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Abstract: Automatic fall detection plays a significant role in monitoring the health of senior citizens.
In particular, millimeter-wave radar sensors are relevant for human pose recognition in an indoor
environment due to their advantages of privacy protection, low hardware cost, and wide range of
working conditions. However, low-quality point clouds from 4D radar diminish the reliability of fall
detection. To improve the detection accuracy, conventional methods utilize more costly hardware. In
this study, we propose a model that can provide high-quality three-dimensional point cloud images
of the human body at a low cost. To improve the accuracy and effectiveness of fall detection, a system
that extracts distribution features through small radar antenna arrays is developed. The proposed
system achieved 99.1% and 98.9% accuracy on test datasets pertaining to new subjects and new
environments, respectively.

Keywords: radar; fall detection; machine learning

1. Introduction

According to a report from the World Health Organization, approximately 28–35% of
older adults fall each year, leading to serious injury or death [1]. Therefore, intelligently
detecting falls in indoor conditions can reduce the risk of the elderly injuring themselves.

Various technologies have been adopted to detect falls. Existing fall detection methods
require wearable sensors [2]. Accelerometers have been widely used in wearable methods,
and a velocity threshold can be set to detect fall events [3,4]; however, these may be for-
gotten because of their inconvenience. Vision-based methods eliminate the need to wear
something, but they are costly, sensitive to the lighting conditions, and invade privacy [5,6].
Recently, radar sensors have become more popular in fall detection system due to the
advantages compared with other sensing technologies: (a) convenience over wearable
technologies [7]; (b) high sensitivity to motion compared to depth sensors in complex living
environments and weak lighting conditions; (c) privacy compliance over vision sensors [8];
and (d) low hardware cost compared with other sensors [9]. Typical radars for human fall
detection are continuous wave (CW) radars and frequency-modulated continuous wave
(FMCW) radars. A CW radar signal was converted into the time–frequency domain and
extracted artificial features for detecting a falling person [10,11]. Doppler-time signatures
recorded in the CW signals were used for the training of a machine learning algorithm [12].
However, CW radar can only provide velocity information. Due to the lack of information
richness, actions with similar postures, such as sitting and squatting, may lead to inaccura-
cies. A better choice is to use an FMCW radar, which can simultaneously provide the range,
Doppler, and angle information of the targets and also high sensitivity to motion [13].

Traditionally, researchers have explored serval methods based on FMCW radars,
which range from 57–85 GHz [14]. The Doppler information could describe the velocity
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attribute of a motion; thus, the range-Doppler map has been widely used in FMCW radar-
based fall detection methods proposed in the literature [15–18]. The Doppler-time map,
including time information, was directly used as a feature to detect fall events [18]. Many
studies on FMCW radar-based fall detection rely on the time–frequency characteristics of
the FMCW radar return signal, including the frequency magnitude, frequency ratio, and the
duration of the motion [19]. However, similar to CW radar-based methods, these methods
cannot provide spatial information, and similar motions may lead to inaccuracies. Micro-
Doppler and spatial information have been used to achieve high accuracy, proving that
deep learning methods are superior to traditional artificial feature extraction methods [20].
An FMCW radio has been used to obtain the 3D position information of the human body
and heatmaps in both horizontal and vertical directions [17]. However, there is still a
problem in combining 3D location information: achieving high angular resolution using
radars with large antenna arrays.

