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Abstract: In order to ensure the safety and preserve the value of historical buildings, inclination is
an essential parameter during the continuous structural health monitoring process. However, the
wire and price of a traditional sensor limit application. This paper proposes a low-cost inclination
sensor based on a patch antenna with a reconfigurable water load. Only the water directly on the
antenna is considered effective. The different volume of the effective water load, which is determined
by the inclination of the attached surface, will affect the effective permittivity of the dielectric plate of
the patch antenna, further causing a variation in the resonant frequency. Therefore, the proposed
antenna sensor can monitor the inclination of the attached surface by interrogating the resonant
frequency. The working mechanism is first clarified by theoretically investigating the relationship
between the dielectric properties and the inclination of the covering medium. The antenna sensor is
then simulated using High-Frequency Structure Simulator ver.15 (HFSS 15), which helps to determine
geometric parameters and confirm accuracy and sensitivity. An experiment has been conducted based
on the design verified in the simulation. The inclination detection shows a correlation coefficient of
0.9771 with a sensitivity of 7.92 MHz/◦, indicating a potential for real application.

Keywords: historical building; health monitoring; inclination detection; patch antenna; passive;
water load

1. Introduction

Historic buildings are important all over the world and have considerable meaning in
the aspects of native history and art [1,2]. To perpetuate their meanings, the preservation of
their physical structures and materials stands as the most fundamental and crucial task.
Nevertheless, after long-term service, historic buildings are inevitably damaged to varying
degrees due to both natural and man-made factors [3,4]. The damage may gradually worsen
over time and ultimately lead to irreparable destruction of historic buildings. Therefore, it is
essential to continuously monitor and evaluate damage to ensure appropriate preservation
and maintenance strategies of historic buildings are implemented in a timely manner. This
contributes to extending the lifespan of historic buildings and enhancing their resilience
to natural disasters such as earthquakes [5]. According to a standard [6], the damage
level of historic buildings can be roughly judged by the inclination of the structure. To
evaluate the damage level automatically, inclination detection is significant, according to
the management of historic buildings [7–9].

Inclination detection plays an important role in many aspects of structures. (1). Con-
struction: it can reflect surface deformation and structural changes during temporary
support, excavation, filling, and foundation construction, which help to prevent accidents
during construction, ensure the smooth progress of the project, and reduce risks and
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costs [10–12]. (2). Daily maintenance: inclination detection can be utilized to regularly
inspect and maintain buildings or other infrastructure, contributing to more precise main-
tenance plans, further extending their service life [13,14]. (3). Disaster forecasting: existing
structures are often threatened by natural disasters such as landslides, earthquakes, and
mudslides. Continuous real-time detection of inclination can obtain the abnormal con-
dition of the risk area, providing an important guarantee for the safety of residents and
assets [15,16].

It is evident that these practical roles of inclination detection can also help to minimize
the potential damage to historic buildings caused by neighboring construction, daily use,
and natural disasters. On the other hand, the specificity of historic buildings and their
preservation often imposes additional requirements on inclination detection. It should
minimize damage on the original materials and the overall aesthetic of the historic building
to avoid affecting its historic and artistic meanings.

Recently, researchers have developed various devices for inclination detection. Con-
sidering factors addressed in engineering, we summarized the characteristics of popular
inclinometers as shown in Table 1. Normal mechanical inclinometers detect inclination by
visual evaluation of the level of the liquid surface inside the sensor, which means there
is no need to use a cable for data and power transmission. However, the data cannot be
obtained remotely, which limits utilization [17,18]. With a cable for the transmission of
power and data, the Fiber tilt sensor [19,20] and MEMS gyroscopes [21–23] enable remote
sensing. Nevertheless, the cables are cumbersome for real applications. For practical utiliza-
tion in historic buildings, cables may significantly disrupt the overall aesthetics, affecting
their artistic value. By adding the battery inside traditional cabled sensors, several active
inclinometers have been proposed. However, a much higher price and potential damage to
the battery become another problem. A capable sensor for inclination detection without a
cable and battery is required.

Table 1. Comparison of detection methods.

Type Accuracy Power Cable Cost ($) Ref.

