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Abstract: This paper presents a performance analysis of centralized spectrum sensing based on
compressed measurements. We assume cooperative sensing, where unlicensed users individually
perform compressed sensing and send their results to a fusion center, which makes the final decision
about the presence or absence of a licensed user signal. Several cooperation schemes are considered,
such as and-rule, or-rule, majority voting, soft equal-gain combining (EGC). The proposed analysis
provides simplified closed-form expressions that calculate the required number of sensors, the
required number of samples, the required compression ratio, and the required signal-to-noise ratio
(SNR) as a function of the probability of detection and the probability of the false alarm of the
fusion center and of the sensors. The resulting expressions are derived by exploiting some accurate
approximations of the test statistics of the fusion center and of the sensors, equipped with energy
detectors. The obtained results are useful, especially for a low number of sensors and low sample
sizes, where conventional closed-form expressions based on the central limit theorem (CLT) fail to
provide accurate approximations. The proposed analysis also allows the self-computation of the
performance of each sensor and of the fusion center with reduced complexity.

Keywords: compressed sensing; cooperative spectrum sensing; energy detector; number of samples;
number of sensors; probability of detection; probability of false alarm; required SNR

1. Introduction

Cooperative spectrum sensing (CSS) [1–3] is a key component of a cognitive radio (CR)
network and aims to discover whether some resources are available for signal transmission
or not in a given area. Using CSS, unlicensed secondary users (SUs) collaboratively detect
the presence or absence of a signal transmitted by a licensed primary user (PU) to under-
stand whether a given channel is already occupied by a PU or free and hence available for
SU signal transmission.

One crucial factor of CSS is the amount of data used for sensing purposes. In general,
both false alarm (FA) and detection performances improve by increasing the number of
SUs and the time spent for sensing at the expense of increased computational processing.
Hence, two fundamental parameters are the number of SU sensors and the number of
samples used by an SU. Compressed sensing [4,5] is often employed to reduce the number
of samples to the reduce complexity. The need for power consumption reduction also
requires sensors that are in sleeping mode (i.e., inactive) for a certain fraction of time,
to save energy.

A second major factor of CSS is the sensing algorithm of the SUs. The choice of this
algorithm mostly depends on the available information about the structure of the PU
signal [6–13]. Matched filtering and feature extraction presuppose that the SUs have some
knowledge about the PU signal properties. On the other hand, an energy detector (ED)
simply monitors the received energy in a specific time–frequency resource, and therefore is
more versatile and suitable for those users without knowledge of the PU signal properties.
The popularity of the ED is widespread [13–27], so that the ED is often also used as
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a baseline for comparison purposes. Consequently, this paper focuses on SU sensors
equipped with EDs.

The third important factor of CSS is the type of cooperation. Indeed, the sensing
results acquired by the SUs may be combined either by a centralized fusion center (FC)
or using a distributed approach. Herein, we focus on a centralized approach wherein an
FC collects the reports of the SUs. In addition, the fusion operation can be performed in
several different ways [28–52]: this paper mainly focuses on hard reporting (HR), where the
SUs report their hard decisions to the FC. Anyway, we also consider a soft reporting (SR)
case, where the SUs report their soft decisions to the FC, which aggregates these values
using equal-gain combining (EGC).

Although there exist several performance analyses of CSS with EDs [15,16,18,19,23–27],
most of the existing approaches either involve complicated multidimensional functions or
have low accuracy. For instance, the exact calculation of the receiver operating characteristic
(ROC) of the ED requires the inversion of a chi-squared distribution function [16,19,23–25],
but this computation can be energy-demanding for low-cost sensors. On the other hand,
a popular alternative approach is the Gaussian approximation (GA) for the test statistic
of the ED [15,18,26,27]; however, the accuracy of the obtained ROC is reduced, especially
when the number of samples is low. Similarly, when the FC applies a majority-voting (MV)
rule, an exact analysis of the required number of SUs involves complicated functions like
the incomplete beta function [53] and its inverse, whereas GA approaches based on the
central limit theorem (CLT) may be inaccurate, especially when the number of sensors
is low.

This paper aims at closing the gap between the accurate-but-complicated performance
analyses and simple-but-inaccurate performance analyses of CSS with EDs. Specifically,
this paper proposes simple low-complexity accurate approximations in such a way that
the performance assessment can be also self-performed by low-cost sensors and by a low-
energy FC. The proposed approximations are obtained by modifying and adapting the
methods of probability distribution approximation derived several decades ago [54–63].
The main contributions of this paper can be summarized as follows.

• For the HR case, we propose closed-form expressions for the number of active sensors
required by an FC to achieve a target performance, assuming SUs with a given perfor-
mance. Several fusion rules are considered: and-rule, or-rule, and MV-rule. In contrast
to existing work, the proposed expressions have both accuracy and low complexity.

• For the HR case, we propose closed-form expressions for the number of compressed
samples required by an ED to achieve a target performance, assuming a given PU
signal-to-noise ratio (SNR). Again, the proposed expressions have both accuracy and
low complexity, thereby enabling low-energy self-computation at the SU side. Previous
work in [64–66] only includes a limited subset of expressions, mainly for conventional
non-cooperative sensing, whereas this paper derives a complete performance analysis
valid for cooperative compressed sensing.

• For the SR case, we propose closed-form expressions for the aggregate number of
samples required by an FC to achieve a target performance. Also, in this case, the
proposed expressions combine accuracy with low complexity.

The remainder of this paper is structured as follows. Section 2 outlines the state of the
art, while Section 3 introduces the system model. Section 4 develops the approximated
performance analysis. Numerical results are presented in Section 5 to validate the proposed
approximations, and some concluding remarks are drawn in Section 6.

2. State of the Art

In this section, we focus on the literature about CSS performance analysis in terms of the
required number of users and required number of samples. For what concerns the number
of sensors to warranty (at the FC) a predefined probability of detection and a predefined
probability of FA, let us assume HR with MV-rule and sensors with the same statistics. In this
case, the probabilities of detection and of FA are expressed as a sum [6,15] whose result is
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expressed by the incomplete beta function [53]. The most common approach for inverting this
function is to apply general-purpose software routines, such as in [29,30,33,34,41,45,67–69],
without an explicit closed-form solution and without complexity analysis. Therefore,
the complexity of the FC performance self-estimation may potentially be large, especially
when accurate self-estimation is required. A low-complexity approximation applies the CLT,
but several other approaches are possible, with greater accuracy and tolerable complexity.
For the MV-rule, Section 4.1 of this paper will present six low-complexity approximations,
whose accuracy will be compared in Section 5.

For what concerns the number of samples required to obtain (at the SU) the desired
probabilities of detection and FA, a summary of relevant results is given in [15], which
considers two models for the PU signal received by the SUs, namely the deterministic
and random models. In the literature, the deterministic model is more popular [17,20,21],
and sometimes includes random fading [19,23,25,26] and diversity [9,24]. On the other side,
the random model for the PU signal [6] is less common. However, the deterministic model
is only appropriate when the SUs are perfectly synchronous and do not apply compressed
sensing. When the SU sensors are partially asynchronous or apply compressed sensing,
the EDs of the different SUs collect samples that are different in time; therefore, a random
PU signal model seems more reasonable. In any case, the results in [15] show that the exact
value for the required sample size is significantly different from the CLT-approximated
sample size obtained using a Gaussian approach for both deterministic and random models.
For the deterministic model, some improved approximations are proposed in [17,20,21],
but for the random model, there exist less results [64–66]. Section 4.2 of this paper will
present three low-complexity approaches, whose accuracy will be compared in Section 5.

