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Abstract: Robots in space are necessarily extremely light and lack structural stiffness resulting
in natural frequencies of resonance so low as to reside inside the attitude controller’s bandwidth.
A variety of input trajectories can be used to drive a controller’s attempt to ameliorate the control-
structural interactions where feedback is provided by low-quality, noisy sensors. Traditionally,
step functions are used as the ideal input trajectory. However, step functions are not ideal in
many applications, as they are discontinuous. Alternative input trajectories are explored in this
manuscript and applied to an example system that includes a flexible appendage attached to a rigid
main body. The main body is controlled by a reaction wheel. The equations of motion of the
flexible appendage, rigid body, and reaction wheel are derived. A benchmark feedback controller is
developed to account for the rigid body modes. Additional filters are added to compensate for the
system’s flexible modes. Sinusoidal trajectories are autonomously generated to feed the controller.
Benchmark feedforward whiplash compensation is additionally implemented for comparison. The
method without random errors with the smallest error is the sinusoidal trajectory method, which
showed a 97.39% improvement when compared to the baseline response when step trajectories were
commanded, while the sinusoidal method was inferior to traditional step trajectories when sensor
noise and random errors were present.

Keywords: structural dynamics; flexible robotics; bandpass filter; notch filter; structural filtering;
trajectory generation; whiplash compensation

1. Introduction

The solutions and methods developed in this manuscript are applicable to a wide
range of dynamics problems. A robotic arm is chosen here as an example of a highly
flexible system, with implications across the industry. Robots are deployed in space for
a variety of purposes. Figure 1a shows one such robot, NASA’s Robonaut 2. In addition to
space applications, robotic arms can be deployed underwater, as evidenced by Figure 1b.
Whether in space or underwater, the commanded trajectory can influence the tracking error
of the robotic arm.

Minimizing tracking error can allow for more precise movements and support the
execution of detailed motion. In-orbit servicing is an example of the need for precise control
over a robotic arm’s movement. By identifying the most appropriate trajectory to command,
the error in angular movement can be minimized.
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Figure 1. (a) NASA’s Robonaut 2, built at Johnson Space Center, became the first android astronaut 
to go to space in 2011. Now, about two dozen former NASA engineers, many of whom helped build 
the robot astronaut, have turned their skills to creating underwater robots at Nauticus Robotics. [1]; 
(b) Nauticus is also commercializing the robotic arm technology–known as Olympic Arm–that it 
developed while designing and building Aquanaut. Image credits (both): Nauticus Robotics Inc., 
Webster, IA, USA [1] used in compliance with image use policy [2], “NASA content (images, videos, 
audio, etc.) are generally not copyrighted and may be used for educational or informational pur-
poses without needing explicit permissions”. 

Towards in–orbit servicing, the importance of spacecraft-mounted robotics missions 
is highlighted in reference [3] which stipulates: 

“…environmental, economic, and strategic considerations support the claim 
that the future of a space infrastructure will depend on the ability to perform 
on-orbit servicing, encompassing a broad array of in-space operations, such as 
inspection, berthing, refueling, repair, assembly, and so on.” 
According to a 2010 study by the U.S. National Air and Space Administration 

(NASA), [4] a key to enabling robotic servicing missions in space leading to advantageous 
future strategic impact, cost effectiveness, and environmental sustainability. Cost effec-
tiveness is manifest in the ability to relatively cheaply replace spacecraft components ra-
ther than launch a replacement spacecraft. Reference [5] indicates since 1957 roughly 5,400 
space missions have been flown, while nearly twenty-thousand space objects are tracked 
by the north American air defense command (NORAD), where over two thousand are 
rocket upper stages spent of fuel and over ten thousand additional items are classified as 
debris. Current proposals [6,7] indicate intentions for very large future constellations to-
gether comprising another twenty thousand objects in orbit. Such a large number of craft 
in orbit constitute a potentially lucrative business model for system repair [8] and refuel-
ing on-orbit. Discovery of the very origins of life and human long-term habitability are 
postulated to be aided by space robotics in [9]. 