Mechanical inclinometer 4 × × 2~20 [17,18]
MEMS gyroscopes #

√ √
/ [19,20]

Fiber tilt sensor #
√ √

/ [21–23]
Influence: # >4; required (

√
); not required (×).

Two problems should be addressed corresponding to these requirements: (1) no
batteries (passive); (2) no wire (wireless). While the traditional type of active sensor has no
solutions, a patch antenna shows an approach to get rid of the above problems. This paper
is focused on verification of the passive design. Acting as communication units, patch
antennas can perceive changes in environmental factors through their physical state, such as
deformation of relative displacement inside the antenna members. With a possible approach
for passive wireless interrogation, the patch antenna has been a focal point, according to
research on sensors. Currently, patch antennas have been utilized for monitoring important
parameters like temperature [24], humidity [25], bolt loosening [26,27], and cracks [28,29].
They are expected to show the same potential in the detection of inclination. Nevertheless,
the solid material and low profile of the patch antenna make it a complex task to convert
inclination to the antenna’s physical state.

Compared with the traditional patch antenna, liquid antennas show excellent perfor-
mance in tracking structural planar changes, while their usually low radiation efficiency
and huge environmental effects (temperature, humidity, etc.) limit utilization in sens-
ing [30]. Hence, rather than using liquid as the radiation member, taking the liquid as
a load of the normal patch antenna, the new system can achieve plane tracking with a
better performance in signal transmission [25], which is expected to enable the passive
wireless detection of inclination. Nevertheless, when applying the patch antenna with the
liquid load to the detection of inclination, the design and performance should be carefully
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analyzed. The influence of temperature is also another big concern due to the changeable
dielectric ability of water. Unfortunately, there has been no research about that ever before.

This paper proposes an inclination sensor based on a rectangular patch antenna with
a liquid load varied by the inclination of the attached surface. Temperature is proven to
have limited influence. The resonant frequency has been proven to be sensitive to the
changeable effective height of the liquid load by both simulation and experimentation. By
interrogating the resonant frequency of the patch antenna, it successfully reflects changes
in the liquid level, thus inverting the surface incline. This research enables the passive
detection of surface inclination for the first time, laying a research foundation for future
studies in intelligent construction. The potential applications of this sensor are addressed
in two aspects with the expected improvements as follows:

(1). Long-term monitoring of the inclination of a large number of historic buildings.
The improvements mainly concentrate on protection of historic and artistic meanings;

(2). Detection of the inclination of a specimen in a laboratory. Since the proposed
antenna sensor has the potential to get rid of cables, it shows the advantage of simplifying
complex installation during an experiment;

(3). Smart monitoring for normal buildings. The lower price of the proposed sensor
can enable the large-scale use of the SHM system in normal buildings.

The antenna sensor is planned to be detected by a Vector Network Analyzer (VNA),
which is expected to give a much more accurate performance of the proposed sensor. Hence,
it should be noted that the proposed sensor can now only be verified with the ability of
passive detection. The ability of wireless detection is expected to be evaluated in the future.

This paper is arranged as follows: Section 2 introduces the basic mechanism of the
patch antenna. The relationship between the inclination of the covering medium and the
resonance frequency is analyzed. In Section 3, an inclination sensor is designed based on the
patch antenna’s mechanism. The basic parameters are determined through simulation using
High-Frequency Structure Simulator ver.15 (HFSS15). The feasibility of sensors is basically
proved here. The temperature effect is evaluated and proved to be limited. In Section 4, the
proposed antenna sensor is fabricated. The results confirm the linear relationship between
the inclination and resonant frequency, which indicate a good performance of the proposed
antenna sensor. A conclusion is drawn in Section 5.

2. Detection Mechanism
2.1. Resonant Frequency of the Patch Antenna

A patch antenna is a fundamental component in radio frequency (RF) communication
systems and sensor applications. Based on the detection of deviations in their resonant
frequency, a patch antenna can be utilized to perceive environmental changes. As shown in
Figure 1, considering a normal patch antenna formed by a radiation patch, dielectric board,
and ground plane, the resonant frequency can be calculated by Equation (1) [31]:

f1 =
c

2Lr
√

εe
(1)

where c is the speed of light; Lr is the length of the patch antenna’s radiation patch; and εe
represents the effective dielectric constant of the substrate material. It should be noted that
εe includes the influence of the surrounding environment, which differs from the inherent
dielectric constant of the antenna substrate itself. The radiation direction corresponds to
the direction of the electric current of the resonance state, which is the length direction
under the condition of Figure 1.
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Figure 1. A normal rectangular patch antenna. (a,b) Top and 3D views of the patch antenna.