3. System Model

First, in Section 3.1, we briefly describe the CSS system model without using math-
ematical equations, in order to give a quick general overview. Second, in Section 3.2, we
present a detailed statistical signal model based on mathematical equations, which are
instrumental for the performance derivation of the considered CSS scheme in Section 4.

3.1. Overview of Centralized Cooperative Sensing

We consider a CR network with multiple sensors acting as SUs and a centralized FC.
We assume that the SUs and the FC are located in a specific area. The aim is to sense the
presence or absence of a PU signal in a given frequency band. It is assumed that the PU
is located outside the area where the SUs and the FC are located. The centralized CSS
is performed in three phases. In the first phase, the SUs perform compressed spectrum
sensing using an ED. The sensing results of the SUs may be either binary hard decisions
or soft decisions. In the second phase, the SUs, or a fraction of them, report their sensing
results to the FC, which collects the received results. In the case of sensing results with
binary hard decisions, we refer to this second phase as HR. In the case of sensing results
with soft decisions, we refer to this second phase as SR. In the third phase, the FC makes a
final decision based on the reports received from the SUs. In the case of HR, the FC collects
the received binary decisions of the SUs and performs a final decision using a given rule,
such as the and-rule, the or-rule, or the MV-rule. In the case of SR, the FC collects the received
nonbinary results and performs a soft EGC to obtain the test statistics for the final decision.

3.2. Statistical Signal Model

We consider a CR network with K SUs equipped with EDs. As in [14], we assume
that the PU transmitter is located far away from the area where the K SUs are located. We
assume that all the SUs have the same activity rate a, with 0 ≤ a ≤ 1; hence, 1− a represents
the fraction of time of a generic SU staying in sleeping mode. Therefore, the number of
active sensors S can be expressed as

S = aK. (1)
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We assume that the activity rate a is chosen in such a way that S is always integer.
The S active sensors perform compressed sensing by observing the received signal in a
given bandwidth, while the remaining K − S sensors stay in sleeping mode. The signal
vector xi = [x1,i, . . . , xN,i]

T received by the ith active sensor can be expressed by

xi = αsi + wi, i = 1, . . . , S, (2)

where si = [s1,i, . . . , sN,i]
T is the signal vector sent by the PU received by the ith sensor and

wi = [w1,i, . . . , wN,i]
T represents the noise gathered by the ith sensor. The vector dimension

N in (2) is the sample size, assumed fixed for all the SUs. In (2), α represents the hypothesis
on the PU signal with α = 0 when the PU signal is absent (hypothesis H0) and α = 1
when the PU signal is present (Hypothesis H1). Both signal and noise are assumed to be
circularly symmetric complex Gaussian and white, with zero mean and with covariance
E{sisH

i } = σ2
s IN and E{wiwH

i } = σ2
wIN. Since the distance from the PU is similar for all

the sensors, σ2
s is assumed to be equal for all the sensors. In addition, the sensors are of the

same type and located in the same area; hence, σ2
w is assumed to be equal for all the SUs.

Originating from different devices, the signal and noise perceived by the ith sensor are
assumed to be uncorrelated, i.e., E{sinH

i } = 0N×N. We also assume that the signal and noise
received by different sensors are uncorrelated, i.e., E{sinH

l } = 0N×N, E{sisH
l } = 0N×N,

E{ninH
l } = 0N×N, for i ̸= l. These assumptions are reasonable, because different noise

terms are generated by different devices, and the signal terms received by the different SUs
are different copies of the same PU signal that is passed through different channels, each
one with a different delay and a different phase shift.

The ith sensor performs compressed sensing using an M × N compression matrix Φi,
where M < N, as expressed by

yi = Φixi = αΦisi + Φiwi, (3)

where yi = [y1,i, . . . , yM,i]
T is the compressed vector of the ith active sensor. We define

the compression ratio c = M/N, with 0 < c < 1, such that its inverse 1/c represents the
undersampling factor from the full sample size N to the compressed sample size M = cN.
We assume that the compression matrices have rank(Φi) = M and satisfy ΦiΦ

H
i = c−1IM.

A class of matrices that satisfy this condition is the set of the multi-coset samplers [5]. In this
case, ΦiΦ

H
l = 0M×M when the multi-coset time delay of the user i is different from the

user l.
The ED of the ith active sensor calculates the received signal energy Ei, expressed by

Ei = ||yi||2 = yH
i yi =

M

∑
m=1

|ym,i|2. (4)

In the case of HR, the ith active sensor compares Ei with a threshold η and produces
the binary decision Di expressed by

Di = 1 if Ei ≥ η, (5)

Di = 0 otherwise. (6)

Equation (5) is valid when the ith ED decides that a PU signal is present, whereas (6) is
valid when the ith ED decides that a PU signal is absent. We assume that the active sensors
use the same threshold η. The choice of this threshold will be discussed in Section 4.2,
where useful expressions are derived for the threshold self-computation. After the hard
decisions, the S active sensors report their binary decisions to the FC. Then, the FC collects
the S binary decisions and counts them according to

T =
S

∑
i=1

Di. (7)
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Therefore, T in (7) represents the number of EDs that detected the presence of a PU
signal. The FC makes the final decision on the presence of a PU signal by comparing T
with a threshold τ, as expressed by

α̂ = 1 if T ≥ τ, (8)

α̂ = 0 otherwise. (9)

Equation (8) is valid when the FC decides that a PU signal is present, whereas (9) is
valid when the FC decides that a PU signal is absent. Depending on the choice of the FC
threshold τ, in Section 4.1, we will consider three cases:

• And-rule, where τ = S;
• Or-rule, where τ = 1;
• MV-rule, where τ = (S + 1)/2, with S being an odd integer.

In the case of SR, we consider the unquantized case where the ith active sensor directly
sends its computed energy Ei to the FC. Then, the FC collects all the energy results using
equal-gain combining (EGC), leading to

T̃ =
S

∑
i=1

Ei =
S

∑
i=1

M

∑
m=1

|ym,i|2. (10)

Successively, the FC compares T̃ with a threshold τ̃ to detect the presence or absence
of a PU signal, as in (8) and (9). The choice of τ̃ will be discussed in Section 4.3. Note that,
in this case, the FC acts like a single ED that collects the cumulative energy of the S active
sensors that act in parallel: this is equivalent to a single ED that uses the SM compressed
samples of all the S active sensors.

4. Performance Analysis

We first consider the HR case by analyzing the FC performance in Section 4.1 and the
SU performance in Section 4.2. Successively, we consider the SR case in Section 4.3.

4.1. HR Case, FC Performance

In case of HR, the FC receives S binary random variables Di from the S active sensors.
We assume that these variables are correctly received by the FC. As explained in Section 3.2,
the active sensors are EDs with the same threshold and the same noise power; hence, the S
sensors have the same probability of FA, denoted by pFA. Therefore, each Di is a Bernoulli
random variable with Pr{Di = 1|H0} = pFA. The noise samples of different devices are
independent, and consequently, under the hypothesis H0, the random variable T in (7) has
a binomial distribution given by

Pr{T = i|H0} =

(
S
i

)
pi

FA(1 − pFA)
S−i. (11)

The probability of FA at the FC, denoted by πFA, can be calculated as

πFA = Pr{α̂ = 1|H0} =
S

∑
i=τ

(
S
i

)
pi

FA(1 − pFA)
S−i. (12)

We now consider the hypothesis H1. The S sensors are located in the same area, and
therefore, the SNR γ, defined as γ = σ2

s /σ2
w, is the same for all the S sensors, which have

the same probability of detection, denoted by pD. This means that each Di is a Bernoulli
random variable with Pr{Di = 1|H1} = pD. Since the S sensors receive the PU signal
from different channels, the PU signal samples received from different SUs are assumed to
be uncorrelated, i.e., E{sisH

l } = 0N×N for i ̸= l. Having modeled the signal as Gaussian,
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the vectors si and sl are also independent. Consequently, the random variable T under the
hypothesis H1 in (7) also has a binomial distribution given by

Pr{T = i|H1} =

(
S
i

)
pi

D(1 − pD)
S−i. (13)

The probability of detection at the FC, denoted by πD, can be calculated as

πD = Pr{α̂ = 1|H1} =
S

∑
i=τ

(
S
i

)
pi

D(1 − pD)
S−i. (14)

Our aim is to invert (12) and (14) to find the required number of active sensors S that
warranties a desired performance πFA and πD at the FC, for a fixed performance pFA and
pD of the SU sensors.

