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Abstract: Human violence recognition is an area of great interest in the scientific community due
to its broad spectrum of applications, especially in video surveillance systems, because detecting
violence in real time can prevent criminal acts and save lives. The majority of existing proposals and
studies focus on result precision, neglecting efficiency and practical implementations. Thus, in this
work, we propose a model that is effective and efficient in recognizing human violence in real time.
The proposed model consists of three modules: the Spatial Motion Extractor (SME) module, which
extracts regions of interest from a frame; the Short Temporal Extractor (STE) module, which extracts
temporal characteristics of rapid movements; and the Global Temporal Extractor (GTE) module,
which is responsible for identifying long-lasting temporal features and fine-tuning the model. The
proposal was evaluated for its efficiency, effectiveness, and ability to operate in real time. The results
obtained on the Hockey, Movies, and RWF-2000 datasets demonstrated that this approach is highly
efficient compared to various alternatives. In addition, the VioPeru dataset was created, which
contains violent and non-violent videos captured by real video surveillance cameras in Peru, to
validate the real-time applicability of the model. When tested on this dataset, the effectiveness of our
model was superior to the best existing models.

Keywords: human violence recognition; video surveillance; real time; spatial attention; spatial motion
extractor; short temporal extractor; global temporal extractor; VioPeru

1. Introduction

In recent years, with the development of real-time video platforms and video cameras,
the availability of visual data has increased rapidly. Due to this constant growth, computing
has needed to keep pace in terms of providing users with well-organized information and,
above all, valuable services. To achieve this, video processing and analysis focuses on
identifying patterns in the data to enhance the aspects that are widely used in modern
society [1].

Video processing and analysis has been a topic of interest in machine learning and
pattern recognition for years. It focuses on many different problems and tasks, such as ac-
tion recognition [2], action localization [3], anomaly detection [4], and scene recognition [5],
among others.

One of the main difficulties when processing videos is their high spatiotemporal
nature. Each frame, in principle, can be viewed as a static image containing visual (spatial)
information. This simple fact makes the video processing task computationally expensive,
even when processing a short video clip, since it can include many images; furthermore,
because there is a dynamic component between the spatial content of consecutive frames, a
temporal dimension is created.
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The question of how to describe spatial and temporal information in order to under-
stand the content of a video continues to be a challenge, especially when trying to provide
models that can be applied to real problems.

Efficient human violence recognition is an area of great interest due to its wide range of
applications, for example, in robotics, medicine, psychology, human–computer interaction,
and video surveillance. An automatic system for detecting human actions and violence
would be able to send an alert concerning a certain incident or crime and allow measures
to be taken to mitigate it. To achieve this, it is essential to detect violent activity in real
time. Although violence recognition in video surveillance has significantly improved,
most studies aim to improve accuracy on known datasets rather than exploring real-
world scenarios.

There are many techniques for detecting violence in videos. Typical methods utilize
optical flow as the input [6–10]. In addition, two-stream, CNN variants, and 3D CNN
variants have achieved good results by combining optical flow with other inputs such as
RGB frames [11–14]. Optical flow is a motion representation for video action recognition
tasks. However, extracting optical flow incurs a significant computational cost and is
inefficient for real-time violent human action recognition tasks.

The most promising techniques are based on deep learning [13,15–19], which, rather
than optical flow, use neural networks for feature extraction, encoding, and classification.
These techniques achieve a better performance, reducing the computational cost as com-
pared to those that use optical flow. However, they are still costly in terms of parameters
and FLOPS, and so applying them in a real-world scenarios remains a challenge.

Herein, we focus on recognizing violent human actions in video surveillance that
can be applied in real-world scenarios. In this context, classification models must identify
human violence at the precise moment of its occurrence, that is, in real time.

To the best of our knowledge, there are no datasets specifically aimed at the video
surveillance domain; the current reference datasets contain a mixture of videos taken from
mobile devices, movies, and hockey, where the camera adopts characteristics and positions
oriented toward the best shot; however, in a real-world scenario, this does not happen. The
violent human actions captured by video surveillance cameras are more complex. Various
factors often act to degrade the scene, such as occlusion between the individuals, the time
of day, excessive artificial light from poles and/or vehicles, the type of camera, the camera
resolution, and the size of the violent scene as compared to the size of the frame. In fact, in
a recent review, these aspects were highlighted as challenges that need to be overcome by
the currently proposed models [20], which are mainly oriented towards effectiveness when
using known datasets.

Thus, herein, an efficient and effective model based on deep learning is proposed for
the recognition of violent human actions in real-time video surveillance, which can be used
in real-world scenarios.

1.1. Problem

Current proposals for the recognition of violent human actions solely focus on im-
proving effectiveness using general datasets, which are not oriented towards a specific
domain, and neglect applicability in real-world scenarios. Thus, models that are efficient
enough to be deployed in devices used in real-time video surveillance, with cutting-edge
effectiveness, whose results have been tested on datasets that consider the real challenges
of video surveillance are required.

In a recent study by Ullah et al. [20], it was observed that, in the field of human action
recognition, there are still challenges that are not addressed by current proposals. These
challenges include occlusion, differences in indoor and outdoor cameras, lighting variation
in different scenarios, scenes involving crowds, real-time processing, and the complexity
and efficiency of existing approaches.

In the specific context of violence detection in video surveillance, additional problems
can be identified, such as the proportion of the violent action in relation to the size of the
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video frame, the direction of focus of the violent action, and the differences between day
and night. To our knowledge, no proposal has comprehensively addressed these issues;
instead, the primary focus has been on improving the effectiveness of the models on specific
datasets. It is important to note that current datasets are generic and heterogeneous, which
underlines the need to consider the above-mentioned issues and develop datasets that are
more oriented towards specific domains.

1.2. Motivation

This study was motivated by the fact that although there are different proposals for
the recognition of violent human actions in videos, there is no definite proposal aimed at
solving the identified problems, i.e., a model that can be used in a real scenario and is both
efficient and effective.

The majority of proposals focus on effectiveness and few focus on efficiency. Thus,
there exist very accurate models, but they are complex with high computational costs and
cannot be used in real time.

In summary, the inefficiency of the proposals in real applications, their limited appli-
cability to a specific domain, and the aforementioned underlying challenges constitute the
motivation of this work.

1.3. Objectives

The general objective of this work was to propose a model based on deep learning for
recognizing violent human actions in real-time video surveillance.

Our specific objectives were as follows:

• Collect videos from real surveillance cameras that integrate characteristics of human
violence and later publish them in a dataset;

• Develop an accurate model based on attention and temporal fusion mechanisms;
• Develop a model based on temporal changes and 2D CNN that is efficient in terms of

the number of parameters and FLOPS;
• Develop a compact model for recognizing violent human actions in video surveillance

with minimal latency, i.e., close to real time.

1.4. Contributions

The contributions of this study are as follows:

• A model for recognizing violent human actions that can be used in real-world scenarios
in real time;

• An accurate and effective model for recognizing violent human actions that is efficient
in terms of the number of parameters and FLOPS, the results of which contribute to
the state of the art;

• A published dataset oriented toward the domain of video surveillance.

1.5. Work Organization

Section 2 describes the techniques and results of the best proposals related to the
objectives of this study. Section 3 first describes the work related to our proposal and
subsequently details and explains the operation of the proposed architecture and its respec-
tive modules. Section 4 presents the results according to our objectives. Finally, Section 6
presents the conclusions of this work.