2.2. Influence of the Covering Material

The covering material of a patch antenna influences the effective dielectric constant
of the dielectric board according to the fringe effect, further changing the resonant fre-
quency. Based on conformal mapping, the influence can be qualitatively described as in
Equation (2) [32].

εe = g(ε1, h1) (2)

where ε1 and h1 represent the dielectric constant and thickness of the covering material.
As shown in Figure 2, the fringe effect of the covering material can be summarized as

follows:
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(1) The effect tends to decrease the difference between the dielectric constant of the
covering material ε1 and the dielectric constant of the dielectric board ε0.

(2) With an increase in thickness h1, the degree of the effect (increased from ε0 to ε1
as mentioned in point 1), of the covering material tends to increase. When the dielectric
constant of the covering material ε1 is constant, the dielectric constant of the dielectric board
ε0 is proved to vary linearly within a limited range according to Ref. [33]. The detailed
relationship is described in Appendix A.

2.3. Design of the Inclination Sensor

The dielectric constant of the patch antenna is related to the height h1 of the covering
material. When attaching the antenna to a surface, if the height of the covering material
can inflect the inclination, the resonant frequency can be utilized to detect the inclination of
the surface.

Liquid can always keep the same inclination as the attached surface. Using water as
the covering material, a theoretical model of the inclination sensor designed in this paper is
illustrated in Figure 3. A box with water inside is placed at the edge of the patch antenna.
The water right above the patch antenna has more influence on the resonant frequency
than extra water; hence, this is regarded as the effective range.
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Figure 3. Theoretical model of the proposed inclination sensor: (a) basic concept; (b) equivalent
model; (c) concept of the setup of the proposed sensor.

When the attached surface tilts, the antenna sensor also tilts, leading to changes in
the inclination and height of the water inside the box. The inclination variations of the
sensor can be divided into three stages: left-leaning, horizontal, and right-leaning states.
The corresponding tilt states of covering water are depicted in Figure 3b.

The initial height of the covering dielectric is known as h0. At a horizontal state, the
equivalent height of the covering dielectric can be denoted as h0. When the sensor tilts to
the left, the inclination of the covering water aligns with the structural inclination, leading
to a change in the water height at the effective range, denoted as h1, where h1 > h0. Similarly,
when the sensor tilts to the right, the equivalent height of the covering water is h2, with h0 >
h2. Since the volume of water is constant, each inclination corresponds to a specific height,
which can be determined based on the equivalent volume calculation. Obviously, within a
limited range of inclination, the equivalent height of covering water varied linearly with
the change in inclination. The final installation is shown in Figure 3c. With the change in
inclination of the attached surface, the relative angle between the surface of the water inside
the box and the patch antenna is changed, which further shifts the resonant frequency.

Hence, the influence of the inclination of the covering water can be described as the
following two steps:

(1). A change in inclination linearly varies the equivalent height of the covering
material;

(2). A linear change in the equivalent height of the covering material varies the
resonant frequency linearly (for more detail, please see Section 2.2 and Appendix A).

The procedure is also shown in Figure 4, which indicates that the proposed antenna
sensor can detect the inclination of the attached surface using resonant frequency as the
sensing parameter. However, this is only a quantitative judgment of the relationship, which
should be verified further by simulation and experimentation.
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3. Simulation

To verify the feasibility of the proposed design of the patch antenna inclination, the
relationship between the inclination and the resonant frequency was calculated quantita-
tively by a simulation established in High-Frequency Structure Simulator ver 15 (HFSS ver
15). The setup and the results are discussed as follows.