4.1.1. And-Rule

In the case of the and-rule, the FC threshold is τ = S, and hence (12) and (14) become,
respectively,

πFA = Pr{α̂ = 1|H0} = Pr{T = S|H0} = pS
FA, (15)

πD = Pr{α̂ = 1|H1} = Pr{T = S|H1} = pS
D. (16)

When S > 1, both probabilities at the FC are lower than the corresponding probabilities
at the SU. Therefore, the and-rule is appropriate for an FC that aims to reduce the probability
of FA, although this also reduces the probability of detection, with respect to the single SU.
Assuming that the FC requires a probability of FA πFA not larger than a target probability
π̄FA, and a probability of detection πD not smaller than a target probability π̄D, we obtain
that the number of active sensors S must satisfy

ln π̄FA

ln pFA
= Smin ≤ S ≤ Smax =

ln π̄D

ln pD
, (17)

where Smin and Smax denote the minimum and the maximum number of active sensors to
satisfy the FC performance. Note that (17) implies that pD ≥ π̄D. If the probabilities in (17)
are chosen incorrectly, it may be impossible to satisfy both inequalities in (17).

Bearing in mind (1), we can use (17) to find the requirement on the number of total
sensors K (both active and sleeping) for a fixed activity rate a, as expressed by

Smin

a
= Kmin ≤ K ≤ Kmax =

Smax

a
, (18)

where Smin and Smax are defined in (17). When low-cost sensors want to save energy by
staying in sleeping mode more often, their activity rate a reduces and consequently a larger
number of total sensors K is required due to the increase in both limits in (18). Alternatively,
if the number of total sensors K is fixed, we can find the required activity rate as

Smin

K
= amin ≤ a ≤ amax =

Smax

K
. (19)

Therefore, if the number of total sensors K reduces, the activity rate a should increase
to warranty the FC performance; in other words, each sensor must stay awake for a
longer time.

If we want both S and K to be fixed (and hence, also the activity rate a fixed), to war-
ranty the FC target performance, from (15) and (16), the probability performance of each
SU must satisfy
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pFA ≤ aK
√

π̄FA, (20)

pD ≥ aK
√

π̄D. (21)

4.1.2. Or-Rule

In the case of the or-rule, the FC threshold is τ = 1, and hence (12) and (14) become,
respectively

πFA = Pr{α̂ = 1|H0} = 1 − Pr{T = 0|H0} = 1 − (1 − pFA)
S, (22)

πD = Pr{α̂ = 1|H1} = 1 − Pr{T = 0|H1} = 1 − (1 − pD)
S. (23)

When S > 1, both probabilities at the FC are greater than the corresponding proba-
bilities at the SU. Therefore, the or-rule is appropriate for an FC that aims to increase the
probability of detection, although this also increases the probability of FA, with respect
to the single SU. Assuming that the FC requires a probability of FA πFA that is no larger
than a target probability π̄FA, and a probability of detection πD not smaller than a target
probability π̄D, we obtain that the number of active sensors S must satisfy

ln(1 − π̄D)

ln(1 − pD)
= Smin ≤ S ≤ Smax =

ln(1 − π̄FA)

ln(1 − pFA)
. (24)

The main difference of (24) with (17) is the exchanged role of the probabilities of FA,
which now determine the maximum number of active sensors Smax, and the probabilities
of detection, which now determine the minimum number of active sensors Smin. This
exchanged role can be clarified by defining the corresponding probabilities of missed
detection (MD), pMD = 1 − pD and πMD = 1 − πD, which in this or-rule case, play a similar
role played by the probabilities of FA when using the and-rule.

Again, we can use (24) to find the required number of total sensors K for a fixed activity
rate a, and the required activity rate when K is fixed: in both cases, the obtained equations
are identical to the corresponding Equations (18) and (19), but with the new definitions
of Smin and Smax provided by (24). Also, in this or-rule case, when low-cost sensors save
energy by frequently staying in sleeping mode, their activity rate a is low and consequently
a larger number of total sensors K is required; vice versa, if the number of total sensors K
reduces, the activity rate a should increase, leading to more power consumption of each
SU sensor.

When both S and K are fixed, to warranty the FC target performance, from (22)
and (23), the probability performance of each SU must satisfy

pFA ≤ 1 − aK
√

1 − π̄FA, (25)

pD ≥ 1 − aK
√

1 − π̄D. (26)

4.1.3. MV-Rule

The MV-rule uses a threshold τ = (S + 1)/2 with S odd, and this complicates the
inversion of the cumulative binomial functions (12) and (14). To perform the inversion,
we make use of the suitable approximations of the binomial distribution, most of which
have existed for decades. According to the CLT, a first approach is to use a GA obtained by
matching the first two moments, which lead to [54]
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S

∑
i= S+1

2

(
S
i

)
pi(1 − p)S−i ≈ Q

(√
(1 − 2p)2

4p(1 − p)
S

)
, p <

1
2

, (27)

S

∑
i= S+1

2

(
S
i

)
pi(1 − p)S−i ≈ 1 − Q

(√
(2p − 1)2

4p(1 − p)
S

)
, p ≥ 1

2
, (28)

where

Q(z) =
1√
2π

∫ +∞

z
e−t2/2dt (29)

is the right tail of the standard Gaussian probability density function, also known as
Gaussian Q-function. Assuming that the FC requires a probability of FA πFA not larger
than a target probability π̄FA, and a probability of detection πD that is no smaller than a
target probability π̄D from (12), (14) and (27), we obtain that the number of active sensors
S must satisfy

S ≥ Smin,FA =
4pFA(1 − pFA)

(1 − 2pFA)2

[
Q−1(π̄FA)

]2
, (30)

S ≥ Smin,D =
4pD(1 − pD)

(2pD − 1)2

[
Q−1(1 − π̄D)

]2
. (31)

Therefore, differently from the and-rule and the or-rule, there is no limit on the maxi-
mum number of active sensors. Note that the GA produces the simple results (30) and (31)
whose calculation only requires the inverse of the Q-function. It is also worth noting that,
when pFA = 1 − pD and π̄FA = 1 − π̄D, we have Smin,FA = Smin,D. Bounds on the number
of total sensors K and on the activity rate a can be found by incorporating (1) into (30)
and (31), similarly to the derivation of (18) and (19) from (17). Equations (30) and (31) can
be used to obtain the maximum probability of FA at the SU and the minimum probability
of detection at the SU, for a given number of active SUs S, as expressed by

pFA ≤ 1
2

{
1 − Q−1(π̄FA)√

S + [Q−1(π̄FA)]2

}
, (32)

pD ≥ 1
2

{
1 +

Q−1(1 − π̄D)√
S + [Q−1(1 − π̄D)]2

}
. (33)