2. Related Work

Human action recognition is an area of active research, and therein, there exist many
approaches; in this section, we present some of them, starting with more straightforward
approaches and ending with the most novel contributions. First, the work related to the
proposed modules is explored, and then, 2D CNN-based models related to the backbone of
our proposal are addressed. Finally, a review of the cutting-edge techniques for recognizing
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violent human actions in video surveillance, considering the Movies [21], Hockey [21], and
RWF-2000 dataset [22], is presented.

2.1. Work Related to the Proposal
2.1.1. Extraction of Regions of Interest

Video surveillance cameras are mostly fixed-position cameras, and violent scenes
do not generally occupy the entire area (HxW) of the video. On the contrary, the scenes
usually occupy a small portion of the video; in this way, the remaining area becomes the
background of the violent scene, whose spatiotemporal characteristics do not contribute
to recognition efficiency, but rather act to reduce it. On the other hand, extracting these
redundant features makes the models less efficient. Therefore, extracting the regions of
interest from each frame is essential for effectiveness and efficiency.

Extracting regions of interest has been addressed using attention mechanisms.
Ulutan et al. [23] proposed to extract regions of moving actors; for this, they used ob-
ject detectors with an I3D architecture as a backbone. They also used the amplification and
attenuation of the actors. Amplification and attenuation are essential in the extraction of
regions of interest. Our proposal carries out the same process without detectors but with
morphological deformation processes in each frame. This improves the model’s efficiency,
as it no longer uses detectors based on pretrained backbones.

When addressing the inefficiency of optical flow in identifying movement limits,
Zhang et al. [24] presented a proposal based on the Euclidean distance of two consecutive
frames before using a convolution backbone. Their proposal is efficient and significantly
reduces the number of FLOPs in the process; however, the use of the backbone is still
heavy in terms of efficiency. We took this proposal as a reference, using the Euclidean
distance of two consecutive frames but without the convolution backbone. Instead, we use
morphological deformations to represent the regions of interest.

2.1.2. Short-Duration Spatiotemporal Feature Extraction

Proposals based on 3D CNN networks, such as those proposed by Tran et al. [13]
and Carreira et al. [25], can simultaneously extract spatiotemporal features. However,
they incur a high computational cost. To address this problem, several proposals replace
3D CNN networks with 2D CNN networks without compromising effectiveness and
improving efficiency.

Lee et al. [26] proposed to extract spatiotemporal features from motion filters in a 2D
CNN network, and Xie et al. [27] proposed to mix modules based on 3D CNN and 2D
CNN networks. Both studies achieved adequate effectiveness results using human action
recognition datasets, but without using violence-oriented datasets. These proposals are
considered in our work, as using a 2D CNN network generates better efficiency conditions,
especially if the objective is detection in real time.

In this way, Lin et al. [28] proposed to use 2D CNN networks but with a substantial
improvement, i.e., a temporal change module, in which consecutive frames replace the
dimension of the channels of the frames and carry out the extraction of spatiotemporal
features with several convolutions. Our proposal considers replacing channel information
with temporal information from consecutive frames, but we only use a single 2D CNN net-
work (backbone). Finally, in this case, it is possible to extract short-duration spatiotemporal
characteristics from three consecutive frames, significantly reducing the number of FLOPs
as compared to Lin et al.’s proposal [28].

2.1.3. Global Spatiotemporal Feature Extraction

Extracting spatiotemporal features from three consecutive frames can be applied to
recognize human actions, as was proposed by Huillcen et al. [29]. This method produces
better efficiency results but still fails to surpass the state-of-the-art proposals in terms of
effectiveness. Our proposal adds a module to extract temporal characteristics from a larger
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set of frames, for example, 30. In this way, our model searches for movement characteristics
over more frames (not just three) without compromising efficiency.

The proposal of Zhang et al. [24] has a feature reduction module in the time dimension
using max-pooling layers. This is merged with its features and can enable the recognition
of human actions. Our proposal takes this module, but it only uses two average pooling
layers, which act to ensure the compactness of the model, merge it with the input, and
recognize violent actions through fully connected layers.

2.2. Reference Backbones

As described in the previous section, we considered using a pretrained 2D CNN
backbone. The different alternatives were compared in order to choose the backbone used
in our proposal.

In the literature review, different proposals and techniques stand out. We consid-
ered efficient and effective models. These included ResNet50 [30], InceptionV3 [31],
DenseNet121 [32], SqueezeNet [33], MobileNet V2 [34], MobileNet V3 [35], EfficientNet
B0 [36], MnasNet [37], GhostNet V2 [38], and vision transformers [39].

The comparative analysis was performed based on the effectiveness results using the
ImageNet dataset [40]. This original dataset has 1,280,000 training images and 50,000 vali-
dation images with 1000 classes.

Table 1 shows a comparative analysis of these models. The possible candidates are
marked in bold.

Table 1. Summary of effectiveness and efficiency results of backbone models tested on the ImageNet
dataset [40].

Model Accuracy (%) Number of Parameters (M) FLOPS (G)

Resnet50 76.0 25.6 3.8
InceptionV3 78.8 23.2 5.0
DenseNet121 74.0 8.0 2.8
Squeezenet 57.5 1.25 0.83
GhostNetV2 75.3 12.3 0.39

EffcientNetB0 78.0 5.3 1.8
MobileNetV2 72.6 3.4 0.3

MobileNetV3 L 76.6 7.5 0.36
MasNet 75.2 3.9 0.315

Vision Transformers (VIT-Huge) 88.55 632.0 -

Vision transformers exhibit good performance in sequence-based problems [41], espe-
cially in natural language processing tasks, and image detection and recognition tasks [39].
Similarly, they have been used in applications for recognizing violent actions [42]. However,
to our knowledge, they have yet to be evaluated on the RWF-2000 reference dataset [22],
nor are there any results on their efficiency. We rejected this model for this reason and
because, in general, proposals based on transformers aim to improve the effectiveness of
their results but at a higher computational cost than proposals based on 2D CNNs.

2.3. Benchmark
2.3.1. Benchmark on Classic Datasets

The methods for recognizing violent human actions are divided into two groups:
handcraft methods and deep learning methods. Handcraft methods do not achieve good
results, especially in terms of efficiency. The most representative works in this group
include that of Gao et al. [6], with Oriented Violence Flows (OViF); Deniz et al. [7], with
Radon transform; Bilinski et al. [8], with Fisher vectors; Zhang et al. [9], with the Weber
Local Descriptor (MoI-WLD); and Deb et al. [10], with Outlier-Resistant VLAD (OR-VLAD).

Deep learning methods use deep neural networks as feature extractors. The most
important include Dong et al. [15], with multiple streams based on the stream model [12];



Sensors 2024, 24, 668 6 of 29

Zhou et al. [16], with Time Slice Networks (TSN) and FightNet; and Serrano et al. [17],
with Hough forests. These proposals still use optical flow combined with deep learning;
therefore, they still have efficiency problems and dependence on handcraft methods.

These problems are addressed by proposals such as that of Sudhakaran et al. [18],
with 2D ConvNets and ConvLSTM, and Hanson et al. [19], with the ConvLSTM (Bi-
ConvLSTM) architecture.

Recently, 3D CNN-based approaches have improved the effectiveness of previous
proposals but at a high computational cost, which is typical of 3D CNN models, for example,
the proposals of Tran et al. [13] and Li et al. [43].