3.1. Establish the Numerical Model

The schematic diagram of the proposed sensor is shown in Figure 5. The model
consists of a patch antenna and a covering box. The patch antenna consists of a copper
sheet and a coated dielectric board. The material of the dielectric board and covering box
are Rogers RT/duroid 5880 and water. The sensor is arranged in an air box with a radius of
about a quarter wavelength to ensure the calculation accuracy of far-field radiation. The
entire system is fed by wave port at the end of the patch antenna. Because the electric field
should be completely perpendicular to the surface, perfect E was chosen as the boundary
condition for the ground layer.
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The geometric parameters of the patch antenna sensor are described as follows:
Patch size: the length (L) and width (W) of a patch antenna are key parameters that

determine its resonant frequency, and these sizes are usually in the millimeter range.
Substrate thickness (h): The thickness of the medium substrate is indicated by h. It will

affect the impedance matching and radiation characteristics of the antenna. In this paper,
the substrate thickness was set at 1.6 mm.

Covering medium thickness: The thickness of the covering water is a variable pa-
rameter in the sensor design. Under the premise of a strong correlation between resonant
frequency and inclination angle, the larger the height, the larger the inclination measure-
ment range of the sensor. Nevertheless, when the height increases, the size of the patch
antenna sensor is reduced. In this study, the thickness of the covering water was set to
4 mm when it is not inclinational.

The material characteristics of the proposed antenna sensor are described as follows:
Covering dielectric material: The dielectric constant of water is determined by 81,

considering the property under a temperature of 20 ◦C [34]. The temperature effect is not
discussed in this paper. The dielectric constant of the dielectric board (Rogers RT/duroid
5880) was 2.2.

After calculating the fundamental resonant frequency within a setting range by HFSS
ver 15, one set of basic parameters with the best performance was obtained and is shown in
Table 2.

Table 2. Parameters of the inclination sensor.

Parameters W Ww Wr L Lw Lr

Dimensions (mm) 51 15 49 54.3 42.3 41.3

3.2. Results and Discussion
3.2.1. Current Distribution

The induced current distribution on the patch antenna sensor at the fundamental
resonant frequency is shown in Figure 6. Induced current is generated and mutates near
the covering water.
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3.2.2. Resonant Frequency vs. Inclination

With the parameters in Table 2, the proposed patch antenna sensor was calculated. In
the initial state, the liquid level of the covering medium is horizontal, indicating that the
current inclination is 0 degrees. With an increase in inclinations of the sensor, the liquid
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surface of the covering water forms an angle with the sensor surface. The angle is up to
20◦, considering the real condition of a structure.

The step of changing the inclination was set at 2 degrees for this simulation. For each
moving step, a return loss curve was obtained as shown in Figure 7. The fundamental
resonant frequency of the antenna sensor under each step was then extracted from the
point with a minimum return loss. The relationship between the inclination of the surface
and the resonant frequency of the antenna sensor is shown in Figure 8.
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As depicted in Figure 8, there is an approximate linear relationship between the
inclination and resonant frequency. The correlation coefficient for inclination with resonant
frequency is 0.9946, and the slope of the fitting line represents that the sensitivity of the
inclination sensors is 5 MHz/◦, which indicates that the proposed patch antenna sensor is
capable of the detection of inclination.

Nevertheless, at the radiation boundary, the interrogation methods and environmental
conditions in the simulation are slightly different from the actual situation. Hence, experi-
ments were carried out as described in Section 4 to further verify the performance of the
proposed antenna sensor.

3.2.3. Temperature Influence

The dielectric constant of water is changeable, corresponding to different tempera-
tures [34]. Hence, verifying the influence of temperature becomes important. The impact of
varying temperatures on the performance of the sensor is studied in this part. Based on the
setting in Table 3, the dielectric constant of the overlying liquid varies, and the relationship
between temperature and the resonant frequency of the antenna sensor is displayed in
Figure 9.
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Table 3. The relationship between temperature and the dielectric constant of water.

Temperature 0 ◦C 10 ◦C 20 ◦C 30 ◦C 40 ◦C

Dielectric constant 87.740 83.832 80.103 76.546 73.151
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Figure 9. Relationship between resonant frequency and inclination of attached surface in 0–40 ◦C.