A second possibility for the MV-rule is to use an arcsine approximation. According
to [55], the most accurate arcsine approximation of a binomial distribution is the one that
includes a Borges refinement, as expressed by

S

∑
i= S+1

2

(
S
i

)
pi(1 − p)S−i ≈ Q

([π

2
− 2 arcsin(

√
p)
]√

S +
1
3

)
, p <

1
2

, (34)

S

∑
i= S+1

2

(
S
i

)
pi(1 − p)S−i ≈ 1 − Q

([π

2
− 2 arcsin(

√
1 − p)

]√
S +

1
3

)
, p ≥ 1

2
, (35)

which, by (12) and (14), leads to

S ≥ Smin,FA =

[
2Q−1(π̄FA)

π − 4 arcsin(
√

pFA)

]2

− 1
3

, (36)

S ≥ Smin,D =

[
2Q−1(1 − π̄D)

π − 4 arcsin(
√

1 − pD)

]2

− 1
3

, (37)
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where we have assumed that the probabilities of FA are lower than one half and the
probabilities of detection are greater than one half. As for the GA, Equations (36) and (37)
permit the calculations of the maximum probability of FA at the SU and the minimum
probability of detection at the SU, for a given number of active SUs S, as expressed by

pFA ≤ 1
2

1 − sin

Q−1(π̄FA)√
S + 1

3

, (38)

pD ≥ 1
2

1 + sin

Q−1(1 − π̄D)√
S + 1

3

. (39)

A third invertible approximation of the cumulative binomial function was derived by
Camp and Paulson [55], as expressed by

S

∑
i= S+1

2

(
S
i

)
pi(1 − p)S−i ≈ Q

R(p)
9 − 2

S+1

3
√

2
S+1

, p <
1
2

, (40)

S

∑
i= S+1

2

(
S
i

)
pi(1 − p)S−i ≈ 1 − Q

R(1 − p)
9 − 2

S+1

3
√

2
S+1

, p ≥ 1
2

, (41)

where R(p) is the ratio defined as

R(p) =
1 − ( p

1−p )
1/3√

1 + ( p
1−p )

2/3
. (42)

We now use (12) with (14) and pFA < 1/2 and pD > 1/2, jointly with (40) and (41).
Assuming a probability of FA πFA < 1/2 at the FC that is no greater than the target
probability π̄FA and a probability of detection πD > 1/2 at the FC that is no lower than the
target probability π̄D, we obtain

S + 7
9√

S + 1
≥

√
2Q−1(π̄FA)

3R(pFA)
, (43)

S + 7
9√

S + 1
≥

√
2Q−1(1 − π̄D)

3R(1 − pD)
, (44)

which produces the results

S ≥ Smin,FA = U2(pFA, π̄FA) + U(pFA, π̄FA)

√
U2(pFA, π̄FA) +

4
9
− 7

9
, (45)

S ≥ Smin,D = U2(1−pD, 1−π̄D) + U(1−pD, 1−π̄D)

√
U2(1−pD, 1−π̄D) +

4
9
− 7

9
, (46)

where

U(p, π̄) =
Q−1(π̄)

3R(p)
, (47)

where Q−1(z) is the inverse of (29) and R(p) is defined in (42).
The three methods discussed so far (Gaussian, arcsine, and Camp–Paulson approxima-

tions) directly approximate the binomial distribution. Another set of approximations can be
obtained by exploiting the relation between the binomial distribution and the incomplete
beta function, as expressed in Equation 26.5.24 of [53]:
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S

∑
i=τ

(
S
i

)
pi(1 − p)S−i = Ip(τ, S − τ + 1), (48)

where Ip(z1, z2) is the (normalized) incomplete beta function defined as [53]

Ip(z1, z2) =
1

B(z1, z2)

∫ p

0
tz1−1(1 − t)z2−1dt, (49)

where B(z1, z2) is the beta function [53]. The MV-rule uses a threshold τ = (S + 1)/2
with S odd: this leads to Ip(

S+1
2 , S+1

2 ) in (48), for which several invertible approximations
exist [53,56–59]. The method of Fisher [56,57] uses the approximation

S

∑
i= S+1

2

(
S
i

)
pi(1 − p)S−i ≈ Q

(
L(p)

√
S
)

, p <
1
2

, (50)

S

∑
i= S+1

2

(
S
i

)
pi(1 − p)S−i ≈ 1 − Q

(
L(1 − p)

√
S
)

, p ≥ 1
2

, (51)

where L(p) is defined as

L(p) =
1
2

ln
1 − p

p
. (52)

Using (12) and (14) with (50) and (51), and assuming pFA < 1/2, pD > 1/2,
πFA ≤ π̄FA < 1/2 and πD ≥ π̄D > 1/2, we obtain

S ≥ Smin,FA =

[
Q−1(π̄FA)

L(pFA)

]2

, (53)

S ≥ Smin,D =

[
Q−1(1 − π̄D)

L(1 − pD)

]2

. (54)

If we assume a given number of active sensors S, the maximum probability of FA
required at the SU and the minimum probability of detection required at the SU are given by

pFA ≤ 1
1 + exp{2Q−1(π̄FA)/

√
S}

, (55)

pD ≥ exp{2Q−1(1 − π̄D)/
√

S}
1 + exp{2Q−1(1 − π̄D)/

√
S}

, (56)

where π̄FA and π̄D are the FC target probability of FA and the FC target probability of
detection, respectively.

On the other hand, the method of Cochran [56,57] refines the method of Fisher, such
that the approximation of the binomial sum becomes

S

∑
i= S+1

2

(
S
i

)
pi(1 − p)S−i ≈ Q

 L(p)√
1 + 1

6 L2(p)

√
S +

1
2

, p <
1
2

, (57)

S

∑
i= S+1

2

(
S
i

)
pi(1 − p)S−i ≈ 1 − Q

 L(1 − p)√
1 + 1

6 L2(1 − p)

√
S +

1
2

, p ≥ 1
2

, (58)

where L(p) is defined in (52). Note that, from (52), L(1 − p) = −L(p), hence
L2(1 − p) = L2(p). Using the same assumptions pFA < 1/2, pD > 1/2, πFA ≤ π̄FA < 1/2
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and πD ≥ π̄D > 1/2, (57) and (58) jointly with (12) and (14) lead to the following bounds
for the minimum number of active sensors:

S ≥ Smin,FA =

[
Q−1(π̄FA)

L(pFA)

]2

+
[Q−1(π̄FA)]

2

6
− 1

2
, (59)

S ≥ Smin,D =

[
Q−1(1 − π̄D)

L(1 − pD)

]2

+
[Q−1(1 − π̄D)]

2

6
− 1

2
. (60)

In this case, the required probability of FA and the required probability of detection at
the SU, assuming a fixed number of active sensors S, are

pFA ≤ 1

1 + exp
{

2Q−1(π̄FA)/
√

S − 1
6{[Q−1(π̄FA)]2 − 3}

} , (61)

pD ≥
exp

{
2Q−1(1−π̄D)/

√
S − 1

6{[Q−1(1−π̄D)]2 − 3}
}

1 + exp
{

2Q−1(1−π̄D)/
√

S − 1
6{[Q−1(1−π̄D)]2 − 3}

} , (62)

where π̄FA and π̄D are again the target probabilities (of FA and of detection, respectively)
required at the FC.

