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Abstract: Marine engineering officers operate and maintain the ship’s machinery during normal
navigation. Most accidents on board are related to human factors which, at the same time, are
associated with the workload of the crew members and the working environment. The number
of alarms is so high that, most of the time, instead of helping to prevent accidents, it causes more
stress for crew members, which can result in accidents. Convolutional Neural Networks (CNNs) are
being employed in the recognition of images, which depends on the quality of the images, the image
recognition algorithm, and the very complex configuration of the neural network. This research
study aims to develop a user-friendly image recognition tool that may act as a visual sensor of alarms
adjusted to the particular needs of the ship operator. To achieve this, a marine engineering simulator
was employed to develop an image recognition tool that advises marine engineering officers when
they are conducting their maintenance activities, with the aim to reduce their stress as a work risk
prevention tool. Results showed adequate accuracy for three-layer Convolutional Neural Networks
and balanced data, and the use of external cameras stands out for user-friendly applications.

Keywords: control system; ships; CNN; power station; risk prevention

1. Introduction

Marine engineering officers are the officers of the engine room of ships. Their main
competencies are associated with operating and maintaining marine machinery without
power limits [1]. These operation and maintenance competencies are ensured by profes-
sional experience and, during their training studies, engine cadets are trained by engine
room simulators [2] in accordance with maritime standards [3,4]. These engine room simu-
lators are practically the same as the control panels employed in the engine control room.
Engine room simulators, such as the one used in the present research, are widely used in
maritime education and are supported in various ways by the IMO [5,6].

Once the cadets are trained in the operation and control of a power station of a ship
by the simulators and with the computers of the engine control room, it is time for them to
be trained in maintenance activities [7,8]. A clear difference between the engine room of a
merchant ship and that of a navy ship is that, currently, in merchant ships, the maintenance
of the equipment is carried out during navigation and there is only one engine room (in
most navy ships, it is duplicated). As a consequence, the number of maintenance activities
to be carried out in the hot and dangerous environment of the engine room highlights the
need for any kind of help to control the power station (alarms and lights, among others)
and, at the same time, to attend to the maintenance activities, reducing the stress of workers
and its associated accidents due to human factors. To improve the maintenance asks,
remote supervision is performed by software resources like AMOS Maintenance 7.0 [9].
Despite this, it is still not enough due to the reduced number of crew members on board.
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At the same time, the engine room of a ship is a dangerous working place with several
hazardous aspects, like loud noise (over 45 dB), high temperatures and relative humidity
(over 40 °C) and vibration of the equipment. Electrical shocks with high-voltage equipment,
steam burn in places near the boilers and many other accidents associated with the ship’s
movement are only some examples of the risks involved.

The engine room is considered by many authors as the “heart of the ship” [10] or the
“core of a ship” in terms of power and electricity [11,12], so its permanent functioning is
essential for ensuring the operation of all equipment on board and sea navigation. However,
in spite of it being a department with several pieces of equipment of high difficulty and
complexity, the number of crew members (even engineers) on board has been progressively
reduced. For this reason, in recent years and using artificial intelligence and deep learning,
the level of automation in the engine room has considerably increased, reaching the status
of intelligent engine rooms [10,12]. For this mission, several alarms and monitoring systems
have been implemented in a centralized control room of the ship’s engine room. Thus, it is
possible that a reduced number of crew members can control and monitor the functioning
of several pieces of equipment (auxiliary and main engines). However, in the normal
functioning of the equipment on board, specifically when navigating in bad weather
conditions, the engineers on duty have to face multiple alarms (visual and audible) that, in
many cases, are not critical, triggering a stressful situation for the operator. In addition to
this situation, it is relevant to keep in mind that the engine room is a strongly airtight and
narrow space where workers spend a great deal of time during ocean sailing [13]. There, in
many cases, the evolving conditions, such as weather conditions, workplace temperature,
ship motion, noise and vibration, and workload and stress, are extreme [14].