When the temperature is constant, the sensor’s resonant frequency maintains a linear
relationship with the inclination. When a variation of 40 ◦C happens in temperature, there is
a difference of 0.004 GHz in the initial state (inclination = 0) and 0.011 GHz when inclination
increases to 20◦, causing a maximum error of 2◦ for the observed inclination, which is still
limited considering the observed range (0–20◦). In the future, the model is planned to be
optimized, and the way to calibrate the temperature effect is planned to be studied.

4. Experiments
4.1. Setup of the Experiment

The patch antenna was manufactured in the laboratory using a toner transfer method
using a thermal printer and corrosive liquid as mentioned in Ref. [29]. Copper was chosen
as the material for the radiation patch and ground plane, and Rogers RT/duroid 5880 was
selected as the dielectric board of the patch antenna.

The fabricated antenna sensor consists of a surface, patch antenna, and small water
tank. The water tank was connected to the patch antenna by glue. The basic parameters of
the antenna sensor are shown in Figure 10.
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Figure 10. Basic parameters of the inclined measuring platform.

An inclination simulator has been established as shown in Figure 11a. Two columns
formed by several sheets were set under the patch antenna. In the initial state, the two
columns were of the same height, and the surface was regarded as horizontal. By adjusting
the amount of the sheet, the relative height of the column was changed, causing an inclina-
tion in the surface compared with the initial state. In this experiment, the minimum step of
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change in inclination was around 1◦ due to the parameters of the antenna sensor, attached
surface, and the sheet.
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(b) Top view.

A Nano Vector Network Analyzer (Nano VNA) was then utilized to analyze the return
loss from the antenna sensor as clarified in Figure 11. It should be mentioned that the nano
VNA decreases the measuring accuracy but increases the portability of interrogation [26],
which was the reason for choosing it. The scanning range was selected from 1 GHz to
3 GHz to match the inclination sensor. Experiments were performed over an angle range of
0◦ to 20◦ to fit with the setting of the simulation. The variation of resonant frequencies was
analyzed by programmatically processing the return loss of the antenna sensor at different
angles. The offset of the resonant frequencies was obtained by extracting the resonant
frequency at the local minimum of each S11 curve, which is described in Section 4.2.

4.2. Analysis and Interpretation of the Experimental Result

Figure 12 shows the relationship between the fundamental resonant frequency and
the angle, both for the numerical simulation and experiment, and the results of sensitivity,
measurement ranges, and correlation coefficients (r2) of fitted lines for the two cases are
compared in Table 4. Although the initial fundamental resonant frequencies are slightly
different from each other due to the difference between the experiment and simulation,
the sensitivity shows good consistency, which indicates the simulation can have a good
reflection of the real behavior of the antenna sensor. The correlation coefficients of all fitting
lines are above 0.95, indicating the great workability of the antenna sensor.
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Figure 12. Numerical simulations and experiments of resonant frequency versus inclination angle.

Table 4. Sensitivity, measuring range, and r2 of the fitted line: numerical simulation and experiment.

Serial Sensitivity
(MHz/◦)

Initial Resonant
Frequency (GHz)

Measuring Range
(GHz)

Correlation Coefficient
(r2) of the Fitted Line

Numerical simulation 5.5 MHz 2.467 2.384–2.318 0.9946

Experiment 7.92 MHz 2.385 2.466–2.371 0.9771

Difference 30% 3.4% / /

It should be noted that though the initial resonant frequency stays kind of the same
with a difference of 3%, there was a difference of 30% between the sensitivity of the
simulation and experiment results. The difference in sensitivity may be due to the air gap
between the covering medium and the patch antenna. In addition, each method has a
slightly different measurement range. This difference may be due to the following reasons:

(1) The influence of the inclination simulator itself is ignored in numerical simulation
and theoretical calculation. However, the influence of the inclination simulator itself is
considered in the experiments.

(2) The use of micrometers produces electromagnetic interference, which is not consid-
ered in theoretical calculations or numerical simulations.

The difference between the initial resonant frequency and the sensitivity indicates
the importance of initial calibration, which is planned to be discussed as one part of the
next step.