An improvement to the previous approach in terms of efficiency was presented by
Huillcen et al. [44]. It uses a DenseNet architecture but with different configurations of
dense layers and dense blocks to ensure the compactness of the model. Later, Huillcen
et al. [29] presented a new proposal based on extracting spatiotemporal features using a 2D
CNN and extracting regions of interest to ensure model compactness.

Table 2 summarizes the results of all these proposals in classic datasets: the Hockey
Fights dataset [21], the Movies dataset [21], and the Violent Flows dataset [45].

Table 2. Summary of the methods for recognizing violent human actions in video surveillance using
classic datasets.

Method
Hockey Fight

Dataset
Movies
Dataset

Violent Flow
Dataset

ViF + OViF [6] 87.5 ± 1.7% - 88 ± 2.45%
Radon Transform [7] 90.1 ± 0% 98.9 ± 0.22% -

STIFV [8] 93.4% 99% 96.4%
MoIWLD [9] 96.8 ± 1.04% - 93.19 ± 0.12%

OR-VLAD [10] 98.2 ± 0.76% 100 ± 0% 93.09 ± 1.14%
Three streams + LSTM [15] 93.9% - -

FightNet [16] 97.0% 100% -
Hough Forests + CNN [7] 94.6 ± 0.6% 99 ± 0.5% -

ConvLSTM [18] 97.1 ± 0.55% 100 ± 0% 94.57 ± 2.34%
Bi-ConvLSTM [19] 98.1 ± 0.58% 100 ± 0% 93.87 ± 2.58%

3D CNN end to end [43] 98.3 ± 0.81% 100 ± 0% 97.17 ± 0.95%
3D-DenseNet (2,6,12,8) [44] 97.0% 100% 90%

SA+TA [29] 97.2% 100% -

2.3.2. Benchmark on RWF-2000 Dataset

The methods described in the previous subsection used analyses on datasets that are
not specific to video surveillance. In addition, no analysis of efficiency was performed.
Thus, these approaches are oriented towards effectiveness but not efficiency.

An RWF-2000 dataset was recently proposed by M. Cheng et al. [22], which consists of
2000 videos extracted from YouTube. These videos are of different resolutions, sources, and
camera positions, which makes it a reference dataset and a challenge for methods tested
using classic datasets. Below, there is an analysis of the recent proposals tested on this
dataset, with effectiveness and efficiency results.

According to a recent study by Mumtaz et al. [46], the main studies for recognizing
violent human actions contain little information about efficiency results, i.e., information
about the complexity and number of parameters, confirming that their objective was to
find good results in terms of accuracy while increasing the complexity of the model. It was
shown that proposals based on optical flow, 3D CNN, LSTM, two-stream networks, and
3D skeletons have high computational costs and cannot be used in real-time scenarios.

However, there are studies whose objectives were to find models with good effective-
ness and efficiency results (see Table 3 and Figure 1). These include Carreira et al. [25],
with the I3D’s feature-based mechanism, and Cheng et al. [22], where the authors achieved
an accuracy of 87.25% with only 0.27 million parameters; however, in the complexity
calculation, they did not consider preprocessing with optical flow.
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Table 3. Summary of the methods for recognizing violent human actions in video surveillance using
the RWF-2000 dataset.

Model Accuracy (%) Parameters (M) FLOPs (G)

C3D (Tran et al.) [13] 82.75 94.8 40.04
I3D + RGB (Carreira et al.) [25] 85.57 12.3 55.7

I3D + Two Stream (Carreira et al.) [25] 81.75 24.6 -
I3D + Optical Flow (Carreira et al.) [25] 75.5 12.3 -

ConvLSTM (Sudhakaran et al.) [18] 77.0 94.8 14.4
Flow Gated Network (Cheng et al.) [22] 87.25 0.27 -

SA + TA (Huillcen et al.) [29] 87.75 5.29 4.17
SepConvLSTM (Islam et al.) [47] 89.75 0.33 1.93

Figure 1. Graphic Comparison of of the methods for recognizing violent human actions in video
surveillance using the RWF-2000 dataset.

Sudhakaran et al. [18] applied 2D ConvNets to extract spatial feature maps, followed
by ConvLSTM to encode the spatiotemporal information, producing an efficiency of 77%,
but at a high cost (94.8 million parameters). Something similar happened in Tran et al. [13],
with their proposal based on 3D CNN.

There are techniques based on 3D skeletons, the most representative of which was
presented by Su et al. [48], who achieved an efficiency of 89.3%; however, using the extrac-
tion of key points in the recognition of skeletons has several associated problems. These
include a high computational cost and an unsuitability for the domain in video surveillance,
because in a real-world scenario, there is no camera focus towards the violent scene.

Outstanding proposals also emerged based on a spatial and temporal feature extraction
sequence. This reduced the complexity of 3D CNN networks by taking advantage of the
efficiencies of 2D CNNs. Huillcen et al. [29] improved their proposal in terms of efficiency
but without surpassing the effectiveness of other proposals. For this, their model was based
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on replacing the 3D CNN approach with a 2D CNN and using preprocessing to identify
regions of interest.

To the best of our knowledge, the best proposal in terms of efficiency and effectiveness
on the RWF-2000 dataset [22] was presented by Islam et al. [47]. It is based on a separable
convolutional network (SepConvLSTM) and MobileNet and reached an efficiency of 89.75%
with 0.333 million parameters and 1.93 GFLOPs.

However, the efficiency results are questionable since MobileNet V2 [34] alone has
3.4 million parameters.

Analyzing the architecture presented by Islam et al. [47] (See Figure 2), we found
that it is a two-stream CNN-LSTM model. As can be seen, each flow has a MobileNet V2
backbone [34], and according to Table 1, each MobileNet V2 backbone [34] has 3.4 million
parameters. Islam et al. [47] used two MobileNet v2 backbones [34] and then fused them
with a SepConvLSTM layer. Thus, it is a questionable claim that their proposal only has
0.333 million parameters. In reality, it should have more than 3.4 million parameters as
a result of using two MobileNet V2 backbones [34] and adding the parameters of the
SepConvLSTM layers. The same applies for the FLOPs analysis.

Figure 2. The architecture of the proposal presented by Islam et al. [47].

3. Proposal

According to the review of the state of the art and in response to the challenges of
proposing an efficient, effective model that can be used in real time, we propose an architec-
ture composed of three modules: a Spatial Motion Extractor (SME) module, which functions
to extract regions of interest from a frame; a Short Temporal Extractor (STE) module, whose
function is to extract temporal characteristics of short-duration fast movements; and a
Global Temporal Extractor (GTE) module, which identifies long-term temporal features
and fine-tunes the model for better accuracy.

3.1. Proposal Architecture

The general objective of our proposal has an inverse nature: to be efficient and, at the
same time, effective at recognizing human actions in real time. When reviewing the state
of the art, it can be seen that high-efficiency proposals often have low efficiency, and vice
versa. In this way, the proposal contains modules that improve effectiveness using efficient
methods. Thus, a hybrid architecture is proposed, which is composed of three techniques:
spatial motion extraction, a 2D CNN with frame averaging, and temporal feature extractors.
Figure 3 shows the proposed architecture.
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Figure 3. Summary of the proposed architecture.