For this reason, with the proposed method in the present paper, the operator can
configure, with the aid of a simple video camera (visual sensor), a particular combination
of visual alarms, which can detect a critical situation in some of the equipment, so that the
engineers can find the cause of the failure and repair it promptly. With this proposed tool,
the engineer on duty does not have to check all non-critical alarms, which are commonly
raised during sea navigation. Then, considering that, as per the IMO, human factors are
one of the key elements in maritime accidents [15], being responsible for about 80% of
maritime accidents worldwide [16], the aim of the proposed method is to reduce the stress
on crew members, increasing the overall safety of sea navigation and the efficiency for
overall performance, which is particularly crucial for the reduced crew members on board
actual ships. Furthermore, as the maintenance of machinery on board is carried out by the
engineering officers and, according to the IMO’s accident investigation report, about 25%
of maritime accidents are initially due to machinery failure [14], all external aids available
to the officer on duty to reduce workload and stress can improve the overall safety of
maritime transport.

The use of computer vision technology to monitor and recognize the engine room
equipment was previously investigated by other authors [10]. Similar to the methodol-
ogy followed in the present paper, artificial intelligence was previously used by other
researchers to improve safety in the engine room. As early as 1992, some authors [17]
proposed a prototype of intelligent monitoring to assist control center operators, in this
case, a supervisor for a turbo-charger system of the ship’s main engine. Zou et al. [13]
proposed a machine vision model (CWC-YOLOvs5) to identify early fires through smoke
detection methods, replacing the standard convolution layer of the baseline model with
coordconv (coordinate convolution) layers. Zhang et al. [18] proposed a proactive machine
vision model based on the fusion of the transfer learning method and proactive percep-
tion technology for smoke detection. Qi et al. [19] also presented an auxiliary equipment
detector in the cabin based on a deep learning model using the visual identification of
auxiliary equipment in order to detect any anomalies. Therefore, in the literature, it is
assumed that in intelligent engine rooms, as a part of intelligent ships, visual recognition
is an essential technique for automatic inspection. Furthermore, initial problems, such
as missing detection, low accuracy, slow speed and imperfect datasets, were addressed
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by researchers such as Shang et al. [20], who proposed a marine engine room equipment
recognition model based on the improved You Only Look Once v5 (YOLOvVS5) algorithm. In
the field of autonomous ships, some research is focused on fully intelligent and unmanned
engine rooms, where the engine failure prediction and diagnosis are carried out using
autonomous mobile robots [21].

Therefore, the use of artificial intelligence, big data and fully sensing the status of en-
gine room equipment, which will gradually replace the naked eye and human labor, seems
to be the direction of present and future developments, until the prospect of intelligent
engine room systems can be reached [12].

Previous studies showed that the most relevant variable at the time to identify the
causes of an accident based on CIAIN reports [22] is the human factor. The human factor is
defined as the job factors that influence the behavior at work on board and that depend on
the particularities of each crew member. In this sense, at the time of analyzing an accident,
several variables probably related to accidents are defined, like visibility, number of crew
members, ship dimensions, sea and wind conditions at the time of an accident and other
variables [23]. Previous works revealed that the minimum number of crew members is
associated with the human factor, which is a subjective variable too complicated to be
controlled except, for instance, by increasing the minimum number of crew members on
board [24]. Despite this, due to economic considerations, each ship owner tends to reduce
the number of crew members meaning that artificial intelligence and more developed
control systems are the only way to compensate for this loss of the human factor.

To improve the activities on board, on the main deck by deck officers, on the bridge
by the officers on watch, or in engine room operations, recent machine learning research
works are being developed [25,26]. Due to the fact that marine engineering control panels
are designed in general terms to control a power station, they must never be modified by
operators, and only the operators know their practical needs during the operation. As
a consequence, in this research work, a new original case study of deep learning image
recognition of an engine room simulator will let us develop a user-friendly methodology
that lets marine engineers create their own alarms in the engine room based on their own
experience and particular needs without any kind of modification of the control panel of
the engine room [27]. This automatic sensor warns the few workers in the engine room in
case of an alarm or when a critical combination of alarms happens.