This manuscript investigates the importance of the trajectory shaping fed to the con-
trol method used to rotate the space robot. The flexible spacecraft system examined in this 
manuscript is indicative of a larger dynamics problem. The solutions and methods ex-
plored are applicable to that larger set of dynamic problems. The requisite equations of 
motion are derived and feedback controllers and second-order structural filters are ap-
plied, following the methodology developed in [10]. Initially, sinusoidal trajectory gener-
ation is used to drive the controllers. Whiplash compensation is additionally investigated 
as a solution, per [11]. Three methods of trajectory shaping are applied to the flexible 
spacecraft robotic system and compared critically: step shaped, sinusoidally shaped, and 
whiplash shaped. The state errors, rate errors, and control efforts are compared for each 
of the three methods of input control to determine which is most appropriate for the flex-
ible spacecraft system application. 

Elder techniques for controlling highly flexible systems relied foremost on feedback 
necessitating construction of feedback linearizing control laws [12]. The linear-quadratic 
regulator approach, robust control approaches minimizing the H∞ and H2 norms, and a 
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Figure 1. (a) NASA’s Robonaut 2, built at Johnson Space Center, became the first android astronaut to
go to space in 2011. Now, about two dozen former NASA engineers, many of whom helped build
the robot astronaut, have turned their skills to creating underwater robots at Nauticus Robotics [1];
(b) Nauticus is also commercializing the robotic arm technology–known as Olympic Arm–that it
developed while designing and building Aquanaut. Image credits (both): Nauticus Robotics Inc.,
Webster, IA, USA [1] used in compliance with image use policy [2], “NASA content (images, videos,
audio, etc.) are generally not copyrighted and may be used for educational or informational purposes
without needing explicit permissions”.

Towards in–orbit servicing, the importance of spacecraft-mounted robotics missions is
highlighted in reference [3] which stipulates:

“. . .environmental, economic, and strategic considerations support the claim that
the future of a space infrastructure will depend on the ability to perform on-orbit
servicing, encompassing a broad array of in-space operations, such as inspection,
berthing, refueling, repair, assembly, and so on.”

According to a 2010 study by the U.S. National Air and Space Administration (NASA), [4]
a key to enabling robotic servicing missions in space leading to advantageous future
strategic impact, cost effectiveness, and environmental sustainability. Cost effectiveness
is manifest in the ability to relatively cheaply replace spacecraft components rather than
launch a replacement spacecraft. Reference [5] indicates since 1957 roughly 5400 space
missions have been flown, while nearly twenty-thousand space objects are tracked by the
north American air defense command (NORAD), where over two thousand are rocket
upper stages spent of fuel and over ten thousand additional items are classified as debris.
Current proposals [6,7] indicate intentions for very large future constellations together
comprising another twenty thousand objects in orbit. Such a large number of craft in orbit
constitute a potentially lucrative business model for system repair [8] and refueling on-orbit.
Discovery of the very origins of life and human long-term habitability are postulated to be
aided by space robotics in [9].

This manuscript investigates the importance of the trajectory shaping fed to the
control method used to rotate the space robot. The flexible spacecraft system examined in
this manuscript is indicative of a larger dynamics problem. The solutions and methods
explored are applicable to that larger set of dynamic problems. The requisite equations of
motion are derived and feedback controllers and second-order structural filters are applied,
following the methodology developed in [10]. Initially, sinusoidal trajectory generation
is used to drive the controllers. Whiplash compensation is additionally investigated
as a solution, per [11]. Three methods of trajectory shaping are applied to the flexible
spacecraft robotic system and compared critically: step shaped, sinusoidally shaped, and
whiplash shaped. The state errors, rate errors, and control efforts are compared for each of
the three methods of input control to determine which is most appropriate for the flexible
spacecraft system application.

Elder techniques for controlling highly flexible systems relied foremost on feedback
necessitating construction of feedback linearizing control laws [12]. The linear-quadratic
regulator approach, robust control approaches minimizing the H∞ and H2 norms, and
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a disparate approach based in analytical dynamics, introduced as the Udwadia–Kalaba
approach were compared in reference [13]. Very recently, integration of fuel slosh with
centralized sensors and actuators, without the usage of collocated devices for vibration
management. into techniques to control the motion of flexible appendages was offered
by [14] reiterating the relevance of classical proportional, derivative (PD) control with
nonadaptive bandpass filters, where the novel proposition includes integration of wave-
based control with the filtered PD control scheme. Vibration suppression was illustrated
by establishing a dynamic grasping area to describe the contact procedure of the capture
device grasping target in reference [15]. Control of rotation-floating space robots with
flexible appendages specifically for on-orbit servicing was proposed in [16]. Techniques
were suggested using a composite two-time-scale control system [17]. Open-loop methods
were strictly used for analysis while closed-loop was utilized for control in reference [18].
Another alternative is adaptive feedback control [19].