Another approximation is the one proposed by Carter [58,59] which, with our notation,
can be expressed as

S

∑
i= S+1

2

(
S
i

)
pi(1−p)S−i ≈ Q


√√√√√3

√(S− 1
2

)2
+

2
3

L2(p)S2 − S +
1
2


, p <

1
2

, (63)

S

∑
i= S+1

2

(
S
i

)
pi(1−p)S−i ≈ 1−Q


√√√√√3

√(S− 1
2

)2
+

2
3

L2(p)S2 − S +
1
2


, p ≥ 1

2
, (64)

where L(p) is defined in (52). In (64), we used L2(p) = L2(1 − p). Using again pFA < 1/2,
pD > 1/2, πFA ≤ π̄FA < 1/2 and πD ≥ π̄D > 1/2, we can join (12) and (14) with (63)
and (64) to obtain the minimum number of required sensors expressed by

S ≥ Smin,FA =
1
2

[
Q−1(π̄FA)

L(pFA)

]2{
1 +

√
1 + 2L2(pFA)

{
1
3
− 1

[Q−1(π̄FA)]2

}}
, (65)

S ≥ Smin,D =
1
2

[
Q−1(1−π̄D)

L(1−pD)

]2{
1 +

√
1 + 2L2(pD)

{
1
3
− 1

[Q−1(1−π̄D)]2

}}
, (66)

where π̄FA and π̄D are the target probabilities required at the FC. When the number of
active sensors S is fixed, the required performance of the SU sensors can be expressed by

pFA ≤ 1

1 + exp
{

2Q−1(π̄FA)
√

S + 1
6{[Q−1(π̄FA)]2 − 3}

/
S
} , (67)

pD ≥
exp

{
2Q−1(1−π̄D)

√
S + 1

6{[Q−1(1−π̄D)]2 − 3}
/

S
}

1 + exp
{

2Q−1(1−π̄D)
√

S + 1
6{[Q−1(1−π̄D)]2 − 3}

/
S
} . (68)
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Summarizing, for the MV-rule, we presented six approximations, and each one gives a
couple of lower bounds on the minimum number of required active sensors S for a tar-
get performance at the FC, expressed by (30) and (31), (36) and (37), (45) and (46), (53)
and (54), (59) and (60), as well as (65) and (66). The two bounds in each couple become equal
(Smin,FA = Smin,D) when pD = 1− pFA and π̄D = 1− π̄FA. Similar bounds on the minimum
number of required total sensors and on the activity rate can be obtained using (1). The accu-
racy of the above six approximations is compared in Section 5, using numerical examples.

4.2. HR Case, SU Performance

Section 4.1 has detailed the performance of the FC that receive HR information from
the SU, and proposed analytical expressions that linked the probability of FA (and of
detection) of the FC to the number of sensors and to the probability of FA (and of detection)
of the active sensors. In contrast, this Section 4.2 focuses on the performance of the SU
sensors with HR and provides analytical expressions that link the probability of FA (and of
detection) of the SU sensor to the number of sensors and to the SNR.

Assuming that the ith SU is equipped with an ED, under the hypothesis H0, the energy
Ei in (4) is a chi-squared random variable, with a number of degrees of freedom equal
to 2M = 2cN, where N is the total number of samples and c is the compression ratio.
Therefore, according to (5), the probability of FA of the SU sensor can be expressed as

pFA = Pr{Di = 1|H0} = 1 − F2M

(
2η

σ2
w

)
, (69)

where

F2M(z) =
1

Γ(M)

∫ z/2

0
tM−1e−tdt, (70)

where Γ(M) denotes the gamma function [53]. According to (69), the ED threshold is
expressed by

η =
σ2

w
2

F−1
2M(1 − pFA), (71)

where F−1
2M(z) is the inverse function of F2M(z) with respect to the argument under parentheses.

Under the hypothesis H1, the energy Ei in (4) is a chi-squared random variable with
the same number of degrees of freedom than under H0, but with increased power due to
the presence of a PU signal. Therefore, according to (5), the probability of detection of the
SU sensor can be expressed as

pD = Pr{Di = 1|H1} = 1 − F2M

(
2η

σ2
s + σ2

w

)
. (72)

By inserting (71) into (72), we obtain the receiver operating characteristic (ROC) of the
SU sensor as

pD = 1 − F2M

(
F−1

2M(1 − pFA)

1 + γ

)
, (73)

where γ = σ2
s /σ2

w is the sensing SNR.
Our aim is to invert (73) to find the required number of samples N that warranties

a desired performance pFA and pD at the SU for a fixed SNR. In principle, we could use
an iterative algorithm to find the minimum compressed sample size M that warranties
the SU performance, and then calculate the required sample size as N = M/c. However,
this iterative algorithm would require the multiple evaluation of integral functions like
F2M(z) and F−1

2M(z); hence, this approach is not appropriate for low-complexity SU sensors
that want to self-calculate the required sample size. Therefore, whenever possible, we look
for invertible low-complexity accurate approximations of the ROC (73). When iterative
algorithms are unavoidable, we resort to the low-complexity approximations of F2M(z) and
F−1

2M(z). Specifically, we consider the three following approaches.
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• Standard GA, where a chi-squared random variable is approximated by a Gaussian
random variable using the CLT (see [15] and references therein).

• Power-of-Gaussian approximation (PGA), where a chi-squared random variable is ap-
proximated by the power of a Gaussian random variable [60,61,64], with a suitable
power exponent.

• Polynomial approximation (PA), where a polynomial of the rth root of a chi-squared ran-
dom variable is approximated by a Gaussian random variable [62,63], using suitable
degree and coefficients.

A comparison of these three approaches for non-cooperative non-compressed sensing
was introduced in the conference paper [65]. Herein, we extend the earlier preliminary
results of [65,66] and derive a complete performance analysis valid for all three approaches
when applied to compressed sensing.

4.2.1. Standard GA

The standard GA can be obtained by approximating (70) as [15]

F2M(z) ≈ 1 − Q
([ z

2M
− 1
]√

M
)

, (74)

which leads to the approximated inverse function

F−1
2M(z) ≈ 2M

[
Q−1(1 − z)√

M
+ 1
]

. (75)

Equations (75) and (71) allow the ED to self-compute the threshold as

η ≈ Mσ2
w

[
Q−1(pFA)√

M
+ 1
]

. (76)

Note that the approximated expression (76) is much simpler than the exact expres-
sion (71), because the inverse Q-function is a one-dimensional function that is easier to
compute than F−1

2M(1 − pFA). Equation (74) can be combined with (73) to obtain the per-
formance of the SU sensor: when the number of samples N and the SNR γ are fixed, (73)
and (74) lead to the GA ROC

pD ≈ Q

(
Q−1(pFA)− γ

√
cN

1 + γ

)
. (77)

When the SU probabilities of FA pFA and detection pD are fixed, from (77), we obtain
the required number of samples N as a function of the SNR γ and of the compression ratio
c, as expressed by

N ≥ 1
c

[
Q−1(pFA)− (1 + γ)Q−1(pD)

γ

]2

. (78)

Moreover, when the SU probabilities of FA pFA and detection pD are fixed, from (77)
we obtain the required SNR γ as a function of the sample size N and of the compression
ratio c, as expressed by

γ ≥ Q−1(pFA)− Q−1(pD)

Q−1(pD) +
√

cN
. (79)

4.2.2. PGA

In general, GA approaches can only be accurate in the middle of the Gaussian shape,
or when the number of samples is large. To improve the accuracy near the tails of a
probability density function (pdf), PGA approaches can be used, especially when the
number of samples is low. In a nutshell, PGA approaches replace a chi-squared random
variable with the rth power of a Gaussian random variable, with r integer. These PGA
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approaches are also called root transformations, because a Gaussian random variable
approximates the rth root of a chi-squared random variable. When r = 1, PGA reduces to
GA. The improved accuracy of PGA approaches with r > 1 has been proven in [61] and
in [62]. Specifically, [61] has shown that the Kullback–Leibler divergence between the pdf
of the rth root of a chi-squared random variable and the Gaussian pdf is minimized for
3 ≤ r ≤ 4; in addition, [62] has compared the cumulants of the two pdfs, showing that
the best match is obtained when 2 ≤ r ≤ 4. Therefore, it is expected that a performance
analysis based on a PGA approach will be more accurate than a performance analysis based
on the GA.