What is more, due to the similarities between the power stations employed on land
(nuclear power stations, hydroelectric power stations, wind farms and power plants) and
the ones employed on board, the methodology proposed in this research work can be easily
extrapolated for any type of ship power station and in the land control system. In particular,
the Convolutional Neural Network method shows other advantages like resolving the
computation real-time performance, which is very important for alarm systems. As a
consequence, this new advantage must be analyzed in the future.

2. Materials and Methods

The TRANSAS (Leningrad (USSR)) [7] simulator is based on this initial simulator
developed by Stefan Kluj [2,28] and is currently the most common certified simulator
to train crew members of merchant ships. Despite this, this teaching knowledge and
procedure can be employed in other well-known simulators like that employed in the
aerospace industry and power stations. The main intention is to train the workers with
simulators that emulate real power stations, letting them understand new systems and the
relation between systems and between systems and equipment. As explained before, for
the particular case of merchant ships” engine room simulators, this learning methodology
is compulsory to certify students in certain knowledge.

Virtual Engine Room Systems and Control Panel

As mentioned before, each of the systems of a merchant ship is controlled from the
control engine room. In this sense, the main engine system (temperatures...) and its
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controls are represented in Figure 1 with the telegraph, buttons to start pumps of fuel and
diesel oil, blowers and turning gear. All these elements are controlled from this screen.
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Figure 1. Main engine and control panel.

Figure 2 represents its associated fuel oil/diesel oil system with each tank, valve and
purifier. All these elements are supervised and controlled from the figures shown below.
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Figure 2. Fuel oil/diesel o0il system and control panel.

At the same time, in Figure 3, fresh water and saltwater systems are controlled on
their visual screen by clicking over the valves to be opened or closed.
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Figure 3. Fresh water (a) and sea water system (b).
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Figure 4 shows the lubricating oil system where two types of oils (oils for cylinders
and oils for general lubricating) are fed to the main engine after heaters and coolers, which,
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at the same time, are fed with the aforementioned fresh water and salt water systems. On
the right of Figure 4, a purifier can be seen that, in a closed loop, treats the oil to be stored
in the tanks with several pumps controlled from the control system screen shown below.
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Other systems, like compressed air, electrical, bilge and water ballast and steam, with
their associated control systems, are shown in Figures 5-8. All of them are realistic systems
and controls employed on board that must be supervised by one marine engineer officer.
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Figure 7. Bilge (a) and ballast water system (b).

Different screen alarms are employed during the control of a power station in its
operations, and only the most relevant alarms are reinforced with acoustic signals and
lights. In this sense, Figures 9-16 show each alarm associated with each system: main
engine, fuel, lubricating, cooling, compressed air, steam, electrical and other miscellaneous
systems. It is interesting to highlight that not all the alarms have the same relevance. In
this sense, on the one hand, the alarms associated with the main engine are of special
interest due to the possibility that the alarm could remain on for some minutes; the main
engine will be stopped and the ship will experience a blackout (no lights and no propulsion
system), which could clearly be a risky situation in port operations, for instance. On the
other hand, an alarm indicating a low level of fuel in tanks is not of particular relevance
due to the fact that there are other parallel tanks and the main engine can be fed for hours
after its associated alarm is shown. As a consequence, the combination of some alarms may
be of critical interest and cannot be usually recognized due to the high number of alarms
per working day on board.