The following list highlights the current state of the art developing deterministic
artificial intelligence:

1. In 2019, reference [11] revealed an optimal control revealed by pseudospectral opti-
mization software where the solution validation was provided using six theoretical
necessary conditions of optimization: (1) Hamiltonian minimization condition; (2) ad-
joint equations; (3) terminal transversality condition; (4) Hamiltonian final value
condition; (5) Hamiltonian evolution equation; and lastly (6) Bellman’s principle. The
results are novel and unique in that they initially command full control in the opposite
direction from the desired end state, while no such results are seen using classical con-
trol methods including classical methods augmented with structural filters typically
employed for controlling highly flexible multi-body systems.

2. Later in 2022, an interesting study of the use of feedback and structural filtering to
maximize system stability was offered [10], leading to the recommendation to use
single-sinusoidal trajectory shaping to maximize stability.

The following brief list articulates the novel growth from the current state of the
art methods.

1. Rather than propose options for maximizing stability [10], this study seeks to offer
advice to minimize trajectory tracking errors.

2. Rather than focus on feedforward [11] versus feedback [10], this study investigates
commanded trajectory tracking options.

This manuscript advises the readership on methods to shape the commanded trajectory
to be tracked, where sinusoidal, whiplash, and step trajectories are critically compared
using tracking errors (both angle and angular rate) and control effort as figures of merit.

2. Materials and Methods

In this manuscript, the flexible spacecraft system shown in Figure 2 is analyzed. The
system consists of a rigid main body R, reaction wheel W, and a flexible appendage F. The
flexible appendage F is split into beam elements 1 through 7, and node points 1 through
8. Table 1 lists parameters of the flexible spacecraft system and their descriptions. The
methods applied in this section can be used for any dynamic, flexible system and is not
limited to spacecraft application. The flexible spacecraft system in Figure 2 is explored in
this manuscript as an example.

2.1. Equations of Motion

The equations of motion of the flexible spacecraft system are derived using the La-
grange method. Lagrangian Mechanics requires kinetic and potential energies. See Table 1
for parameter definitions.
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Figure 2. Flexible spacecraft system. (a) Atop a (planar) air bearing table, a free-floating space robot 
is autonomously controlled. [20] Imagery and photographs of the Department of Defense are in the 
public domain, unless otherwise noted [21]; (b) schematic diagram of the free-floating flexible space 
system depicted in subfigure (a). This schematic is identical to that used in references [10,11], where 
this manuscript comprises the latest iteration of continuing research. No special permission is re-
quired to reuse all, or part of the article published by MDPI, including figures and tables [22]. 

2.1. Equations of Motion 
The equations of motion of the flexible spacecraft system are derived using the La-

grange method. Lagrangian Mechanics requires kinetic and potential energies. See Table 
1 for parameter definitions. 

The kinetic energy of the entire flexible spacecraft system was found by summing the 
kinetic energies of the rigid main body, flexible appendage, and reaction wheel. The ki-
netic energies are written in terms of the moments of inertia and the modal coordinates, 
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Figure 2. Flexible spacecraft system. (a) Atop a (planar) air bearing table, a free-floating space robot
is autonomously controlled. [20] Imagery and photographs of the Department of Defense are in
the public domain, unless otherwise noted [21]; (b) schematic diagram of the free-floating flexible
space system depicted in subfigure (a). This schematic is identical to that used in references [10,11],
where this manuscript comprises the latest iteration of continuing research. No special permission is
required to reuse all, or part of the article published by MDPI, including figures and tables [22].

Table 1. Flexible Spacecraft System Parameters.

Variable Definition Variable Definition Variable Definition

T Kinetic energy T Natural frequency of i-th mode V Potential energy
Izz Moment of inertia of rigid body ϕi Modal coordinates W Displacement
Iw Moment of inertia of reaction wheel xF Final position, x Q Sheer forces
θ Angle of flexible appendage yF Final position, y M Moments

θw Angle of reaction wheel n Number of independent modes L Lagrangian
qi Modal coordinates Di Elastic decoupling coefficients TD Disturbance torque

The kinetic energy of the entire flexible spacecraft system was found by summing
the kinetic energies of the rigid main body, flexible appendage, and reaction wheel. The
kinetic energies are written in terms of the moments of inertia and the modal coordi-
nates, as seen in Equation (1). Di are the rigid-elastic coupling terms and are defined in
Equation (2). The modal coordinates are expressed in terms of q and F, which are defined
in Equations (4) and (5) for a given beam i.