To utilize 3D spatial information, recent innovations in human activity detection have
explored point clouds from radar [21–23], in which each point contains a 3D position in
space. However, in contrast to LiDAR and camera sensors, there are two main challenges
in these studies: (1) the point clouds generated by mmWave radar are usually sparse
and of low resolution, and (2) the point clouds include many ghost points caused by the
multipath effect. As a result, the classification accuracy and reliability may be negatively
affected. To address these challenges, several methods have been designed for use in
conjunction with high-resolution radars. 12Txs-16Rxs antenna arrays have been used
to generate high-quality point clouds [22]. Hawkeye generated 2D depth images using
radar intensity maps obtained from SAR scans [23]. However, although large antenna
arrays and SAR technologies can improve the resolution, they are still very slow and
may not be practical in many applications that require a short response time and low-cost
hardware. In addition, sparsity-related methods and deep learning-based methods have
been used for point clouds’ quality enhancement [24]. Some sparsity-related methods, such
as K-mean [25] and density-based spatial clustering of applications with noise (DBSCAN)
algorithm [26], have been used to cluster firstly to remove outliers in the point clouds.
However, these technologies could not adequately remove a sufficient number of outlier
points. In recent studies, a few deep learning-based methods have been developed based
on PointNet [27]. After learning a mapping from the noisy input, they can automatically
generate a set of clean points. Inspired by the PointNet, PCN combined a permutation
invariant and non-convolutional feature extractor to complete a point cloud from a partial
input, and then used a refinement block to denoise the prediction to produce the final point
cloud [28]. GPDNet was applicable to denoise point clouds based on graph-convolutional
layers [29]. However, most of these methods used LiDAR or other sensor applications and
extracted pointwise features. Hence, they may not be efficient for radar-based point clouds
because of their very low resolution.

In this study, we propose an FMCW radar-based fall detection method that investigates
3D point clouds while operating at 24 GHz. These systems have not been studied well
owing to hardware limitations. First, we obtained raw point clouds from the radar. We
then designed a new model to transform the raw points into high-quality point clouds that
are closer to the ground truth. Next, we estimated the distribution parameters in the point
clouds for classification.

The main contributions of this paper are as follows:

(1) We propose an efficient fall detection system that uses a small, low-cost radar. As
shown in Figure 1, the novel framework is primarily composed of three parts: point
cloud enhancement (PCE) for point cloud quality improvement, a feature extractor
for human pose parameter extraction, and a classifier for classifying normal events
and fall events;

(2) A PCE model is introduced to transform low-quality point clouds into high-quality
point clouds and to reconstruct the shape of the point clouds using the shape of human
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body. A novel 3D point-box hybrid regression loss function based on pointwise and
3D bounding box features is proposed as a substitute for the traditional loss function;

(3) Our system works on sparse and noisy raw radar data without using expensive
hardware or synthetic aperture radar (SAR) scans.

The remainder of this article is organized as follows. Section 2 provides an overview
of the radar system and signal processing flow. In Section 3, the details of the proposed
method are presented. The results are discussed in Section 4. Finally, Section 5 concludes
this study.
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Figure 1. Proposed fall detection system based on PCE model.

2. Radar System Design

An FMCW radar is often used to estimate the range and velocity of a target using
its radio frequency signals. Each transmitted signal s(t) is a chirp signal, the analytical
expression [30] of which is

s(t) = exp
(

j2π

(
f0t +

1
2

Kt2
))

(1)

where f0 denotes the carrier frequency, and K is the chirp constant.
Referring to the Boulic model [31], the echo from the ith human body part is a time-delayed

vision of the transmitted signal, and the received baseband signal can be expressed as

Si(t) = exp
(

j2π f0

(
t − 2Ri

c

))
(2)

where Ri is the distance between the ith ellipsoidal center and the radar, and c is the speed
of light. The echo from the entire human body can be expressed as

Sall(t) =
M

∑
i=1

ηiSi(t) (3)

where ηi is the attenuation coefficient, which is governed by the radar cross section for
different body regions, and M is the number of scattering points of human body parts.

As shown in Figure 2, the raw data from each channel generated a 3D data cube.
FMCW radar signal processing started with the sampled echoes that were transferred to the
range-Doppler matrix [32]. First, the range of the fast Fourier transform (FFT) assisted in
estimating the range of the targets, and the second FFT determined the Doppler frequency.
The moving target indicator distinguished the targets from the background. For more
reliable detection, a constant false alarm rate was used to detect the targets against the
background noise. A direction-of-arrival (DOA) estimation algorithm was used to estimate
the angle of the target.