The Spatial Motion Extractor (EME) module takes the 30 resized video frames as input
and extracts a region of interest from each frame. This region corresponds to the violent
scene. The extraction process first uses the Euclidean distance of two consecutive frames
to extract the movement limits. They are dilated with morphological deformations, and
finally, the dot product is produced between the result and the second frame, obtaining the
frame with the violent scene highlighted on a black background. Unlike other proposals
that use neural networks, transfer learning, or a sequence of convolutions, ours behaves as
an attention mechanism that only uses image processing operations. This module is crucial
to the model’s efficiency since the region of interest is extracted at a cost of 0 parameters.

The Short Temporal Extractor (STE) module takes the frame with the violent scene
highlighted and extracts fast-moving spatiotemporal features, specifically from three con-
secutive frames. This process uses the MobileNet V2 backbone as a spatial feature extractor.
To extract temporal features, a three-channel frame is assembled, where each channel is
the average of the RGB channels of the three consecutive frames. It is possible to extract
spatiotemporal characteristics with a 2D CNN backbone. This process is vital to the model’s
efficiency since it reduces the input frames from 30 to 10, significantly reducing the FLOPs
when deployed in a real-world scenario. In addition, it takes advantage of the efficiency of
the 2D CNN backbone, which is superior to classic alternatives based on 3D CNN, LSTM,
two stream, and others that increase the complexity of their proposals.

The Global Temporal Extractor (GTE) module takes the 10 spatiotemporal features
from the previous module and fine-tunes the model. The process uses AVG pooling and
fully connected layers to extract motion features from the 10 frames, i.e., from long-duration
movements. In this manner, it is possible to increase the model’s effectiveness without
compromising too much on efficiency. This module is crucial and improves the effectiveness
of the model without compromising too much on efficiency.

The input is the sequence of video frames Ft, Ft+1, Ft+2, . . . , Ft+T , for 1 ≤ t ≤ T , and
T = 30, which are resized to a resolution of 224 × 224 pixels. The details of each module
are detailed in the subsequent subsections.

3.2. Spatial Motion Extractor (SME) Module

This module is based on the natural process of a human being when observing a scene.
When the scene is static, sensory attention covers the entire scene; however, when some
movement occurs, sensory attention is oriented toward the specific movement area, making
visual perception and the possible identification of the movement more successful. We
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took this natural process into account when designing the frame-by-frame preprocessing of
the videos in order to extract one or several regions of interest. These are based around
movement since all violent human action contains this feature, especially rapid movement.

Extracting a region of the frame where movement occurs increases recognition effi-
ciency since it forces the model to only extract characteristics from the movement, leaving
aside areas that do not contribute to or reduce the effectiveness. This module is essential to
our proposal. The details are shown in Figure 4.

Figure 4. Spatial Motion Extractor (EME) module.

The Spatial Motion Extractor (SME) module takes two consecutive RGB frames
Ft, Ft+1 ∈ R3×W×H for 1 ≤ t ≤ T and calculates the Euclidean distance D for each pixel
and each channel according to:

dt =

√√√√ 3

∑
i=1

(Fi
t+1 − Fi

t )
2 (1)

where T represents the number of frames to be processed, i represents the RGB channels,
F is a specific frame, and dt ∈ R3×W×H . When a pixel remains at the same value and
position, the difference is zero. Therefore, the pixels without movement are black, causing
the resulting frame to extract the background of the initial frame, but if the pixel in the
same position changes value, there is some movement, and the difference will be one
grayscale pixel. Figure 5 shows an example of the administrative distance between two
consecutive frames:

Figure 5. Euclidean distance between two consecutive frames Ft, Ft+1.

It is observed that dt represents the grayscale motion limits of the frames Ft, Ft+1 with
the respective removal of the background. However, dt does not yet represent a region of
interest. Morphological deformations are applied so that the limits of movement act as
perimeters of the region of interest, in such a way as to convert limits into regions. For this,
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dilation is used with a 3 × 3 kernel and 12 iterations. Finally, Figure 6 shows the result bt of
the previous example.

Figure 6. Morphological deformations in dt.

With bt, the region is identified, but the actual pixels of the movement are not; thus,
with a dot product procedure between the frame Ft+1 and bt, we obtain Mt ∈ R3×W×H

(see Figure 7), which represents the region of interest where movement occurs, with the
elimination of the background.

Figure 7. Mt: spatial extraction of motion.

3.3. Short Temporal Extractor (STE) Module

This module has the function of improving effectiveness and efficiency in recognizing
violent human actions. To do this, we consider that violent actions, such as punching, kick-
ing, throwing, and others, are rapid movements, which can be reflected in the variation of
pixels in consecutive frames. Thus, it is proposed to extract short-duration spatiotemporal
characteristics, specifically from three consecutive frames.

Extracting spatiotemporal features is the fundamental task of recognizing human
actions in general. Many techniques have been proposed for this task in recent years. As
discussed in Section 2, 3D CNN-based architectures are the most appropriate to extract these
spatiotemporal features. However, given their high computational complexity as a result of
the number of parameters and FLOPS, they are unfeasible for real-time video surveillance.
Although there are many other techniques to reduce the associated computational cost, to
the best of our knowledge, there is currently no model for recognizing human actions in a
real-world scenario.

According to the above, the Short Temporal Extractor (STE) module takes three con-
secutive RGB frames from the Spatial Motion Extractor (SME) module Mt, Mt+1, and Mt+2,
transforms them into a single frame Pt,t+1,t+2, and finally extracts spatiotemporal features
through a 2D CNN network. This constitutes the backbone of this module. We selected the
MobileNet V2 network [34] for this. Figure 8 shows the details of this module.

In the above figure, pt represents the average of the three channels c of Mt, according to:

pt =
3

∑
c=1

(Mc
t ) (2)

In this way, when pt+1 and pt+2 are obtained, they are considered as channels and
are assembled into a simple frame Pt,t+1,t+2, as if it were an image. Moreover, the color
information of the boxes Mt, Mt+1, and Mt+2 is lost, which does not contribute to the recog-
nition of violent human actions, but the extraction of short-term temporal characteristics
is possible.
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Figure 8. Short Temporary Extractor (STE) module.

On the other hand, the Short Temporal Extractor (STE) module improves the efficiency
of the model since, as can be seen, the number of processed frames T is reduced to a third:
T
3 , substantially reducing the number of FLOPs during processing in the 2D CNN network.

The frame Pt,t+1,t+2 containing temporal information enters a 2D CNN network, as
if it were an image, to extract spatiotemporal features. The 2D CNN network chosen was
MobileNet V2 [34] because it is the most efficient and produces the best results. The output
is a feature map B ∈ R T

3 ×C×W×H , where C is the number of channels and H, W is the size
of a feature matrix.

3.4. Global Temporal Extractor (GTE)

The Short Temporal Extractor (STE) module can capture spatiotemporal features B
and, without any additional module, recognize violent human actions, as proposed by
Huillcen et al. [29]. However, it does not take into account temporal characteristics between
all frames T

3 . In this way, it is possible to improve efficiency with some modifications that
do not compromise effectiveness too much.

The feature map B contains information from the frames T
3 and each channel frame C.

Considering this, by processing the relationship between the channels of each frame, global
spatiotemporal characteristics are obtained that improve the effectiveness of the model,
as in the proposal of Zhang et al. [24]. Here, a reduction process is performed, where we
reduce the dimensions of B spatially and temporally, and then merge the features with a
final fully connected layer to obtain the outputs “violence” and “no violence”. Figure 9
shows the Global Temporal Extractor (ETG) module in a general way.