T =
1
2

Izz
.
θ

2
+

1
2

Iw
.
θw

2
+ Iw

.
θ

.
θw +

1
2

n

∑
i=1

.
qi +

.
θ

n

∑
i=1

Di
.
qi (1)

The potential energy is shown in Equation (3), where ωi are the natural frequencies of
the flexible spacecraft system for mode i.

Di =
∫

[xFϕi
y − yFϕi

x]dm (2)
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V =
1
2

n

∑
i=1

ωi
2qi

2 (3)

{q} =
{

W1 θ1 W2 θ2
}T (4)

{F} =
{

Q1 M1 Q2 M2
}T (5)

The Lagrange equation, shown in Equation (6) is applied to the Lagrangian L, where
L = T − V. The Lagrange method results in the equations of motion (EOM) of the flexible
spacecraft system, which are shown in Equation (7).

−d
dt

(
δL
δ

.
ui

)
−

(
δL
δui

)
= Qi (6)

EOM :


Izz

..
θ + Iw

..
θw +

n
∑

i=1
Di

.
qi = TD

Iw

( ..
θw +

..
θ
)
= T

..
qi + ωi

2Di
..
θ = 0

(7)

2.2. Natural Frequencies

After reformulating Equation (7) into canonical form elaborated in Equations (19)–(23)
in reference [10], the natural frequencies of the flexible spacecraft system were derived
using the finite element method and by solving the eigenvalue problem using the stiffness
and mass matrices. It was assumed that all displacements are normal, and the system is
constrained in Nastran. The stiffness (k) and mass (m) matrices are constructed for each
beam element. The individual stiffness and mass matrices are shown for a given beam
element i in Equations (8) and (9).

[
ki
]
=


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

 (8)

[
mi

]
=


156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

 (9)

The individual stiffness and mass matrices are added by superposition to form the
total stiffness and mass matrices respectively, which are presented in the Appendix A.
The solution to the eigenvalue problem, presented in Equation (10), provides the natural
frequencies and mode shapes of the flexible spacecraft system. Recall the expressions for
the rigid–elastic coupling using modal coordinates: in accordance with Equation (2), φ’s are
mode shapes from finite element analysis using the eigenvalues of K/M (stiffness/mass).
The system stiffness matrix is included in Equation (8) and mass matrix in Equation (9) and
result in the natural frequencies and mode shapes for the flexible system. The resulting
natural frequencies are listed in Table 2, and their corresponding mode shapes can be found
in the Appendix A.

Table 2. Natural Frequencies, ωn for the Flexible Spacecraft System, in rad/s.

1809.46 596.81 43.72 10.22
1415.52 478.77 30.89 2.07
1042.16 419.02 15.77 0.69
774.31 54.87
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2.3. PID Controller

Facilitating the study of input trajectory shaping methods, some control must be
benchmarked. While whiplash control from the prequel in reference [11] was selected as
the single feedforward control benchmark (to be discussed shortly in Section 2.6), a PID
controller with structural filters was chosen as the single benchmark feedback control
and was designed to control the motion of the reaction wheel using the procedures in the
prequel (Equations (29)–(38) in reference [10]). The PID controller was designed to meet
the following specification requirements: 15% overshoot and control bandwidth of 4 rad/s.
It is assumed that the natural frequency of the closed loop response is equal to the control
bandwidth. The rise time, damping ratio, settling time, and period are calculated according
to Equations (10), (11), (12), and (13), respectively.

tr =
1.8
ωn

=
1.8
4

= 0.45 s (10)

ζ =
−ln(0.15)√

π2 + ln2(0.15)
= 0.517 (11)

ts =
4.6

ζωn
=

4.6
0.517 ∗ 4

= 2.22 s (12)

T ∼=
10

ζωn
=

10
0.517 ∗ 4

= 4.84 (13)

The proportional, integral, and derivative gain values are calculated according to
Equations (14)–(16).

