44,46,48–50,52,53,56,57,60,63–66,71,73,77–80,82,84]

2015 Atheros CSI Tool [94] 802.11n [29,31,32,47,51,58,61,72,81,94]

2019 Nexmon CSI [95] 802.11 ac [40,54,74,75,95]

2020 ESP32 CSI Tool [96,97] Any computer, smartphone
or even standalone [83,96,97]

2021 AX-CSI [98] 802.11 ax [98]

2022 PicoScenes [99] 802.11 a/g/n/ac/ax [70,99]

Table 13. Wi-Fi sensing datasets.

Year Dataset Description Tool Related Work

2017 UT-HAR [100] Activity data 802.11n CSI Tool [31,46,62]

2018 SignFi [101] Sign data 802.11n CSI Tool [40,59]

2018 FallDeFi [102] Fall data 802.11n CSI Tool [46,53]

2019 WiAR [103] Activity and gesture data 802.11n CSI Tool [59]

2019 Widar [104] Gesture data 802.11n CSI Tool [31,34,39,41–43,59]

2021 OneFi [105] Gesture data 802.11n CSI Tool [105]

2023 MM-Fi [106] Multi-modal dataset Atheros CSI Tool [58]

2023 NTU-Fi [107] Activity and gait data Atheros CSI Tool [62]

2023 SHARP [54] Activity data Nexmon CSI [54]

2023 Cominelli [108] Activity data AX-CSI [108]

2023 WiTraj [65] Trajectory data 802.11n CSI Tool [65]

Sensing assessment standardization. One key issue is the lack of a standard per-
formance evaluation of the various Wi-Fi sensing systems. Unlike the widely accepted
standard evaluation criterion in the computer vision domain, there is still a lack of an
effective and consistent testing platform in Wi-Fi sensing. Specifically, the deficiency ex-
ists in two aspects, i.e., CSI extraction tool diversity and evaluation dataset scarcity. The
diversity of CSI extraction tools is shown in Table 12, with Intel 5300 NIC-based 802.11n
CSI Tool being the most popular one used. However, sensing techniques developed with
old 802.11n protocol have not explored the innovations of newer standards and may even
fail when used on new-generation Wi-Fi cards [108,109]. In addition, as illustrated in
Table 13, although there have been some publicly released datasets, none of them have been
widely used. Existing works mostly adopt self-collected datasets, collected in different
scenarios with different tools, hindering the comparability and replicability of research
outcomes. To build comprehensive datasets without labor-intensive and time-consuming
efforts, researchers have studied radio signal synthesis [110,111] and physical data aug-
mentation [112], providing promising solutions to the data scarcity problem. We believe
a more unified CSI extraction tool compatible with the new 802.11 standard and a set of
standard datasets for a benchmark comparison should be indispensable for the further
research cooperation and development of Wi-Fi sensing.

Sensing and communication balance. As illustrated in Table 14, most sensing systems
require a high sampling rate for reliable performance, which interferes with regular Wi-Fi
communication. To be more specific, the data throughput undergoes great drop when
the sampling rate for sensing is higher than 50 Hz [66]. SenCom [113] managed to extract
CSI from general communication packets and obtained evenly sampled and sufficient CSI
data with a detailed signal processing technique. While appealing, SenCom is not yet
applicable for COTS clients. Thus, the ways of enabling Wi-Fi sensing while maintaining
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communication capability, i.e., achieving sensing and communication balance, remain an
open problem in the current ISAC area.

Sensing generalization and reliability. As noted in Table 12, raw CSI reading is still
only accessible with limited hardware; some researchers resorted to sensing with other
Wi-Fi signals. For instance, since the beamforming feedback matrix (BFM) is readily avail-
able with all new-generation MU-MIMO-enabled Wi-Fi cards, researchers have explored
generalized Wi-Fi sensing using BFM [114,115]. In addition, to improve the reliability
of sensing, multi-modal sensing, which integrates Wi-Fi and other sensing modalities,
e.g., video [32,52,81,116] and received signal strength indicator (RSSI) [117], are worth
further studying.

Table 14. Sampling rate of recent works.