The PGA can be obtained by approximating (70) as [60]

F2M(z) ≈ 1 − Q
([

r

√
z

2M
− 2Mr2 − r + 1

2Mr2

]
r
√

M
)

, (80)

which can be used in place of (74) to improve the accuracy. In this case, the inverse function
is approximated as

F−1
2M(z) ≈ 2M

[
Q−1(1 − z)

r
√

M
+

2Mr2 − r + 1
2Mr2

]r

. (81)

Therefore, combining (81) with (71), the ED can easily self-compute its threshold as

η ≈ Mσ2
w

[
Q−1(pFA)

r
√

M
+

2Mr2 − r + 1
2Mr2

]r

, (82)

which coincides with (76) when r = 1. Equation (80) can be combined with (73) to obtain
the performance of the SU sensor: when the number of samples N and the SNR γ are fixed,
after some calculus, (73) and (80) lead to the PGA ROC as

pD ≈ Q

Q−1(pFA)− ( r
√

1 + γ − 1)
(

r
√

cN − r−1
2r
√

cN

)
r
√

1 + γ

. (83)

When r = 1, (83) reduces to (77). When the SU probabilities of FA pFA and detection
pD are fixed, from (83), we obtain the required number of samples N as a function of the
SNR γ and of the compression ratio c, as expressed by

N ≥ 1
c

(
br +

r − 1
2r2 +

√
b2

r +
r − 1

r2 br

)
, (84)

where

br =
1
2

[
Q−1(pFA)− r

√
1 + γQ−1(pD)

r( r
√

1 + γ − 1)

]2

. (85)

In addition, when the SU probabilities of FA pFA and detection pD are fixed, from (83),
we obtain the required SNR γ as a function of the sample size N and of the compression
ratio c as expressed by

γ ≥

Q−1(pFA) + r
√

cN − r−1
2r
√

cN

Q−1(pD) + r
√

cN − r−1
2r
√

cN

r

− 1. (86)

When r = 1, (84) reduces to (78), while (86) boils down to (79).

4.2.3. PA

PA approaches try to increase the accuracy of PGA [62,63] by constructing a polynomial
expression whose variable is the rth root of a chi-squared random variable; then, this



Sensors 2024, 24, 661 15 of 27

polynomial is approximated by a Gaussian random variable. Therefore, a PA approach is
also called a linear combination of power (or root) transformations.

A first PA, originally developed by Goria [62], is obtained by first defining the fourth
root transformation

x = 4

√
z

2M
, (87)

where z is a chi-squared random variable with 2M degrees of freedom, and then choosing
the polynomial expression

g = x2 + 4x. (88)

Successively, g in (88) is approximated as a Gaussian random variable with a mean
5 − 1

2M and variance 9
4M . Consequently, the chi-squared distribution (70) is approximated as

F2M(z) ≈ 1 − Q
([√

z
2M

+ 4 4

√
z

2M
−
(

5 − 1
2M

)]
2
3

√
M
)

, (89)

which can be inverted with respect to z as

F−1
2M(z) ≈ 2Mv4(1 − z, M), (90)

where

v(z, M) =

√
3

2
√

M
Q−1(z) + 9 − 1

2M
− 2. (91)

Hence, using (90) together with (71), the threshold can be computed by the SU as

η ≈ Mσ2
wv4(pFA, M). (92)

Note that (92) is much easier to compute than (71). From (73), the approximated ROC
is given by

pD ≈ Q

(
2
√

cN
3

[
v2(pFA, cN)√

1 + γ
+

4v(pFA, cN)
4
√

1 + γ
− 5 +

1
2cN

])
. (93)

When the SU probabilities of FA pFA and detection pD are fixed, from (93), we obtain
the required SNR γ as a function of the sample size N and of the compression ratio c,
as expressed by

γ ≥
[

v(pFA, cN)

v(pD, cN)

]4

− 1, (94)

where v(pFA, cN) and v(pD, cN) are calculated using (91).
When pFA, pD, and the SNR γ are fixed, the approximated ROC (93) can also be used to

obtain the required number of samples N as a function of the compression ratio c. A closed-
form expression for the required sample size N would be complicated; therefore, we resort
to an iterative algorithm. Since N = M/c, the iterative algorithm looks for the minimum
compressed sample size M that satisfies a given pFA and a given pD. The algorithm
starts with a tentative value M = 1, and calculates two possible thresholds ηFA and ηD,
as expressed by

ηFA = Mσ2
wv4(pFA, M), (95)

ηD = Mσ2
w(1 + γ)v4(pD, M), (96)

where the function v(z, M) is defined in (91). Equation (95) represents the minimum value
of the ED threshold to warranty a probability of FA pFA using M samples, while (96)
is the maximum value of the ED threshold to warranty a probability of detection pD
using M samples. If ηFA ≤ ηD, then any threshold η in the interval ηFA ≤ η ≤ ηD
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satisfies both probability requirements; hence, the tentative M is a sufficient number
for the required compressed sample size. Instead, if ηFA > ηD, then it is impossible
to find a unique threshold η that satisfies both probability requirements, and hence the
tentative M is insufficient. Therefore, when ηFA > ηD, the iterative algorithm doubles the
tentative value of M, and performs a new computation of (95) and (96). The two updated
thresholds are compared again, and, if ηFA > ηD again, then the algorithm doubles again
the tentative value of M. After a finite number of doublings, the algorithm finds a value
of M = Mmax such that ηFA ≤ ηD, and this value can be used to set an upper bound
Nmax = Mmax/c on the required sample size. At this point, the minimum value of M
that satisfies both probability requirements surely lies in the interval Mmax/2 < M ≤
Mmax, so the iterative algorithm can use an interval-halving method to refine the search.
Consequently, the algorithm sets a new tentative value M = 3Mmax/4, which is in the
midway of the interval Mmax/2 < M ≤ Mmax, and updates the two thresholds (95) and (96)
again. If ηFA > ηD, then the new search interval reduces to 3Mmax/4 < M ≤ Mmax,
whereas, if ηFA ≤ ηD, then the new search interval reduces to Mmax/2 < M ≤ 3Mmax/4.
Then, the algorithm continues again by selecting a tentative M in the midway of the
resulting interval, and by updating the two thresholds. The iterative algorithm ends when
the size of the search interval becomes equal to one, say Mfinal − 1 < M ≤ Mfinal, yielding
the compressed sample size M = Mfinal as the final solution. At the end of the iterative
algorithm, the required sample size is set to N = Mfinal/c. It is noteworthy that the iterative
algorithm has logarithmic complexity with respect to Mfinal: the number of iterations is
upper bounded by 2⌈log2(Mfinal)⌉, where ⌈x⌉ is the integer ceiling function, because the
number of doublings is upper bounded by ⌈log2(Mfinal)⌉, while the number of halvings is
upper bounded by ⌈log2(Mfinal)⌉ − 1.