KP = Iw

(
ωn

2 +
2ζωn

T

)
= 1.537 (14)

KI =
Iwωn

2

T
= 0.301 (15)

KD = Iw

(
1
T
+ 2ζωn

)
= 0.396 (16)

The PID controller and the flexible spacecraft system were modeled in MATLAB®,
and the simulation results are presented in Section 3.

2.4. Second-Order Structural Filters

After the addition of the PID controller, it was determined that additional filtering
was needed to compensate for the system’s flexible modes. Additional filtering was added
in the form of second-order structural filters. Classical second-order structural filters
were designed to compensate for the flexible modes, following the convention defined in
Equation (17), where ωz and ωp are the frequencies of the zeros and poles respectively and
ζz and ζp are the damping ratios of the zeros and poles. A tutorial elaboration of classical
filter design is available in reference [23].

Output(s)
Input(s)

=

s2

ωz2 +
2ζz
ωz2 s + 1

s2

ωp2 +
2ζp
ωp2 s + 1

(17)

Equation (17) was used to generate bandpass and notch filters to compensate for the
valley and peaks for each of the flexible mode cantilever responses.

2.5. Sinusoidal Trajectory Generation

The feedback controller was commanded by an autonomously generated sinusoidal
trajectory to achieve the desired behavior. A piecewise function was created to support the
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desired quiescent and maneuver times. The generated sinusoid is structured according to
Equation (18). Table 3 lists the proximal variable definitions.

z = (A − A0)[1 + sin(ωt +∅)] (18)

Table 3. Table of proximal variables and nomenclature 1.

Variable/Acronym Definition Variable/Acronym Definition

z Sinusoidal trajectory ω Frequency
A Desired magnitude t Time
A0 Initial magnitude ∅ Phase offset

1 Such tables are offered throughout the manuscript to aid readability.

The frequency, ω, is directly and inversely proportional to the desired time of the
maneuver. By increasing the frequency, a faster maneuver time can be achieved. During
the quiescent periods, a constant signal will be applied. The final piecewise trajectory is
formed by summing the constant signals during the quiescent periods with the sinusoidal
function as it traverses one valley to the next peak. This sinusoidal trajectory generation
technique was added to the MATLAB® SIMULINK® project and the results are detailed
in Section 3.

2.6. Whiplash Compensation

Whiplash compensation was proposed as a solution to the flexible spacecraft system
control problem in [2]. To prevent overshoot, [2] proposed a driving function that creates
motion in the opposite direction as the desired final position.

The whiplash compensation trajectory generation scheme was implemented in SIMULINK®

and follows the format of Equation (19).

z = (A − A0)[sin(ωt +∅)] (19)

The flexible spacecraft system was simulated using MATLAB®’s SIMULINK®.
A variable-step size was used along with MATLAB®’s automatic solver selection. Figure 3
shows the topography of the flexible spacecraft system SIMULINK® model. The input
trajectory options are shown on the left part of the figure and include a sine trajectory,
a square wave, and the shaped-whiplash trajectory. The PID controller and second order
filters are applied, and have been described in Sections 2.3 and 2.4, respectively. The final
rotation angle is examined, and its performance assessed Section 3.
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Figure 3. Flexible spacecraft system simulation created in SIMULINK®. Subsystems are displayed in
Appendix B.

The state and rate sensor errors are introduced in the SIMULINK® model in order to
mimic realistic performance. The state and rate sensor errors are defined by a normally
distributed random number with 0 mean and 0.01 variance. The sample time used is 0.01
for the state, rate, and inertia error values. The seed value is generated as a uniformly
distributed random number.
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The simulation was performed 1000 times for Monte Carlo analysis. Each simulation
included the state and rate sensor noises. The Monte Carlo analysis was performed for
each of the three trajectory generation schemes: (1) step function, (2) sinusoid trajectory,
and (3) whiplash compensation.

3. Results

The various control methods were applied in MATLAB®/SIMULINK® in three dif-
ferent trials, where the following inputs were used to drive the system controller: (1) step
response, (2) sinusoidal trajectory, and (3) whiplash compensation. Figure 4 depicts each
trajectory as a function of time. The system is expected to complete its maneuver by t = 5 s.
As seen in Figure 4, the step function has an instantaneous change in value because the
step occurs at t = 0 s. The sinusoid and whiplash trajectories, on the other hand, are not
instantaneous and have a duration. The sinusoid trajectory starts at an amplitude of 0,
while the whiplash trajectory starts at an amplitude of −1. The whiplash method generates
motion in the opposite direction as the final desired state to prevent overshoot.
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Figure 4. Generated Trajectories.