For angle estimation, both 3D FFT and the multiple signal classification (MUSIC)
algorithm [33] are popular methods. Compared with the MUSIC algorithm, 3D FFT has
computing efficiency, but the resolution of 3D FFT is not sufficient for detecting closely
spaced points. To obtain a better image of the human body and low computing cost, based
on TDM-MIMO antenna arrays in Figure 3, after we obtained eight virtual receiver samples,
a 3D FFT was used to obtain the azimuth angle θaz, and the MUSIC algorithm was used
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to estimate the elevation angle θel . The output spherical coordinates were converted into
Cartesian coordinates using transfer matrix T:x

y
z

 =

1 0 0
0 cosθt sinθt
0 −sinθt cosθt

Rcosθelsinθaz
Rcosθelcosθaz

Rsinθel

+

0
0
h

 (4)

where R is the distance between the target and the radar. After the transformation, we
obtained the position values [x, y, z] of each point in each frame in Cartesian coordinates.
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3. Proposed Method

The point clouds detected from the range-Doppler map are sensitive to the environ-
ment. Figure 4 shows different point distributions generated in different indoor environ-
ments, in which obstacles cause severe multipath interference and affect the performance
of fall detection systems in new environments.
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the number of points is 125.

Therefore, we propose a fall detection method based on a PCE model. A flowchart of
the proposed method is presented in Figure 5. The flow of proposed method consists of
four steps: (1) to satisfy the input of the PCE model, the number of point clouds of a motion
pattern could be extended to fixed number; (2) after raw point clouds from the radar in
pre-processing, PCE model removes noise points and generates high-quality point clouds;
(3) these point clouds are then fed into the feature extractor for human pose parameter
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extraction; (4) a lightweight classifier is used for classifying normal and fall events. In this
section, the functionality of each component is described. More detailed descriptions are
as follows.
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3.1. Pre-Processing

The motion window accumulates L frames of the point cloud from the radar, where L
is determined by the length of an action such as walking, squatting, and falling. For each
action pattern, we extracted the 3D vectors of [x, y, z] for each point in every frame. In each
frame, the number of radar point clouds was random owing to the nature of the FMCW
radar measurement. To satisfy the input of the PCE model, zero padding was used for data
oversampling. Thus, the number of point clouds can be extended to a fixed number. We
obtained the motion pattern

X =

{{
xi

m

}M

m=1

}L

l=1
(5)

where l is the frame index of the motion, M is the number of points from radar in each
frame, and pl

m is the mth point in the lth frame, which is a vector of
[

xl
m, yl

m, zl
m

]
.

Simultaneously, the Azure Kinect was used as a reference sensor because of its high
precision in extracting human skeletal keypoints. Ignoring some inessential points, the
desired 27 skeletal keypoints returned from Azure Kinect were also accompanied by a radar
time stamp in system time and served to label the ground truth in the training process.

3.2. PCE Model

Although point clouds have already been obtained from range-Doppler maps, the
resulting points are still low-resolution, very noisy, and affect the classification accuracy
and reliability. In addition, it is unnecessary for a fall detection system to increase the
computational cost of reconstructing each point. Thus, to improve the quality of these
point clouds and increase classification reliability, we propose a PCE model that aims to
minimize the difference between the shapes of the radar point clouds and the ground truth.
An overview of the proposed PCE architecture is shown in Figure 6.
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3.2.1. Encoder

The encoder is responsible for extracting global features from incomplete point
clouds. As shown in Figure 6, the encoder comprises three consecutive gate recurrent
units (GRU) [34] followed by a dense layer. Using GRU mechanisms in a machine learn-
ing network is a relatively new time-series architecture compared with recurrent neural
networks (RNNs) and long short-term memories (LSTMs). GRUs can retain long-term
dependencies and are also faster for training compared with traditional LSTMs because
there are fewer gates to update. As shown in Figure 6, the units of the three GRU layers
are 32, 32, and 16. The input data XRP =