Sampling Rate Related Work

≤100 Hz [23,24,31,45,46,55,63,66,72,74,75,83]

100 Hz–500 Hz [35–37,44,48,50,51,54,65,71,73,82,84]

>500 Hz [25–28,30,32,33,38,39,49,53,56,58,64,77–79,81]

Apart from the above discussion, the physical challenges of the existing Wi-Fi in-
frastructure should also be noticed, which will greatly determine the possible sensing
limit of Wi-Fi sensing. First, due to hardware and network design, clock asynchronism
between Wi-Fi transmitter and receiver is a severe issue in an ISAC system. It introduces
a time-varying random phase offset in raw CSI, making reliable feature extraction diffi-
cult. Second, except for target influence, dynamic parameter adjustments of the network
card during transmission also affect the CSI measurement, which is highly dependent on
the hardware design. Third, large-scale Wi-Fi sensing needs to obtain CSI from multiple
distributed receivers. The ways of enabling CSI estimation and alignment over multiple
devices are a challenging problem. Currently, there is no universal solution to the above
challenges, requiring cooperative efforts from application researchers, chip manufactures,
and communication equipment vendors.

6. Conclusions

Owing to the active participation from numerous researchers, notable advances have
been made in Wi-Fi sensing techniques in recent years. In an effort to gain insight into
future trends, this paper reviews major achievements over the last 5 years and carries out an
in-depth analysis of various methods, including limitations and practical challenges faced
in existing systems. Moreover, to realize massive real-life applications, this paper highlights
three imperative and promising future directions which are as follows: sensing assessment
standardization, sensing and communication balance, and sensing generalization and
reliability. We hope this review can help people better understand the progress and
problems within the current Wi-Fi sensing research field, inspiring more amazing ideas for
the upcoming ubiquitous ISAC.
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Appendix A

Table A1 summaries all references mentioned in Section 3, pointing out corresponding
application and methodology categories, and can direct the interested reader to related
subsections for a more detailed description.

Table A1. Summary of references in Section 3.