The flexible spacecraft system is driven by each of the three trajectories in Figure 4.
The resulting angle of the reaction wheel is plotted in Figure 5b for all three cases. Similarly,
Figure 5c shows the reaction wheel speed error for each controller method. In each figure,
the response to a step function input is shown in blue, the response to the generated
sinusoid is shown in a dashed green line, and the response to the whiplash compensator
is shown in a bolded red line. Figure 5 depicts these results without state and rate sensor
noise included.
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Figure 5. Generated trajectories (a) reaction wheel angle θ; (b) reaction wheel speed
.
θ; (c) reaction

wheel rotation angle error.

The mean error value and standard deviation of the error value was calculated and
is tabulated in Table 4. Surprisingly, the sinusoid trajectory response shows less error
than either the step response or the whiplash response. Monte Carlo simulations were
performed for each of the three input trajectory generation schemes. There were 1000 Monte
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Carlo trials executed in each simulation. There are two sensor noises included in the model:
rotation angle state noise and rotation angle rate noise. Three combinations of noise were
included in the Monte Carlo trials: (1) state noise only, (2) rate noise only, and (3) both state
and rate noise.

Table 4. Reaction wheel error values. “e−4” notation indicates “×10–4”.

Method Rotation Angle θ Error Mean Rotation Angle θ Error
Standard Deviation

Step 0.0102 0.2051
Sinusoid −2.66e−4 0.0141
Whiplash −0.0145 0.2097

Figure 6 depicts the shotgun plot analysis for each of the noise combinations for
the step function input trajectory. Each dot represents one Monte Carlo trial. The one-,
two-, and three-sigma ellipses are depicted in red. Table 5 details the mean and standard
deviations for each of the methods and combinations of sensor noise.
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Figure 6. Monte Carlo analysis of random perturbations for the step function input trajectory, final
rotation angle value is on the abscissa and final rotation angle rate value is on the ordinant, each blue
dot represents one Monte Carlo trial (a) space robot rotation angle in the presence of angle sensor
noise; (b) space robot rotation rate in the presence of angle rate sensor noise; (c) space robot rotation
rate in the presence of both angle sensor noise and angle rate sensor noise.

Table 5. Monte Carlo analysis of random perturbations. “e−4” notation indicates “×10–4”.

Method Rotation Angle
θ Error Mean

Rotation Angle
θ Error

Standard
Deviation

Rotation Angle θ
Error Mean

Rotation Angle θ
Error

Standard
Deviation

Rotation Angle θ
Error Mean

Rotation Angle
θ Error

Standard
Deviation

With Rotation Angle
Sensor Noise

With Rotation Angle
Rate Sensor Noise

With Rotation Angle Sensor
and Rate Sensor Noise

Step −0.0005 −0.0021 −0.0003 −0.0044 −0.0022 −0.0039
Sinusoid −0.0016 −1.9424e−4 −2.7023e3 16.7673 −0.0025 −0.0019
Whiplash −0.0007 0.0017 0.0001 −8.8541e−4 −0.0059 −0.0054

4. Discussion

The mean and standard deviation values are compared to the baseline step response
error values and tabulated as percentage differences in Table 6. The sinusoid trajectory
method shows the most improvement, with an error value 97.39% closer to the desired
trajectory than the step response. The whiplash compensation method, on the other hand,
proves to be less accurate than the step response, showing a 42.16% increase in mean error.
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Table 6. Percent errors for reaction wheel angle.

Method Rotation Angle θ
Error Mean

Rotation Angle θ Error Standard
Deviation

Step --- ---
Sinusoid −97.39% 0.0141
Whiplash 42.16% 0.2097

Driving the flexible spacecraft system with a sinusoidal trajectory is the solution with
minimal error when sensor noise is not included. The sinusoidal trajectory generation
scheme creates a near step response trajectory, without the discontinuities associated with
a step response. The whiplash response is similarly continuous however, it shows more
errors than the baseline step response. These results confirm the whiplash solution as
a suboptimal result, as was first proposed in [2].

When normally distributed random sensor noise is added to the state and rate sensors,
the results align more closely to real world applications. The Monte Carlo simulations
performed are summarized in Table 7.