5. Conclusions

Inclination is essential for the long-term health monitoring of historic buildings. Nev-
ertheless, traditional wired sensors cannot ensure aesthetics and further decrease historic
and artistic meanings. This paper presents a novel inclination sensor based on a patch
antenna. Based on the fringe effect and the fluid characteristic of covered water, the res-
onant frequency of the proposed patch antenna is proved to be related to the angle of
the attached surface, which indicates the sensor is capable of detecting inclination. The
resonant frequency is selected as the sensing parameter for the detection of inclination,
which is easy to achieve via passive wireless interrogation.

Both theoretical analysis, numerical simulation, and an experiment were carried out to
prove the feasibility of the proposed antenna sensor. Two main conclusions can be obtained
based on the analysis of this paper:

(1) Both simulation and experimentation show a linear relationship between the
inclination of the attached surface and resonant frequency of the patch antenna, with a
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correlation coefficient higher than 0.95, which indicates that the proposed patch antenna
sensor is capable of detecting inclination.

(2) The proposed patch antenna sensor has a good consistency of initial resonant
frequency among the simulation and experiments with a difference of 3%, indicating that
the numerical model is accurate for further development of the patch antenna. However,
the sensitivity between the simulation and experiment has a difference of 30%, which is not
bad but requires research for calibration.

The future target is summarized as follows:
(1). Wireless interrogation of the proposed patch antenna sensor is planned to be

investigated to improve the ability for practical utilization.
(2). In order to improve accuracy, the calibration toward temperature and other

possible effects is planned to be carried out.
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Appendix A

Appendix A describes the calculation method for the resonant frequency of a patch
antenna with a covered material, which is related to a reference [33]. Consider the model in
Figure A1.
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Figure A1. Equivalent model using electric flux theory. (a) Electric flux path and (b) equivalent patch
antenna.

First, the antenna width will be enlarged due to the nonlinear flux path. The effective
width Wef of the equivalent patch antenna can be estimated as follows:

We f = W + (2× h1/π)× ln[17.08(w/2× h1 + 0.92)]. (A1)

Then, the filling fractions q1, q2, and q3, representing the capacitive effect of the three
regions with different dielectric constants, are expressed as follows:

q1 = 1− h1

2We f
ln(

π

h1
×We f − 1), (A2)
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q2 = 1− q1 −
h1 − vε

2We f
ln[(

π

h1
×We f

cos(πvε
2h1

)

π( h2
h1
− 1

2 ) +
πvε
2h1

+ sin(
πvε

2h1
)], (A3)

q3 =
h1 − vε

2We f
× ln[(

π

h1
×We f

cos(πvε
2h1

)

π( h2
h1
− 1

2 ) +
πvε
2h1

+ sin(
πvε

2h1
)], (A4)

where the quantity vε is given as follows:

vε =
2h1

π
arctan[

π
π×We f

2h1
− 2

(
h2

h1
− 1)]. (A5)

Due to ignorance of the filling fraction expressions in the ultimate limit state when
there is no covering material, Equations (A1)–(A5) overestimate the effect of the second
layer dielectric board with a dielectric constant of ε2. To rectify the error, a new filling
fraction q4 is proposed by Equation (A6).

q4 = (h1/2We f )× ln(π/2 + h1/2We f ). (A6)

Then, two filling fractions, q1 and q2, are modified as q1n and q2n as follows:

q1n = q1 − q4. (A7)

q2n = 1− q1n − q3 − 2q4. (A8)

The effective dielectric constant εe of the covered antenna can be calculated as follows:

εe = ε1q1n +
ε1(1− q1n)

2 × [ε2
2q2nq3 + ε2ε3(q2nq4 + (q3 + q4)

2)]

ε2
2q2nq3q4 + ε1(ε2q3 + ε3q4)(1− q1n − q4)

2 + ε2ε3q4[q2nq4 + (q3 + q4)
2]

. (A9)

Considering the effect of effective length extension, the adjusted effective dielectric
constant ε′e is rewritten as follows:

ε′e = (2εe − 1 + K)/(1 + K), (A10)

where K is as follows:
K =

√
We f /(We f + 10h1). (A11)

Finally, the resonant frequency f of the equivalent patch antenna is obtained as follows:

f = cn/(2Lr
√

ε′e) (A12)

where c is the speed of light, and n is the order of resonant frequency.
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