A second PA, originally developed by Canal [63], is obtained by first defining the
sixth-root transformation

x = 6

√
z

2M
(97)

and then choosing the polynomial

g =
x3

3
− x2

2
+ x. (98)

Successively, g in (98) is approximated as a Gaussian random variable with the mean
5
6 − 1

18M and variance 1
36M . Consequently, the chi-squared distribution (70) is approxi-

mated as

F2M(z) ≈ 1 − Q
([

1
3

√
z

2M
− 1

2
3

√
z

2M
+ 6

√
z

2M
−
(

5
6
− 1

18M

)]
6
√

M
)

, (99)

which can be inverted, using Cardano’s method for cubic equations, as

F−1
2M(z) ≈ 2Mq6(1 − z, M), (100)

where

q(z, M) =
1+ 3
√√

q̄2(z, M)+27+q̄(z, M)− 3
√√

q̄2(z, M)+27−q̄(z, M)

2
, (101)

q̄(z, M) =
2√
M

Q−1(z) + 5 − 2
3M

. (102)

Consequently, using (71) and (100), in this second case, the ED can obtain the thresh-
old as

η ≈ Mσ2
wq6(pFA, M). (103)
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From (73), the approximated ROC is given by

pD ≈ Q
(

6
√

cN
[

q3(pFA, cN)

3
√

1 + γ
− q2(pFA, cN)

2 3
√

1 + γ
+

q(pFA, cN)
6
√

1 + γ
− 5

6
+

1
18cN

])
. (104)

When the SU probabilities of FA pFA and detection pD are fixed, (104) gives the required
SNR γ as a function of the sample size N and of the compression ratio c, as expressed by

γ ≥
[

q(pFA, cN)

q(pD, cN)

]6

− 1, (105)

where q(pFA, cN) and q(pD, cN) are calculated using (101) and (102). When pFA, pD, and the
SNR γ are fixed, the approximated ROC (104) can be used to obtain the required number
of samples N as a function of the compression ratio c, using the same iterative algorithm
detailed above, provided that the two thresholds ηFA and ηD are updated using

ηFA = Mσ2
wq6(pFA, M), (106)

ηD = Mσ2
w(1 + γ)q6(pD, M), (107)

instead of (95) and (96).

4.3. SR Case, FC Performance

This section considers the SR case, where the SUs do not make any hard decision and
transmit soft information to the FC, specifically the energy values collected by the EDs.
According to (10), the FC combines the received energy values using EGC, therefore the FC
acts like a single ED with MS samples, where S is the number of active SUs and M is the
compressed sample size of each ED.

Under the hypothesis H0, the variable T̃ in (10) is a chi-squared random variable with
2MS = 2acKN degrees of freedom, where a is the activity factor, c is the compression ratio,
K is the total number of users, and N is the total number of samples of each ED. Therefore,
the probability of FA of the FC can be expressed as

πFA = Pr{T̃ ≥ τ̃|H0} = 1 − F2acKN

(
2τ̃

σ2
w

)
, (108)

hence, the threshold τ̃ of the FC can be expressed by

τ̃ =
σ2

w
2

F−1
2acKN(1 − πFA). (109)

Under the hypothesis H1, the variable T̃ in (10) is again a chi-squared random variable
with 2MS = 2acKN degrees of freedom; therefore, the probability of detection of the FC
can be expressed as

πD = Pr{T̃ ≥ τ̃|H1} = 1 − F2acKN

(
2τ̃

σ2
s + σ2

w

)
, (110)

hence, the ROC is expressed by

πD = 1 − F2acKN

(
F−1

2acKN(1 − πFA)

1 + γ

)
, (111)

where γ = σ2
s /σ2

w is the sensing SNR of each ED.
Also, for the performance of the FC with SR, we can use the same approximations

used in Section 4.2, i.e., GA, PGA, and PA. Below, we summarize the PGA approach, which
includes the GA as a special case when r = 1. The analysis could be extended to the PA
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case with minor modifications, and therefore, for the sake of brevity, we omit the details for
the PA case.

The PGA is obtained as

F2acKN(z) ≈ 1 − Q
([

r

√
z

2acKN
− 2acKNr2 − r + 1

2acKNr2

]
r
√

acKN
)

, (112)

while the FC threshold can be computed as

τ̃ ≈ acKNσ2
w

[
Q−1(πFA)

r
√

acKN
+

2acKNr2 − r + 1
2acKNr2

]r

. (113)

Equation (112) permits the expression of the ROC as

πD ≈ Q

Q−1(πFA)− ( r
√

1 + γ − 1)
(

r
√

acKN − r−1
2r
√

acKN

)
r
√

1 + γ

. (114)

In this SR case, the product between the total number of sensors K and the total
number of samples N of each ED is bounded by

KN ≥ 1
ac

(
b̃r +

r − 1
2r2 +

√
b̃2

r +
r − 1

r2 b̃r

)
, (115)

where

b̃r =
1
2

[
Q−1(πFA)− r

√
1 + γQ−1(πD)

r( r
√

1 + γ − 1)

]2

. (116)

Equation (114) also gives the required SNR γ as

γ ≥

Q−1(πFA) + r
√

acKN − r−1
2r
√

acKN

Q−1(πD) + r
√

acKN − r−1
2r
√

acKN

r

− 1. (117)

In all Equations (112)–(117), the value of r can be selected as desired.

5. Numerical Results: Validation and Discussion

We use numerical results to validate the performance analysis of Section 4. Specifically,
we want to compare the accuracy of the different approximations used in our proposed
performance analysis.

We start with the FC performance in the HR case. For the and-rule and or-rule cases,
the performance analysis is exact, so there is no approximation to validate. Hence, we focus
on the MV-rule, where approximations are present. Figure 1 shows the minimum number
of required active sensors Smin,FA as a function of the SU probability of FA pFA to obtain
a probability of FA at the FC equal to πFA = 10−7. Since the MV-rule requires an odd
integer number of sensors, Smin,FA has been rounded accordingly, using the ceiling function.
Figure 1 reveals that the Carter approximation (65) provides the best estimate of the exact
number of required active sensors. Also, the approximations (53) and (59), derived from
Fisher and Cochran studies, respectively, produce good results in agreement with the exact
results. On the contrary, the GA (30) underestimates the minimum number of required
active sensors, while the arcsine approximation (36) overestimates the number of active
sensors. Therefore, the approximations based on the incomplete beta distribution (Fisher,
Cochran, and Carter) are more accurate than the approximations based on the binomial
distribution (GA, arcsine, and Camp–Poulson). We verified that this behavior is a general
result that is also valid for other values of πFA, and also valid for Smin,D, whose results (not
shown in this paper for the sake of brevity) have the same trends as those of Smin,FA shown
in this paper.
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Figure 1. Required number of active sensors to obtain a probability of FA equal to πFA = 10−7 at the
FC in the HR case. All the results are rounded towards the next odd integer.

To better appreciate the accuracy of the different approximations, Figure 2 displays the
same approximated performance of Figure 1, but without applying the rounding operation
to the next odd integer, leading to a non-integer number of required active sensors Smin,FA.
In this case, since the binomial distribution provides integer results, the exact number of
required active sensors has been obtained by replacing the binomial distribution with the
corresponding incomplete beta distribution, which provides non-integer results. Figure 2
confirms that the Carter approximation provides the best estimate of the required number
of active sensors, and that the accuracy of the Carter approximation is greater than those of
the other approximations (including Fisher and Cochran ones). Note that the GA provides
accurate results only when the exact number of required active sensors is large, as predicted
by the CLT. Consequently, the use of a GA performance analysis should be avoided when
the number of active sensors is low.
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Figure 2. Required number of active sensors to obtain a probability of FA equal to πFA = 10−7 at the
FC, in the HR case. All the results are non-integer.
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Figure 3 and Table 1 exhibit the minimum number of total sensors Kmin,FA required
as a function of the SU probability of FA pFA, when the activity rate is a = 1/20 and the
probability of FA at the FC is equal to πFA = 10−7. The results for the active number of
sensors are rounded towards the next odd integer; therefore, all the results in Figure 3
and Table 1 are multiples of 1/a = 20. The results in Figure 3 are similar to those in
Figure 1, but now the number of required sensors is larger, because most of the sensors are
in sleeping mode: when a = 1/20, only 5% of the total sensors are active.