Table 7. Monte Carlo analysis of random perturbations (percent performance improvement).

Method Rotation Angle
θ Error Mean

Rotation Angle
θ Error

Standard
Deviation

Rotation Angle θ
Error Mean

Rotation Angle
θ Error

Standard
Deviation

Rotation Angle θ
Error
Mean

Rotation Angle,
θ Error

Standard
Deviation

With Rotation Angle
Sensor Noise

With Rotation Angle
Rate Sensor Noise

With Rotation Angle Sensor
and Rate Sensor Noise

Step --- --- --- --- --- ---
Sinusoid 220.0% −90.75% 900 × 106% −381 × 103% 13.64% −51.28%
Whiplash 40.00% −181.0% −133.3% −79.88% 168.2% 38.46%

5. Conclusions

The whiplash trajectory generation scheme shows a 133.3% improvement when only
rate sensor noise is included. The step function method has the least mean error in rotation
angle when only the state sensor noise is enabled, as well as when both rate and state
sensor noises are enabled.

Without noise included, the sinusoid trajectory shows the most improved performance.
However, in the presence of state and rate sensor noises, the step function has the smallest
mean error values for the rotation angle. When noise is included, the step function has
a 13.64% improvement in mean error when compared to the sinusoid trajectory.

Future research should be conducted to investigate more optimal, continuous tra-
jectory schemes. This could also include investigating the most appropriate solver in
MATLAB®. Depending on the solver and step size chosen in MATLAB®’s SIMULINK®,
the resulting trajectories could produce different results. Investigating which solver and
step size is the most appropriate for this application would render additional confidence
in the results. Additionally, more trajectory generation schemes could be evaluated and
compared to the sinusoid and whiplash methods. Evaluating additional methods could
lead to a more optimal solution with less error.
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Appendix A

Table A1. Stiffness Matrix, [K]. “e−4” notation indicates “×10–4”.

W2 θ2 W3 θ3 W4 θ4 W5 θ5 u6 θ6 u7 θ7 u8 θ8

W2 958.818 0 −479.41 59.926 0 0 0 0 0 0 0 0 0 0
θ2 0 19.975 −59.926 4.9938 0 0 0 0 0 0 0 0 0 0
W3 −479.41 −59.926 958.82 0 −479.41 59.926 0 0 0 0 0 0 0 0
θ3 59.926 4.9938 0 19.975 −59.926 4.9938 0 0 0 0 0 0 0 0
W4 0 0 −479.41 −59.926 958.82 0 −479.41 59.926 0 0 0 0 0 0
θ4 0 0 59.9260 4.9938 0 19.975 −59.926 4.9938 0 0 0 0 0 0
W5 0 0 0 0 −479.41 −59.926 479.41 −59.926 0 0 0 0 0 0
θ5 0 0 0 0 59.926 4.9938 −59.926 19.975 −59.926 4.9938 0 0 0 0
u6 0 0 0 0 0 0 0 −59.926 958.82 0 −479.41 59.926 0 0
θ6 0 0 0 0 0 0 0 4.9938 0 19.975 −59.926 4.9938 0 0
u7 0 0 0 0 0 0 0 0 −479.41 −59.926 958.82 0 479.41 59.926
θ7 0 0 0 0 0 0 0 0 59.926 4.9938 0 3.39e−5 −59.926 4.9938
u8 0 0 0 0 0 0 0 0 0 0 −479.41 −59.926 479.41 −59.926
θ8 0 0 0 0 0 0 0 0 0 0 59.926 4.9938 −59.926 9.9877

Table A2. Mass Matrix, [M]. “e−4” notation indicates “×10−4”.