As a consequence, during a normal port-stating process of the power plant, more than
90 alarms must be supervised by the marine engineer officer who, at the same time, is
manually operating other remaining system elements and supervising its state. What is
more, it must be highlighted that the engine room is controlled by three marine engineers,
most of the time a chief engineer, an officer and an engine cadet. As a consequence, there are
too many alarms that are associated with the operation of each system, which, at the same
time, must be associated with an incorrect operation of the other systems. For instance, an
excessive temperature before the turbines of the main engine (Figure 9) can be associated
with a incorrect temperature or reduced flow of the fresh water system (Figure 3a), which,
at the same time, is associated with an incorrect flow or temperature of the salt water
system (Figure 3b). This example shows a daily situation that demonstrates the complex
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work carried out in noisy spaces with temperatures over 40 degrees centigrade. These
conditions reduce the concentration of the crew members and enhance the probability of
errors. As a consequence, the main objective of this work is to develop a methodology
to identify some particular combination of alarms that are critical for common working
activities by an artificial intelligence procedure based on image recognition (deep learning)
that may be of help to the digital twin of a ship and that can be configured in a few days in
every ship. This can reduce the risk of accidents by guiding the marine engineers in their

daily operations.
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Figure 13. Compressed air alarms (7 alarms).
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Figure 14. Steam alarms (8 alarms).
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Figure 15. Electrical system (13 alarms).
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Figure 16. Miscellaneous alarms (4 alarms).
3. Results and Discussion

As mentioned previously, the main intention of this work is to develop an artificial
intelligence procedure to be employed in ships and power stations that may reduce the risks
of accidents by guiding the marine engineering officer in their activities and, in particular,
by understanding the combination of alarms and their relevance in real time. To do so, some
of the most relevant alarms that can be observed during navigation or in port operations
were recorded with the computer image recorder of the control system. As an alternative
procedure, an external camera pointing to the monitor of the control system is proposed.
At the same time, the images associated with normal operation without alarms are taken as
a reference for a deep learning neural network training process. In particular, no learning
transfer procedure was selected due to the need for an exact adjustment to the illumination
of each alarm with respect to the non-illumination condition.

As a type of feed-forward neural network, a convolutional neural network will recog-
nize images by itself in accordance with a filter (kernel), with the structure described in
two sections shown in Figure 17. The first section employs an image input layer and three
convolution 2D layers. The second section is a fully connected layer (which utilizes the
output from the convolution process and predicts the class of the image), with a softmax

layer employed for 70 epochs to ensure an adequate convergence between training and
validation accuracy results.

convolution Pooling Fully connected
| J
Y |
Feature extraction Classification

Figure 17. Structure of a CNN.
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The hyperparameters employed were a learning rate of 0.01, maximum epoch to
convergence of 4 and shuffle every epoch and a validation frequency of 30. The opti-
mization algorithm employed in this neural network was stochastic gradient descent with
momentum (sgdm), which will update the network parameters in each loop.

The number of training files was modified in accordance with the accuracy ob-
tained and the complexity of the image recognition. In this sense, for initial experiments
(Section 3.1), 80 images were employed, while for the image identification of each particular
alarm (Section 3.2), 260 images were employed. At the same time, the image quality was
720 x 128, which is a reduced resolution, to reinforce the adequacy of this procedure with
low-resolution images.

3.1. OK and NOT OK Test

The first initial test of the proposed control system was focused on detecting the
normal working condition of the engine room (no alarms) with respect to a situation where
any alarms are activated. In this sense, the type of alarm is not identified, and a simple
warning is issued to marine engineering officers through the messages OK (no alarms) and
NOT OK (alarms activated). As mentioned before, 80 images with and without alarms
were employed and classified with great accuracy, as shown in Figure 18.

NOTOK

True Class

OK

NOTOK OK
Predicted Class

Figure 18. Confusion matrix of the initial classification of images (OK/NOT OK).

The confusion matrix of Figure 18 shows that the data employed are imbalanced;
therefore, more images were added to the database and the training and classification
process was carried out again, as shown in Figure 19. What is more, the epoch number was
incremented to 100 epochs to ensure the visual convergence of the training and validation
process, as shown in Figure 20.
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NOTOK

True Class

OK

NOTOK OK
Predicted Class

Figure 19. Confusion matrix of the initial classification of images (balanced data R = 1).
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Figure 20. Accuracy and loss of the training and validation processes for each iteration (OK/NOT
OK classification).