{
xRP

1 , xRP
2 , . . . xRP

N
}

are first reconstructed by the
hidden parts, and the output of the encoder is a series of vectors {h1, h2, . . . hb}. Thus, the
encoder process is given by

hb = GRU
(

We,bXRP + be,b

)
(6)

where We,b and be,b are the encoder weight matrix and bias vector for the bth node
(b = 1, 2, . . .B).

3.2.2. Decoder

The decoder consists of three consecutive GRUs followed by a dense layer. The units
of the three GRU layers are 32. The output from the GRU is

ui = GRU(Wd,bwi + bd,b) (7)

where Wd,b and bd,b are the decoder weight matrix and bias vector for the bth node
(b = 1, 2. . .B), and wi is the input layer of the decoder. The recovered point clouds X̂
through the dense layer is obtained via

X̂ = Wdui + bd (8)

where Wd and bd are the weights and biases of the output layer, respectively. After the
sampling layer, an enhanced point cloud XEP is obtained.

3.2.3. Loss Function

A simple method for extracting pointwise features in 3D space is supervised by the
mean squared error (MSE). However, directly supervising the pointwise features of point
clouds may not utilize 3D receptive field information. The observations in Figure 7 indicate
that the change in the 3D receptive field bounding box of a falling human body is different
from that of a walking human body. Specifically, changes in the bounding box of a human
body are related to its pose. Therefore, we not only consider pointwise features but also
detect fall events by characterizing the uniqueness of bounding box changes for such poses.
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To use the bounding box of the radar point clouds for fall detection, the position
and shape of the predicted box should be closely related to the corresponding ground
truth. In this manner, we propose a 3D point-box hybrid regression loss to reduce the error
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between the predicted radar bounding box and ground truth. Previous studies [35,36]
found intersection over union (IoU) loss and generalized IoU functions for 2D boxes using
only the width and height of the boxes without considering the direction of the boxes. In
addition, it is difficult to provide a specific formula describing the intersection between two
3D bounding boxes because a variety of cases must be considered. Some previous studies
projected a 3D bounding box onto two 2D bounding boxes, but this did not increase the
accuracy because of lack of direction [37].

In this study, because most of the measured human motion states were symmetrical
along the x-axis (as shown in Figure 8), a 3D bounding box was obtained based on the
2D rotated IoU by multiplying the length along the x-axis. As shown in Figure 9, the
intersection of the predicted box and ground truth included a variety of polygons, which
was the sum of the areas of all the triangles. Therefore, the 3D IoU can be expressed as

IoU3D =
AreaOL·xOL

Arear·xr + AreaGT ·xGT − AreaOL·xOL
(9)

where AreaOL is the area of overlap between the two boxes; Arear and AreaGT are the areas
of the predicted box from radar and ground truth, respectively; xOL is the overlap on the
x-axis; and xr and xGT are the lengths of the predicted box and ground truth along the
x-axis, respectively.
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Additionally, an accurate center [xcenter, ycenter, zcenter] is a prerequisite for predicting
an accurate bounding box. An accurate width along the y-axis and an accurate height along
the z-axis also contribute to maximizing the fall detection accuracy. Based on the above
observations, the box-based loss function is expressed as

Lossbox = LossIoU3D + Losscenterdis + Lossline

= 1 − IoU3D +
d2(br ,bGT)

(le)2+(we)2+(he)2

+
d2(wr ,wGT)

(we)2 +
d2(hr ,hGT)

(he)2

(10)

where br and bGT are the center positions of the predicted box and ground truth box, re-
spectively; le, we, and he are the length, width, and height of the enclosing box, respectively;
lr, wr, and hr are the length, width, and height of the predicted box, respectively; and lGT ,
wGT , and hGT are the length, width, and height of the ground truth box, respectively.