Year Reference Application Methodology Related Subsections

2022 WiCPD [23] In-car child
presence detection

Feature-based motion,
stationary and transition

target detector

Table 1 in Section 3.1;
Table 9 in Section 3.2

2023 Hu et al. [24] Proximity detection Sub-carrier correlation and
covariance feature extraction

Table 1 in Section 3.1;
Table 9 in Section 3.2

2024 Zhu et al. [25] Human and non-
human differentiation ResNet18 Table 1 in Section 3.1;

Table 10 in Section 3.2

2024 WI-MOID [26]
Edge device-based

human and non-
human differentiation

Physical and statistical pattern
extraction + SVM +

state machine

Table 1 in Section 3.1;
Table 9 in Section 3.2

2021 GaitSense [27] Gait-based
human identification

CNN + LSTM + transfer
learning + data augmentation

Table 2 in Section 3.1;
Table 10 in Section 3.2

2021 GaitWay [28] Gait speed estimation Scattering model Table 2 in Section 3.1;
Table 8 in Section 3.2

2022 CAUTION [29] Gait-based
human authentication Few-shot learning Table 2 in Section 3.1;

Table 10 in Section 3.2

2022 Wi-PIGR [30] Gait recognition Spectrogram optimization +
CNN + LSTM

Table 2 in Section 3.1;
Table 10 in Section 3.2

2023 Auto-Fi [31] Gesture and
gait recognition

Geometric self-supervised
learning + few-shot calibration

Table 2 in Section 3.1;
Table 10 in Section 3.2

2023 GaitFi [32] Gait recognition RCN + LSTM + feature fusion Table 2 in Section 3.1;
Table 10 in Section 3.2

2024 Wi-Diag [33] Multi-subject abnormal
gait diagnosis

Independent component
analysis-based blind source

separation + CycleGAN

Table 2 in Section 3.1;
Table 10 in Section 3.2

2021 Kang et al. [34] Gesture recognition Adversarial learning and
attention scheme

Table 3 in Section 3.1;
Table 10 in Section 3.2

2021 WiGesture [35] Gesture recognition MNP feature extraction Table 3 in Section 3.1;
Table 9 in Section 3.2

2022 HandGest [36] Handwriting recognition Hand-centric feature
extraction, i.e., DPV and MRV

Table 3 in Section 3.1;
Table 9 in Section 3.2

2022 DPSense-WiGesture [37] Gesture recognition
Signal segmentation + sensing

quality-based
signal processing

Table 3 in Section 3.1;
Table 9 in Section 3.2

2022 Niu et al. [38] Gesture recognition

Position-independent feature
extraction, i.e., movement

fragment and relative motion
direction change

Table 3 in Section 3.1;
Table 9 in Section 3.2

2022 Widar 3.0 [39] Cross-domain
gesture recognition BVP feature + CNN-RNN Table 3 in Section 3.1;

Table 10 in Section 3.2
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Table A1. Cont.

Year Reference Application Methodology Related Subsections

2022 WiFine [40] Gesture recognition
Data enhancement-based

feature extraction +
lightweight neural network

Table 3 in Section 3.1;
Table 10 in Section 3.2

2023 UniFi [41] Gesture recognition

DFS extraction +
consistency-guided

multi-view deep network +
mutual information-
based regularization

Table 3 in Section 3.1;
Table 10 in Section 3.2

2023 WiTransformer [42] Gesture recognition Transformer Table 3 in Section 3.1;
Table 10 in Section 3.2

2024 AirFi [43] Gesture recognition
Data augmentation +
adversarial learning +
domain generalization

Table 3 in Section 3.1;
Table 10 in Section 3.2

2024 WiCGesture [44] Continuous gesture
recognition

Meta motion-based signal
segmentation and

back-tracking searching-
based identification

Table 3 in Section 3.1;
Table 9 in Section 3.2

2020 Wang et al. [45] People counting and
recognition Statistical pattern analysis Table 4 in Section 3.1;

Table 9 in Section 3.2

2021 Ma et al. [46] Activity recognition CNN + reinforcement learning Table 4 in Section 3.1;
Table 10 in Section 3.2

2021 MCBAR [47] Activity recognition GAN and semi-
supervised learning

Table 4 in Section 3.1;
Table 10 in Section 3.2

2021 WiMonitor [48] Location and activity
monitoring

Doppler frequency and activity
intensity pattern extraction

Table 4 in Section 3.1;
Table 9 in Section 3.2

2022 DeFall [49] Fall detection Scattering model Table 4 in Section 3.1;
Table 8 in Section 3.2

2022 Ding et al. [50] Activity recognition DCN + transfer learning Table 4 in Section 3.1;
Table 10 in Section 3.2

2022 EfficientFi [51] Activity recognition DNN Table 4 in Section 3.1;
Table 10 in Section 3.2

2022 TOSS [52] Activity recognition Meta learning + pseudo
label strategy

Table 4 in Section 3.1;
Table 10 in Section 3.2

2023 FallDar [53] Fall detection
Scattering model + VAE

generative model + DNN
adversarial learning model

Table 4 in Section 3.1;
Table 10 in Section 3.2

2023 SHARP [54] Activity recognition Phase correction-based DFS
extraction + Nerual network

Table 4 in Section 3.1;
Table 10 in Section 3.2

2023 Liu et al. [55] Moving receiver-based
activity recognition Dynamic Fresnel zone model Table 4 in Section 3.1;

Table 8 in Section 3.2

2023 WiCross [56] Target passing detection Diffraction model-based phase
pattern extraction

Table 4 in Section 3.1;
Table 8 in Section 3.2

2024 i-Sample [57] Activity recognition
Intermediate sample
generation + domain

adversarial adaptation

Table 4 in Section 3.1;
Table 10 in Section 3.2

2024 MaskFi [58] Activity recognition Transformer-based encoder +
Gate Recurrent Unit network

Table 4 in Section 3.1;
Table 10 in Section 3.2
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Table A1. Cont.