Taking the feature map B as input, we perform a spatial compression or reduction
process to obtain S in the form:

Sc =
1

H × W

H

∑
i=1

W

∑
j=1

Bc(i, j) (3)

where H × W is the size of a channel, and Sc represents the average of the elements of the
channel c, corresponding to applying a Global Average Pooling layer. The result S is a set
of vectors of the form Sc = [bc

1, bc
2, . . . , bc

T
3
].
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Figure 9. Global Temporal Extractor (GTE) module.

Once again, a temporal compression process is carried out on the set of vectors S for
each channel to obtain Q in the form:

q =
1
C

C

∑
c=1

Sc (4)

where q is a vector q = [q1, q2, . . . , q T
3
], which connects two fully connected layers followed

by a sigmoid function and obtains the temporal characteristics E, which, in turn, is a vector
[e1, e2, . . . , e T

3
].

The next step is to recalibrate the weights (excitation) and obtain the characteristics
resulting from the channel relationships. To do this, a point-to-point multiplication is
performed between E and S. The result is added over time, and a new vector is obtained,
representing the final temporal characteristics. Therefore, it is connected to the fully
connected layer. The final output is the recognition of “violence” and “non-violence”.

4. Results

We show the results of the proposal according to its efficiency, effectiveness, and ability
in real time. But first, the dataset and the model configuration are described.

4.1. Datasets

According to the Section 2, there are several freely distributed datasets; however, only
some were taken as a reference to evaluate the performance of the different proposals. For
our tests, we used the classic datasets Hockey Fights [21], Movies [21], and the reference
dataset RWF-2000 [22].

As a contribution, we present the VioPeru dataset, created with real sources from
Peruvian video surveillance cameras.

4.1.1. Hockey Fights Dataset

The Hockey Fights [21] dataset contains 1000 clips extracted from hockey games.
Figure 10 shows an example of a clip classified as Fight (Fi).
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Figure 10. Frame sequence of a video from the Hockey Fights dataset.

This dataset presents sequences of hockey fights. These are usually two-person fights,
and the individuals are almost always wearing the same sports clothing. The violent
action occupies almost the entire frame, and the background is very similar in all videos.
These characteristics differ from a violent scene recorded by a video surveillance camera.
Therefore, there are better candidates than this dataset to train a human action recognition
model in video surveillance. However, we used it as a reference to compare the effectiveness
results with other models.

4.1.2. Movies Dataset

The Movies [21] dataset contains 200 clips extracted from action movies. Figure 11
shows an example of a clip classified as Fight (Fi).

The Movies dataset is a set of videos with characteristics similar to the Hockey dataset
as they respond to a prepared and planned scene. However, it is more heterogeneous in
terms of showing different scenes. Although the majority comprise boxing, there are many
biases and it cannot be considered an adequate dataset for use on a violence recognition
model in real video surveillance cameras.

4.1.3. RWF-2000 Dataset

The RWF-2000 [22] dataset is the most significant violence detection dataset. It contains
2000 videos extracted from YouTube, each lasting 5 s. Figure 12 shows clips of videos labeled
as violent.

This dataset has a greater diversity of videos, as it presents violent scenes from
video surveillance cameras. However, the videos have previously been prepared, cut,
corrected, and edited, as YouTube is the collection source. It also presents videos taken from
smartphones and indoor scenes and contains almost no night scenes. These characteristics
are not necessarily representative of video surveillance scenes; however, it can be used as a
reference for comparing results with the state of the art.
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Figure 11. Frame sequence of a video from the Movies dataset.

Figure 12. Examples of violent clips from the RWF-2000 dataset.

4.1.4. VioPeru Dataset

The various biases contained within the Hockey Fights [21], Movies [21], and RWF-
2000 [22] datasets were extensively discussed. We concluded that they are not suitable for
training a model oriented toward real-world scenarios.

Accordingly, as part of this research, we produced a new dataset called VioPeru,
which consists of 280 videos collected from real video surveillance camera records. The
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videos were collected from the citizen security offices of the municipalities of Talavera, San
Jeronimo, and Andahuaylas, in the Apurimac region, Peru.

Vioperu also includes 87 non-violent videos for false positive validation. Validation of
false positives is crucial for better understanding our proposal’s limitations, especially to
guarantee minimal human intervention in a real video surveillance system.

This compilation was compiled thanks to an agreements between the Jose Marea
Arguedas National University and the three municipalities of the Apurimac region. Our
team formally requested the videos; however, we did not participate in choosing the videos,
much less in labeling the violent and non-violent videos. Finally, our team obtained the
authorization documents for the use and publication of the videos for research purposes,
which guarantee the dataset’s legitimacy and covers the ethical principles.

To guarantee freedom from bias, the original videos were taken in their entirety,
respecting the number, resolution, time of day, and original sources. The selection and
identification of violent videos was performed by the personnel of the citizen security
offices (see Figure 13). Our editing work was limited to cutting the videos into 5 s clips.

Figure 13. Examples of violent frames from the VioPeru dataset.

Analyzing the videos provided made it possible to identify the following relevant
characteristics:

• Violent scenes involve two people, several people, or crowds;
• Cameras have different resolutions;
• Violent scenes can be a very different size to the size of the frame; that is, the violent

action can be so large or so small that it can go unnoticed by the human eye;
• Violent human actions occur primarily at night when lighting can negatively

influence detection;
• Violence in video surveillance is not only made up of fights; looting, vandalism, violent

protests, attacks on property, and confrontations between groups of people also occur;
• Occlusion is typical in video surveillance; that is, the people involved, trees, and

vehicles, among others, can obscure violent scenes.
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These characteristics varied and were determined to not cause biases in the dataset. Re-
cently, these characteristics were identified as challenges [20] that have yet to be addressed
in the field of the recognition of violent human action.

The VioPerú dataset served as the basis for the generation of our model, which was
produced to recognize violent human actions for real-world scenarios, i.e., a model oriented
toward video surveillance.

The dataset is available at https://github.com/hhuillcen/VioPeru (accessed on 1
January 2024).

4.2. Model Configuration

We used Python version 3.8 and PyTorch version 1.7.1 library as a base. The hardware
was a workstation with NVidia GeForce RTX 3080 Ti GPU, 32 GB RAM, and a 32-core Intel
Core i9 processor.

The datasets were divided into training and test subsets of 80% and 20%, respectively.
The following configuration was used in the training phase:

• Learning rate: 10−3 for all datasets;
• Batch size: 2;
• Number of epochs: 100;
• Optimizer: Adam, with Epsilon: 10−9; weight decay: 10−2; and Cross Entropy to

calculate the loss function;
• One-Cycle Learning Rate Scheduler, with min-lr: 10−8; patience: 2; and factor: 0.5.

4.3. Evaluation of Results
4.3.1. Evaluation of Results on Classical Datasets

The results were extracted from the accuracy metric in the classic datasets. Table 4
shows the results. A comparison with the most significant proposals is also shown.

Table 4. Comparison of results obtained on classical dataset.