W2 θ2 W3 θ3 W4 θ4 W5 θ5 u6 θ6 u7 θ7 u8 θ8

W2 0.4760 0 0.0037 −2.2e−4 0 0 0 0 0 0 0 0 0 0
θ2 0 3.39e−5 2.2e−4 −1.27e−5 0 0 0 0 0 0 0 0 0 0
W3 0.0037 2.2e−4 0.4760 0 0.0037 −2.2e−4 0 0 0 0 0 0 0 0
θ3 −2.2e−4 −1.27e−5 0 3.39e−5 2.2e−4 −1.27e−5 0 0 0 0 0 0 0 0
W4 0 0 0.0037 2.2e−4 0.4760 0 0.0037 −2.2e−4 0 0 0 0 0 0
θ4 0 0 −2.2e−4 −1.27e−5 0 3.39e−5 2.2e−4 −1.27e−5 0 0 0 0 0 0
W5 0 0 0 0 0.0037 2.2e−4 2.63 −3.73e−4 0 0 0 0 0 0
θ5 0 0 0 0 −2.2e−4 −1.27e−5 −3.73e−4 3.39e−5 2.2e−4 −1.27e−5 0 0 0 0
u6 0 0 0 0 0 0 0 2.2e−4 0.4760 0 0.0037 −2.2e−4 0 0
θ6 0 0 0 0 0 0 0 −1.27e−5 0 3.39e−5 2.2e−4 −1.27e−5 0 0
u7 0 0 0 0 0 0 0 0 0.0037 2.2e−4 0.4760 0 0.0037 −2.2e−4
θ7 0 0 0 0 0 0 0 0 −2.2e−4 −1.27e−5 0 3.39e−5 2.2e−4 −1.27e−5
u8 0 0 0 0 0 0 0 0 0 0 0.0037 2.2e−4 0.4660 −3.73e−4
θ8 0 0 0 0 0 0 0 0 0 0 −2.2e−4 −1.27e−5 −3.73e−4 1.69e−5
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Table A3. Mode Shapes for each Natural Frequency. “e−4” notation indicates “×10–4”.

1.07e−4 −2.55e−4 −2.32e−4 −8.22e−6 3.08e−4 −5e−4 2.67e−4 0.15 0.0383 0.104 0.0443 −0.0692 −0.024 0.0181
0.11 −0.308 −0.448 −0.499 −0.451 0.317 −0.115 −0.455 −0.0136 0.239 0.222 −0.405 −0.167 0.14

9.94e−5 −7.34e−5 3.19e−4 6.74e−4 4.71e−4 1.36e−4 −2.44e−4 −0.157 −0.0215 0.0204 0.0667 −0.143 −0.0712 0.067
0.216 −0.486 −0.396 −0.0028 0.381 −0.488 0.221 −0.0943 −0.204 −0.706 −0.0867 −0.0912 −0.186 0.246

8.64e−5 0.00014 5.08e−4 −7.13e−7 −7.17e−4 2.86e−4 2.09e−4 0.13 −0.0125 −0.108 0.0125 −0.0995 −0.106 0.139
0.311 −0.45 0.106 0.499 0.119 0.448 −0.314 0.581 0.212 0.0369 −0.257 0.406 −0.0683 0.32

2.43e−5 1.39e−05 4.69e−05 −6.04e−5 −5.41e−5 −9.16e−5 7.14e−05 −0.0099 0.00299 0.0113 −0.0105 0.0248 −0.0954 0.225
0.39 −0.22 0.486 0.00468 −0.488 −0.207 0.394 −0.429 −0.343 0.45 0.188 0.475 0.169 0.365

4.84e−5 3.19e−4 −4.01e−4 −1.45e−5 0.00059 6.16e−4 1.07e−4 0.0536 −0.0918 0.0135 0.0898 0.0754 0.0736 0.0946
0.449 0.106 0.314 −0.499 0.306 −0.123 −0.452 0.0815 0.229 −0.242 0.309 0.0891 0.4 0.389

2.55e−5 2.06e−4 −4.67e−4 6.73e−4 −6.69e−4 −3.84e−4 −4.63e−5 −0.0294 0.0753 −0.0446 0.0881 0.041 0.191 0.194
0.487 0.39 −0.213 −0.00747 0.223 0.392 0.483 −0.247 0.339 −0.021 −0.366 −0.339 0.518 0.401

1.33e−4 1.61e−4 −2.12e−4 2.94e−4 −4.02e−4 −5.22e−4 −6.19e−4 0.00905 −0.0261 0.0192 −0.0699 −0.0732 0.325 0.295
0.503 0.505 −0.501 0.503 −0.506 −0.498 −0.497 0.358 −0.782 0.394 −0.765 −0.515 0.55 0.405
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Figure A1. SIMULINK® models used to produce the results in this manuscript. (a) actuator reaction
wheel simulation subsystem; (b) noisy sensor subsystem, (c) sinusoidal trajectory generation, (d) sub-
system for flexible space robot, (e) conversion of wheel torque to display wheel speed, (f) sensor
noise added to both angular state and rate measurements.
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