10-4 10-3 10-2 10-1

SU probability of false alarm  p
 FA

101

102

103

R
eq

ui
re

d 
to

ta
l s

en
so

rs
 

 K

Exact
GA
Arcsine
Camp-Poulson
Fisher
Cochran
Carter

Figure 3. Required number of total sensors to obtain a probability of FA equal to πFA = 10−7 at
the FC, when the activity rate is a = 1/20, in the HR case. All the results are rounded such that the
number of active sensors is an odd integer.

Table 1. Required number of total sensors in Figure 3.

pFA = 10−4 pFA = 10−3 pFA = 10−2 pFA = 10−1

Exact 60 100 180 540
GA 20 20 60 340

Arcsine 220 260 300 660
Camp–Poulson 140 140 220 540

Fisher 60 60 140 460
Cochran 140 140 220 540
Carter 60 100 180 540

We now consider the SU performance in the HR case. Specifically, we want to assess the
accuracy of GA, PGA, and PA approaches when the SU ED self-estimates its probability of
detection and the number of total samples N. Figure 4 illustrates the ROC approximations
obtained with the different approaches, when the total number of samples is N = 60,
the compression ratio is c = 1/10, and the sensing SNR is γ = 8 dB. Figure 4 points out that
both the PA approaches give an accurate estimation of the SU probability of detection pD.
The PGA approach yields a good approximation in the cubic case (r = 3), while the other
powers (r = 2 and r = 4) provide less accurate results. The GA is the worst approximation,
since the number of compressed samples is too low (M = cN = 6) for invoking the CLT.
Similar results would be obtained with different values of the number of samples and of
the SNR.
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Figure 4. ROC of the SU ED when the number of total samples is N = 60, the compression ratio is
c = 1/10, and the sensing SNR is γ = 8 dB.

Figure 5 highlights the results of Figure 4 by showing the relative error (RE) ϵrel on the
ROC, defined by

ϵrel =
|p(approx)

D − p(exact)
D |

p(exact)
D

, (118)

where p(exact)
D is the exact probability of detection, and p(approx)

D is its approximation.
Figure 5 gives an idea about the trend of the PA approaches, whose RE reduces for the
increasing probability of FA. The same behavior happens for the PGA with r = 3, which
has a RE below 10−2 like the PA approaches. On the contrary, the GA and the PGA with
r = 2 and r = 4 have a non-monotonic RE, which can exceed 10−2 in this scenario. Note
that, for some specific values of pFA, the RE shown in Figure 5 can be quite low also for
GA and PGA with r = 2 and r = 4: this behavior only happens for the selected values of
pFA, identified by the intersection between the approximated ROC and the exact ROC in
Figure 4. Therefore, occasionally, GA and PGA with r = 2 and r = 4 can produce accurate
results, but this accuracy is not generally valid for all the pFA values.
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Figure 5. RE on the ROC of the SU ED when the number of total samples is N = 60, the compression
ratio is c = 1/10, and the sensing SNR is γ = 8 dB.
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Figure 6 and Table 2 present the results concerning the approximated number of
total samples N self-estimated by the SU ED when the probability of FA is pFA = 10−4,
the probability of detection is pD = 1 − 10−3, and the compression ratio is c = 1/10.
The results for the compressed number of samples are rounded towards the next integer;
therefore, all the results in Figure 6 and Table 2 are multiples of 1/c = 10. In this case,
the PA approaches and the PGA approaches with r = 3 and r = 4 yield accurate estimates
of the number of samples N. It is worth noting that, in these PA cases, the required number
of samples are obtained using the iterative algorithm described in Section 4.2.3, while the
PGA results are derived using (84). In addition, note that, at a large SNR γ, the GA largely
overestimates the required number of samples, thereby increasing the sensing time more
than necessary. This would consequently reduce the capacity of transmission of the SU due
to the unnecessary additional time spent for sensing.
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Figure 6. Required number of total samples to obtain a probability of FA equal to pFA = 10−4 and a
probability of detection equal to pD = 1 − 10−3 at the SU, when the compression ratio is c = 1/10,
in the HR case.

Table 2. Required number of total samples in Figure 6.

SNR = 0 dB SNR = 10 dB SNR = 20 dB SNR = 30 dB

Exact 960 90 30 20
GA 1000 160 160 160

PGA, r = 2 960 100 40 30
PGA, r = 3 960 90 30 20
PGA, r = 4 960 90 30 20
PA (Goria) 960 90 30 20
PA (Canal) 960 90 30 20

We now conclude this section by focusing on the SR case. In this case, only the FC
performance is of interest, because the SUs do not make any hard decision. Figure 7
underlines the required product KN as a function of the sensing SNR γ, where K is the
total number of sensors, and N is the total number of samples of each SU. An activity
rate a = 1/4 and a compression ratio c = 1/3 are assumed. In this case, the exact result
is rounded using the ceiling function, such that the number S of active sensors times the
number of compressed samples M is integer, while the approximated values are non-integer.
Figure 7 emphasizes that both PGA approaches with r = 3 and r = 4 provide accurate
results, with minor differences due to the rounding operation. To simplify the readability
of Figure 7, the PA results are not shown: in this SR case, an iterative algorithm would
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produce PA results very close to the PGA results with r = 3, similarly to the HR case of
Figure 6. Again, the GA approach largely overestimates the product KN, leading to an
incorrect estimation with either too many required sensors, or too many required samples
per sensor, or both. For instance, when γ = 15 dB, the product KN estimated by the GA is
more than doubled with respect to the exact value, as shown in Figure 7.
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Figure 7. Required product between the number of total sensors K and the number of total sam-
ples N to obtain a probability of FA equal to πFA = 10−6 and a probability of detection equal to
πD = 1 − 10−5 at the FC, when the activity rate is a = 1/4 and the compression ratio is c = 1/3,
in the SR case. The exact result is rounded such that the number of active sensors times the number
of compressed samples is integer, while the approximated values are non-integer.

6. Conclusions

This paper has proposed useful analytical approximations that characterize the per-
formance of centralized CSS. Specifically, this paper has derived accurate low-complexity
closed-form expressions that calculate the required number of sensors and the required
number of samples as a function of the probability of detection and the probability of FA
of the FC and of the sensors. In contrast with most of the existing literature, this paper
does not leverage on the CLT, therefore the proposed analysis is accurate even when the
number of active sensors is low and when the sample size is reduced. Therefore, each
sensor and the FC can self-compute its own performance with reduced complexity. Future
work may extend the proposed approach to sensors equipped with multiple antennas that
sense multiple frequency bands.
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The following abbreviations are used in this manuscript:

CLT Central limit theorem
CR Cognitive radio
CSS Cooperative spectrum sensing
ED Energy detector
EGC Equal-gain combining
FA False alarm
FC Fusion center
GA Gaussian approximation
HR Hard reporting
MD Missed detection
MV Majority voting
PA Polynomial approximation
pdf Probability density function
PGA Power-of-Gaussian approximation
PU Primary user
RE Relative error
ROC Receiver operating characteristic
SNR Signal-to-noise ratio
SR Soft reporting
SU Secondary user
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