Method
Hockey Fight

Dataset
Movies
Dataset

Violent Flow
Dataset

ViF + OViF [6] 87.5 ± 1.7% - 88 ± 2.45%
Radon Transform [7] 90.1 ± 0% 98.9 ± 0.22% -

STIFV [8] 93.4% 99% 96.4%
MoIWLD [9] 96.8 ± 1.04% - 93.19 ± 0.12%

OR-VLAD [10] 98.2 ± 0.76% 100 ± 0% 93.09 ± 1.14%
Three streams + LSTM [15] 93.9% - -

FightNet [16] 97.0% 100% -
Hough Forests + CNN [7] 94.6 ± 0.6% 99 ± 0.5% -

ConvLSTM [18] 97.1 ± 0.55% 100 ± 0% 94.57 ± 2.34%
Bi-ConvLSTM [19] 98.1 ± 0.58% 100 ± 0% 93.87 ± 2.58%

3D CNN end to end [43] 98.3 ± 0.81% 100 ± 0% 97.17 ± 0.95%
3D-DenseNet (2,6,12,8) [44] 97.0% 100% 90%

SA + TA [29] 97.2% 100% -
Proposal 98.2% 100% -

The results show a comparison to other state-of-the-art proposals in terms of the
effectiveness of the models. We observed cutting-edge results and contributions to the state
of the art when performing the analysis for the Hockey dataset. Our proposal achieved
98.2% and was only surpassed by the 3D CNN end-to-end model [43] with 98.3%, with a
0.1% difference. However, it must be noted that this proposal is based on a 3D CNN, and
given its high number of d and FLOPS parameters, it is not feasible for real-time use.

For the case of the Movies dataset, the results of our proposal reached the maximum
accuracy, like the other proposals, i.e., it produced state-of-the-art results. It is necessary to

https://github.com/hhuillcen/VioPeru
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indicate that our dataset has simple characteristics compared to the other datasets, such
as RWF-2000.

4.3.2. Evaluation of Results on the RWF-2000 Dataset

Unlike classical datasets, RWF-2000 [22] is the reference dataset for proposals aimed at
effectiveness and efficiency. As a result, there are proposals using current techniques with
better general results; thus, this is a good criterion for comparison.

As in the previous case, the accuracy metric was used to analyze the effectiveness of
the models. For the efficiency results, the FLOPS and the number of parameters calculated
by each model were used, and the results were compared with the most representative
proposals from the state of the art.

Table 5 and Figure 14 show the results and a comparison in terms of effectiveness
and efficiency.

Table 5. Comparison of results obtained in the RWF-2000 dataset, taking efficiency and effectiveness
as a reference.

Model Accuracy (%) Parameters (M) FLOPs (G)

C3D (Tran et al.) [13] 82.75 94.8 40.04
I3D + RGB (Carreira et al.) [25] 85.57 12.3 55.7

I3D + Two Stream (Carreira et al.) [25] 81.75 24.6 -
I3D + Optical Flow (Carreira et al.) [25] 75.5 12.3 -

ConvLSTM (Sudhakaran et al.) [18] 77.0 94.8 14.4
Flow Gated Network (Cheng et al.) [22] 87.25 0.27 -

SA+TA (Huillcen et al.) [29] 87.75 5.29 4.17
SepConvLSTM (Islam et al.) [47] 89.75 0.33 1.93

Proposal 88.5 3.51 3.15

It was observed that our proposal had the lowest amount of FLOPS, with a value of
3.15, after SepConvLSTM [47], with a value of 1.93. The other proposals had much higher
values in this regard. This result suggests that, our model, when recognizing violent human
actions, has a very short latency, which would allow for its use in devices with limited
computational power. That is, the proposal can be used in real video surveillance scenarios.
In addition, this result contributes to the state of the art regarding the efficiency of models
for recognizing violent human actions.

As for the effectiveness results, in terms of accuracy, it was also observed that our
proposal had a value of 88.5% and was only below SepConvLSTM [47] with a value of
89.75%. The other proposals had close results but were inferior to our proposal. This
result demonstrates that our proposal has cutting-edge effectiveness, contributes to the
state of the art, and can be used in real-world situations for violence identification in video
surveillance cameras.

Finally, for the efficiency results in relation to the number of parameters, our proposal
achieved better results than SA + TA [29], with a value of 5.29 million parameters, and
both were below SepConvLSTM [47], with a value of 0.33 million parameters. However,
when analyzing the complexity of the modules of our proposal, it was noted that the Short
Temporal Extractor (STE) module uses the 2D CNN network MobileNetV2 [34], which
has 3.4 million parameters; the rest of the modules only occupy 0.11 million parameters,
i.e., the majority of the complexity of our proposal is the result of using the MobileNet V2
network [34].

The same analysis was performed for the SepConvLSTM proposal [47]. It was ob-
served that it is composed of a two-stream architecture: a first stream with the background
suppression technique, followed by a 2D CNN MobileNet V2 network [34], and then with
separate convolutional LSTM layers; a second stream with frame difference, followed by
another 2D CNN MobileNet V2 network [34], and then with separate convolutional LSTM
layers, before the flows are finally joined with the final classifier. It is known that the
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number of parameters of MobileNet V2 is 3.4 million; when using this network for each
stream, there are only 6.8 million parameters in the 2D CNN networks. In this way, it is
not easy to understand how the entire model presented by SepConvLSTM [47] only has
0.33 million parameters.

Figure 14. Graphic comparison of results obtained in the RWF-2000 dataset, taking efficiency and
effectiveness as a reference.

According to our analysis, for a practical and real comparison of the efficiency results,
we did not use the SepConvLSTM proposal [47] or the flow-gated network [22] because
they use preprocessing based on optical flow, increasing the computational cost of the
models to levels that are unfeasible for real-time applications. Therefore, after discarding
these two proposals, our proposal was the best in terms of efficiency, with 3.51 million
parameters and 3.15 GFlOPs, and it remained the second best in terms of effectiveness,
reaching an accuracy of 88.5%.

4.3.3. Results Evaluation on the VioPeru Dataset

Since the SepConvLSTM proposal [47] remained superior to our proposal in terms of
effectiveness, i.e., accuracy, it was a good candidate for testing with the dataset presented in
this research: VioPeru. In this way, the accuracy of both proposals was calculated.

The VioPeru dataset was divided into samples consisting of 80% for training and
20% for testing. The configuration of our model was the same as detailed in the model
configuration subsection.

In the case of SepConvLSTM [47], the same characteristics described in the scien-
tific article were considered. Only 32 frames were taken from each video using uniform
sampling, and frames were resized to 320 × 320. Before use with the model, they were
cropped to random sizes and resized to 224 × 224. Data augmentation techniques, such as
random brightness, random cropping, Gaussian blur, blurs, and horizontal modifications,
were used. The training was performed for approximately 150 epochs. The CNNs were
initialized using weights pretrained on the ImageNet dataset, and Xavier initialization was
used for the SepConvLSTM kernel. For the optimization model, the AMSGrad variant of
the Adam optimizer was used. Training began with a learning rate of 0.0004. After every
five epochs, the learning rate was reduced by half until it reached 0.00005. Table 6 shows
the results of both proposals.
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Table 6. Comparison of results on the VioPeru dataset, taking efficacy as a reference.

Model Accuracy (%)

SepConvLSTM (Islam et al.) [47] 73.21
Proposal 89.29

It was observed that, in the case of the VioPeru dataset, our proposal was far superior
to SepConvLSTMN [47] in terms of effectiveness, reaching an accuracy of 89.29% compared
to 73.21% for SepConvLSTMN.