Year Reference Application Methodology Related Subsections

2024 MetaFormer [59] Activity recognition

Transformer-based
spatial-temporal feature

extraction + match-based
meta-learning approach

Table 4 in Section 3.1;
Table 10 in Section 3.2

2024 SAT [60] Activity recognition
Calibrated confidence-based

adversarial sample selection +
adversarial learning

Table 4 in Section 3.1;
Table 10 in Section 3.2

2024 SecureSense [61] Activity recognition under
adversarial attack

Consistency-guided
adversarial learning

Table 4 in Section 3.1;
Table 10 in Section 3.2

2024 Luo et al. [62] Activity recognition Transformer Table 4 in Section 3.1;
Table 10 in Section 3.2

2024 WiSMLF [63] Activity recognition

High-frequency energy-based
sensing scheme selection +

VGG/LSTM-based multi-level
feature fusion

Table 4 in Section 3.1;
Table 10 in Section 3.2

2022 Niu et al. [64] Velocity estimation-based
tracing

DFS-based velocity estimation
+ receiver selection

Table 5 in Section 3.1;
Table 9 in Section 3.2

2023 WiTraj [65] Human walking tracking
DFS extraction + multi-view

trajectory estimation +
motion detection

Table 5 in Section 3.1;
Table 9 in Section 3.2

2024 FewSense [66] Tracking TD-CSI-based Doppler
speed estimation

Table 5 in Section 3.1;
Table 9 in Section 3.2

2023 Zhang et al. [67] Multi-person localization 2D antenna array-based signal
parameter estimation

Table 5 in Section 3.1;
Table 9 in Section 3.2

2024 Zhang et al. [68] Passive localization

Rigid-body coordinate
transformation-based absolute

pose and relative
motion estimation

Table 5 in Section 3.1;
Table 9 in Section 3.2

2022 Fan et al. [69] Moving direction estimation Intelligent reflecting
surface construction

Table 5 in Section 3.1;
Table 9 in Section 3.2

2022 Wi-Drone [70] Tracking-based indoor drone
flight control

Intelligent reflecting
surface construction

Table 5 in Section 3.1;
Table 9 in Section 3.2

2020 MultiSense [71] Multi-person respiration
sensing ICA-based BSS Table 6 in Section 3.1;

Table 9 in Section 3.2

2021 SMARS [72] Breath estimation and sleep
stage recognition Scattering model Table 6 in Section 3.1;

Table 8 in Section 3.2;

2021 WiFi-Sleep [73] Sleep stage monitoring
Respiration and movement

pattern extraction +
CNN-BiLSTM

Table 6 in Section 3.1;
Table 10 in Section 3.2

2021 WiPhone [74] Respiration monitoring Ambient reflection-based
pattern extraction

Table 6 in Section 3.1;
Table 9 in Section 3.2

2022 ResFi [75] Respiration detection CNN-based classification Table 6 in Section 3.1;
Table 10 in Section 3.2

2024 Xie et al. [76] Respiration sensing with
interfering individual

Respiratory energy-based
interference detection and
convex optimization-based

beam control

Table 6 in Section 3.1;
Table 9 in Section 3.2
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Table A1. Cont.

Year Reference Application Methodology Related Subsections

2020 WiPose [77] Pose construction CNN + LSTM Table 7 in Section 3.1;
Table 10 in Section 3.2

2020 WiSIA [78] Target imaging cGAN Table 7 in Section 3.1;
Table 10 in Section 3.2

2022 GoPose [79] 3D human pose estimation 2D AOA spectrum +
CNN + LSTM

Table 7 in Section 3.1;
Table 10 in Section 3.2

2022 Wiffract [80] Still object imaging Keller’s Geometrical Theory
of Diffraction

Table 7 in Section 3.1;
Table 8 in Section 3.2

2023 MetaFi++ [81] Pose estimation CNN + Transformer Table 7 in Section 3.1;
Table 10 in Section 3.2

2023 WiMeasure [82] Object size measurement Diffraction model Table 7 in Section 3.1;
Table 8 in Section 3.2

2024 PowerSkel [83] Pose estimation

Knowledge distillation
network based on

collaborative learning and
self-attention

Table 7 in Section 3.1;
Table 10 in Section 3.2

2024 WiProfile [84] 2D target Profiling
Diffraction effect-based

profiling + inverse
Fresnel transform

Table 7 in Section 3.1;
Table 8 in Section 3.2
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