3.2. Identification of Particular Alarms

Based on the previous results, it is of interest to increase the objectives until the
identification of each alarm by this same procedure. As a consequence, more images
(nearly 300 images) were introduced into the four additional frequency alarms and the
OK condition (no alarms) classification was proposed for this neural network. As can be
observed in Figure 21, the convolutional neural network reached a perfect classification
of images, with convergence after 100 iterations (Figure 22). The alarms selected were
abbreviated as OK (no alarms), pressure after circulation pump 1 low (pacpl), pressure
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after circulation pump 2 low (pacp2), pressure after supply pump 1 (suplyl) and pressure
after supply pump 2 (suply2).

OK

pacp1

pacp2

True Class

suply1

suply2

OK pacp1 pacp2 suply1 suply2
Predicted Class

Figure 21. Confusion matrix of the image classification of a normal condition and four types

of alarms.
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Figure 22. Accuracy and loss of the training and validation processes for each iteration (five classifications).



Sensors 2024, 24, 6957

17 of 20

3.3. lllustrative Test of the Use of the Trained CNN

Once the general identification of each image was achieved, some examples, as a test
of this technology, are shown in this section. As can be observed, with an accuracy of 100%,
each alarm was identified with images with a lower resolution than that captured on screen
or by any external camera to reduce the weight of the calculation procedure, as reflected in
Figures 23-25.
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Figure 23. Test of the pressure after supply pump 1.
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Figure 24. Test of the pressure after circulation pump 2 low (pacp2).

In this sense, the pressure after supply pump 1 is shown and clearly identified in
Figure 23, and Figure 24 shows the identification of the pressure after circulation pump
2 low (pacp?2). Finally, the identification of no alarms (OK condition) is clearly identified in
Figure 25.

As a consequence of such good results, it can be concluded that it is possible to develop
an artificial intelligence model by recognizing images that will help the operator to gain
a better understanding of a high number of alarms but without removing the control of
the process from the marine engineer officer in accordance with international standards.
What is more, this technology can be employed in most of the power stations and in most
activities where any kind of visual alarm is indicated by a computer, as shown in this
case study.
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It is of special interest to understand that the accuracy of this training process is
elevated with respect to previous studies where slight modification of the objective images
will induce an increase of the identification error. In this type of image, the objective
function is always the same and this is the origin of the interest in image recognition.
What is more, it is evident that a specialized control algorithm of the Supervisory Control
and Data Acquisition (SCADA) of the control system may allow us to obtain the same
accuracy, but the aim of this case study was to implement new particular algorithms once
the control system was implemented, as used in power stations and ships. In this last case,
an external camera placed in front of the control system will let us identify alarms without
interfering with the ship control system and monitors, which is something of interest when
the interests of any kind of marine underwriter are involved.
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Figure 25. Test of the no alarms condition (OK).

Another relevant parameter to be employed in this type of CNN is the need to employ
an adequate number of layers; for this type of image, three convolutional 2D layers and a
learning rate of 0.01 were adequate.

Finally, more case studies must be developed to increase the identification of more than
90 alarms and situations based on the experience of the workers and optimized CNN [29],
which, most of the time, are slightly further from the initial design of the control system
made in the shipyard. As a consequence, this tool will help crew members obtain a more
efficient and user-friendly knowledge of their working environment, with a consequent
reduction in the stress and risks on board.

4. Conclusions
Several conclusions can be derived from this research work:

1. It is possible to employ CNN to recognize particular alarms in ships and power
stations.

2. The accuracy of this procedure reaches 100%.

3. The optimal configuration of this camera as a sensor was of three convolutional layers
and balanced data.
4.  This tool will let operators adjust the control system designed in the shipyard to their

particular needs by employing their own control system monitors or some external
cameras.

5. Future research works must be carried out to improve the quality of the work on
board and reduce its related risks.
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