This result should not be analyzed in numbers alone, although our proposal was
superior. However, it is necessary to clarify that the VioPeru dataset consists of scenes
of real violence and non-violence extracted from real video surveillance cameras in the
province of Andahuaylas in Peru. Therefore, it was used as a reference dataset to test
our proposal from the point of view of its validation in a real-time scenario, which was
ultimately the objective of our research.

This result also demonstrates that our model was not aimed at producing results
using datasets with mixed and varied videos, but rather at becoming a general-use model
oriented towards the domain of violence detection in video surveillance cameras in real
time, i.e., it was not only efficient, but it was also effective in real-world scenarios and on
state-of-the-art datasets.

4.3.4. Evaluation of Results in Real Time

To the best of our knowledge, there is no formal method to measure whether a
model can be used in real time. However, based on similar work [29,44], we decided that
evaluating results in real time should be performed by measuring the processing time for
every 30 frames, assuming that video surveillance videos have this default setting, i.e., a
speed of 30 frames per second.

For this analysis, a prototype of a local video surveillance system was utilized (see the
next sub-subsection) to carry out operational tests in real time.

The processing time of our proposal was measured for every 30 frames. For this, a
laptop with a 2.7 GHz 13-core Intel Core i7 processor, 16 GB RAM, and an NVIDIA Quadro
P620 graphics card with 2 GB GPU memory was used.

The result was 0.0720 s on average, which is the latency time of the model when
processing 30 frames. In other words, our proposal only needs 0.0720 s to process a 1 s
video. If we consider that real time has a latency of 0 s, the result is very close.

This evaluation should not only be interpreted in numbers but also in a practical-use
sense: our model can be used in any video surveillance system. By simply connecting the
video inputs of the cameras to one or more devices with our model deployed, the model
will recognize violent scenes in real time, alerting staff and following the corresponding
security protocol.

These tests confirmed that the proposal is lightweight and works on devices with low
computational power, with cutting-edge results in terms of effectively detecting violence in
real time.

4.3.5. Implementation of a Local Video Surveillance System Prototype

The introduction and identified problems sections note that the current proposals
are not oriented towards real video surveillance scenarios. Our work addresses this
challenge. Despite our proposal not being deployed in a real video surveillance system,
we implemented it on a local video surveillance system prototype for devices with low
computational power. The idea was to test our proposal in simulated situations of violence
and non-violence and observe its behavior. In addition, we wanted to evaluate the latency
of recognition in a real-world scenario of violence and non-violence in such a way as to
produce indicators for a real-time evaluation.
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The latency of the prototype depended on the computing power of the equipment. We
used a laptop with a 2.7 GHz 12-core Intel Core i7 processor, 16 GB RAM, and an NVIDIA
Quadro P620 graphics card with 2 GB GPU memory.

The deployed prototype ran in an infinite loop displaying video frames from the
camera at a normal speed of 30 frames per second. Each loop captured 30 frames and
stored them in a buffer; the frames were resized to 240 × 240 pixels and then analyzed
with our previously generated model. The model outputs were a violence or nonviolence
label, which was displayed as a text box over the video frames, before the buffer was finally
released. The same was executed for the next 30 frames in the next loop, and so on (see
Figure 15).

Figure 15. Deployment of the video surveillance system prototype.
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5. Ablation Study
5.1. Analysis of Results on Combinations of the Proposed Modules

To determine the degree of contribution of the three modules to the proposal, a study
was carried out to analyze the behavior of the modules in terms of effectiveness and
efficiency and their contribution to the proposal.

To execute this, the modules were tested independently on the RWF 2000 dataset [22],
with some combinations of techniques in the Spatial Motion Extractor (SME) module
(see Table 7).

Table 7. Performance analysis of module combinations on the RWF 2000 dataset [22].

Module Accuracy (%) Parameters (M) FLOPs (G)

SME with [2 AVG Pool and 4 Conv/Relu] + STE 82.5 3.49 3.15
SME with [Def. Morf.] + STE 85.25 3.47 3.13

SME with [Morf. Def.] + STE + GTE 88.5 3.51 3.15

The Spatial Motion Extractor (SME) module did not produce results by itself since
it only extracts regions of interest. Therefore, it was combined with the Short Temporal
Extractor (STE) module for the analysis. However, a combination of techniques was used to
extract regions of interest: a technique that implements two AVG pooling layers, followed
by four convolutional layers with ReLU. The other technique used image processing
functions, specifically morphological deformations.

The table shows that the module: SME with (2 AVG Pool and 4 Conv/Relu) + STE,
achieved an acceptable accuracy result of 82.5%. The number of parameters and FLOPS
were within expectations, but they can be considered contributions.

The SME module with (Morphological Deformations) + STE substantially improved
the model’s effectiveness, increasing the accuracy by 2.75%. A slight decrease was also
observed in the number of parameters and FLOPS. This combination was efficient but did
not produce the best effectiveness results. This is because the STE module only recognizes
quick and short movements, and it still fails in longer movements.

Finally, the Global Temporal Extractor (GTE) module was added, significantly improv-
ing the efficiency, which reached an accuracy of 88.5%, with a slight increase in the number
of parameters and FLOPS.

5.2. Analysis of the Results Using Backbone Combinations

According to the proposal presented in Section 3, the Short Temporal Extractor (STE)
module uses a pretrained 2D CNN network as a backbone. The proposal uses the MobileNet
V2 architecture [34], mainly due to the cutting-edge results obtained using ImageNet [40]
with fewer parameters and FLOPS. However, according to Table 1, there are other good
candidate backbones, such as EfficientNet B0 [36], MobileNet V3 L [35], and MnasNet [37].

This section evaluates the proposal with the above-mentioned models regarding
effectiveness and efficiency on the RWF 2000 [22] and VioPeru datasets. Table 8 shows
the results.

Using the VioPeru dataset, our proposal had the best efficiency with the MobileNet
V2 backbone, with an accuracy of 89.29%, followed by MobileNet V3 [35] with 89% and
EfficientNet B0 [36] with 87.5%. In addition, our proposal had a better efficiency with the
MobileNet V2 backbone [34], with a value of 3.51 million parameters and 3.15 GFLOPS.

With the RWF-2000 dataset [22], our proposal also had the best efficiency with the
MobileNet V2 backbone, with an accuracy of 85.5%, followed by MobileNet V3 [35] and
EfficientNet B0 [36] with the same value of 88.25%. Although the proposal with the
MNasNet [37] backbone had the best efficiency, with a value of 2.22 million parameters
and 1.13 GFLOPS, it had very low effectiveness compared to the other backbones.

Thus, we chose the MobileNet V2 backbone as a result of the best results in terms of
effectiveness and efficiency.
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Table 8. Proposal results with different backbones.

Proposal Variations RWF-2000
Accuracy(%)

VioPeru
Accuracy (%)

Parameters
(M)

FLOPS
(G)

Proposal with EfficientNet
B0 backbone 88.25 87.5 5.29 4.17

Proposal with MobileNet
V2 backbone 88.5 89.29 3.51 3.15

Proposal with MobileNet
V3 backbone 88.25 89 7.62 4.1

Proposal with MNasNet
backbone 75.25 62.5 2.22 1.13

5.3. Quality Analysis

This section analyzes the quality of the results of our proposal on the VioPeru dataset.
Six misclassified videos were extracted: two non-violent and four violent. Figure 16 shows
the six videos as a sequence of six frames each, at an interval of 1 s.

Figure 16. Frame sequence of six misclassified VioPeru videos.

The first row of Figure 16 corresponds to the frames of the non-violent video
“nf53sanj.avi”. The video is low resolution and shows two girls playing with their hands
in the distance. The rapid hand movement, low resolution, and remoteness of the violent
scene confused our model, which classified it as violent.

The second row corresponds to the frames of the non-violent video “nf99and.avi”. A
person is observed insistently knocking on a door with his hand. Like the previous case,
this rapid movement confused the model, which classified it as violent.

The third row corresponds to the frames of the violent video “f80and.avi”. A crowd of
people is observed; the scene is ambiguous, as there is movement of people preparing for a
violent confrontation with the police, but no rapid movements are observed. These factors
confounded the model, which classified it as non-violent.

The fourth row corresponds to the violent video “f67and.avi”. A crowd is observed at
the end of a street fight which is occluded with artificial light, and the scene is unclear. The
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violence has mostly finished, but people are running. These factors confused the model,
which classified it as non-violent.

The fifth row corresponds to the frames of the violent video “f96and.avi”. The video
shows a crowd of civilians and police; everyone is running, people are blocked from each
other, smoke and fire are observed, and everything is very hard to make out. The model
classified it as non-violent, as the action of running was not recognized as violence by
the model.

Finally, the sixth row corresponds to the video “f137and.avi”. This shows a distant
scene with a crowd committing acts of vandalism. There are no quick movements except
running, which confused the model, making it recognize it as non-violent.

According to this analysis, the limitations of our proposal are as follows:

• The model needs to be more robust when analyzing videos with certain rapid move-
ments, especially with people’s hands or arms, which confuse recognition;

• The model is confused when scenes show certain types of crowds with people running
and some occlusion.

However, it is necessary to clarify that the proposed model correctly classifies most of
the situations and scenes described above. These limitations and weaknesses were only
observed in some scenes.

5.4. Individual Analysis of Positive and Negative Samples

VioPeru has 280 videos: 140 violent and 140 non-violent; for the analysis of our
model, the dataset was divided into an 80% proportion for training and a 20% proportion
for testing, making the number of test videos in this dataset only 56: 28 violent and
28 non-violent.

It is necessary to do an individual analysis of the behavior of our model in the violent
and non-violent videos of the entire VioPeru dataset. For this, all the videos were processed,
and the results are shown in Table 9.

Table 9. Individual analysis of positive and negative samples.

Sample Videos Accuracy

Violent 140 90.71%
Non-violent 140 89.29%

Our model performs better at detecting violent videos than non-violent videos, al-
though by a small margin. It is necessary to clarify that for the collection of violent and
non-violent videos from VioPeru, a violent scene was previously identified. Subsequently,
the violent clips were extracted, and the non-violent videos were extracted from the non-
violent part prior to the identified scene. The objective was for the model to learn and
identify the limit of what is violent and non-violent. For this reason, the model could have
confusion when identifying false positives from VioPeru.

5.5. Analysis of False Positives in Non-Violent Videos

We consider that violence is an atypical activity in a real video surveillance system
concerning activities that are not violent. Therefore, it is essential to analyze the resistance of
our proposal to false positives in order to provide results that lead to a better understanding
of the minimum human participation in a real video surveillance system.

To this end, the number of non-violent VioPeru test videos is insufficient for this
analysis. A compilation of 87 new non-violent videos was made from different surveillance
cameras of the security systems of three districts of the Andahuaylas in Peru. They are
videos of different city streets, with normal human activities, daytime and nighttime videos,
and with and without crowds. Figure 17 shows random frames from some of these videos.

The videos are available in the “false_positives_validation” folder within the published
VioPeru dataset: https://github.com/hhuillcen/VioPeru (accessed on 1 January 2024).

https://github.com/hhuillcen/VioPeru
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Figure 17. Random videos of 87 non-violent videos for false positive analysis.

By subjecting these videos to our model, an accuracy of 98.85% was reached; that is,
only one false positive was identified, and it corresponds to the video “val_nfsanj46.avi”,
the Figure 18 some video frames:

Figure 18. Frame sequence of the video recognized as false positive. The image shows a sequence
of nine frames of a nonviolent scene; one person falls, and the other tries to hold them up; the
movements are confusing and cause the model to classify it as violent.
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The real scene corresponds to two people talking, and one falls; the other person tries
to contain him but fails. It is a confusing video even for a human being, as it is confused as
a violent activity of intentionally causing the fall. This same confusion caused the model to
recognize the scene as violent.

In general, there are some rare scenes that can confuse any model, including human
recognition. However, our model recognized the other videos correctly; we can affirm that
our proposal provides results that enable minimal human participation in the violence
detection process in real video surveillance systems.

6. Conclusions

In this work, a model based on deep learning for the recognition of violent human
actions in real-time video surveillance is proposed. We propose an architecture with three
modules. The first module, the Spatial Motion Extractor (SME), extracts regions of interest
from a frame using frame difference and morphological dilation. The second module, the
Short Temporal Extractor (STE), extracts temporal features from fast and short-duration
movements through temporal fusion and the use of the MobileNet V2 backbone. Finally,
the Global Temporal Extractor (GTE) module identifies long-term temporal characteristics
and fine-tunes the model for better precision, using global average pooling and dot product.
Tests were initially carried out on the RWF-2000, Movies, and Hockey datasets, producing
cutting-edge results in terms of both effectiveness and efficiency. In order to demonstrate
that the aforementioned datasets are not oriented to video surveillance, a dataset called
VioPeru was generated with real videos from video surveillance cameras in Peru. The
results show that our proposal is the best in terms of efficiency and effectiveness on VioPeru.
The proposal exhibited a recognition latency of 0.0720 s for every 30 frames, which is close
to real time. Our proposal exhibited high efficiency and effectiveness in real-time video
surveillance systems and can be used in devices with low computational power.

7. Future Work

After testing our proposal on the VioPeru dataset and achieving an efficiency of 88.5%,
with SepConvLSTM only reaching 73.21%, the challenge remains to surpass these results in
terms of accuracy.

VioPeru is a compilation of videos of violence obtained from real video surveillance
cameras. The violent scenes are extremely varied and produce various challenges, e.g.,
crowd situations, day and night scenes, occlusion, heavy artificial light, high and low
resolutions, and different types of violence. Our proposal was tested using VioPerú without
distinguishing between these particularities; however, other proposals test their results
according to performance for each independent characteristic. This is because certain
models have certain biases in different situations.

One of the critical factors in achieving the high effectiveness and efficiency when
testing our model is the Spatial Motion Extractor (SME) module, which behaves as an
attention mechanism. Future proposals should to recognize attention as a critical factor; in
fact, the transformer technique uses it. However, it has a high computational cost and is
inefficient for real-time applications. In this way, we hope to influence future techniques in
improving care mechanisms from the point of view of efficiency.

Our study was not tested using a real video surveillance system but by measuring
latency times on devices with low computing power. In future work, we hope to test new
models for real video surveillance systems, e.g., by describing the hardware scenario, in
order to obtain better effectiveness, efficiency, and real-time accuracy results.

A weakness detected in our proposal is the confusion in specific fast movements. The
short temporal extractor (STE) module can be improved by taking non-contiguous consecu-
tive frames, for example, consecutive frames with intervals of three or four frames. This
modification could make the difference between rapid movements clearer in identifying
violence. In addition, it will make the model lighter.
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