In summary, the 3D point-box hybrid regression loss consisted of a 3D bounding box
IoU loss and a pointwise loss, which can be described as

LossHyLoss = Losspoint + Lossbox (11)

where Losspoint is the position loss of the points for optimizing the IoU of the human body
and the ground reflection points.
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3.3. Feature Extraction

We used a lightweight CNN for classification. The architecture of the lightweight CNN
is shown in Figure 10. The CNN included an input layer sequence, one convolution layer,
one dense layer, and a softmax layer. The feature parameters from one frame included
[xcenter , ycenter, zcenter, w, l, h, θ], and L frames of 7× 1 feature parameters were first subjected
to the convolution layer. The convolution layer captured the movement features, consisting
of eight hidden neurons with a kernel size of eight. The convolution layer employed
rectified linear units as activation functions for the hidden layers. The L × 7 × 8 output
from the convolution layer was fed into the dense layer. The softmax function was used in
the final dense layer for classification.
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4. Implementation and Evaluation
4.1. Setup and Data Collection

We used the 24 GHz mmWave FMCW radar from ICLegend Micro for data collection.
The radar sensor had two transmitting antennas and four receiving antenna channels. The
radar parameter configurations are listed in Table 1.

To evaluate the proposed system, we set up the experiments and collected data in two
different indoor environments. The experimental setup is shown in Figure 11. Room A,
shown in Figure 11b, was a relatively empty office, and room B, shown in Figure 11c, was a
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bedroom where obstacles caused severe multipath and motion interference. The elevation
field of view (FOV) of the Kinect sensor is 135 degrees, and the elevation FOV of the radar
is 90 degrees. To capture more of a scene, the radar and Kinect sensors were both mounted
at heights of 1.3 m. We collected 17,600 frames of data from 13 subjects performing fall and
non-fall actions. The participants were aged between 20 and 30 years, and their heights
were between 165 and 177 cm.

Table 1. Unit parameter configuration of the radar.

Parameter Value

Carrier frequency 24 GHz
Bandwidth 3.17 GHz

Duration of a chirp 460 µs
Number of chirps per frame 254

Chirps per CPI 64
Duration of a frame 117 ms

Furthermore, we divided these frames into three datasets:
Dataset0. This dataset included 10,860 frames from five participants who performed

the experiments in room A. After data argumentation, including shifting, rotating, and
adding noise points, the dataset included 13,560 frames.

Dataset1. This dataset included 3040 frames from four participants who performed
the experiments in room A.

Dataset2. This dataset included 3700 frames from four participants who performed
the experiments in room B.

For each dataset, the motion included falling backward and falling forward, sitting on
a chair, jumping, walking, or squatting. The ratio of the number of fall samples to non-fall
samples was 1:2.
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Figure 11. (a) Collected movement in dataset; (b) evaluation scenario: room A (office); (c) evaluation
scenario: room B (bedroom).

4.2. Evaluation

In this section, we present the experimental results of the proposed model in a fall
detection system. All algorithms were realized based on Python code. The computation
platform used was a laptop with a 2.60 GHz Intel(R) Core (TM) i7-10750H CPU.

4.2.1. Point Cloud Quality

Before training the proposed PCE model, the 3D radar data and ground truth skeletal
points from the Azure Kinect were extracted, as described in Section IV. Then, L frames
of data from the radar were combined sequentially to obtain a 3D tensor (L × M × 3).
We then evaluated the PCE model for L = {1, 2, . . . 10} by generating 10 distinct datasets,
Dataset0i, Dataset1i and Dataset2i, where i ∈ {1, 2, . . . 10} is the frame index. The proposed
PCE model Mi was trained on Dataset0i, and the trained PCE model Mi was subjected
to Dataset1i and Dataset2i, which did not participate in the training. Figure 12 shows
predicted points. We selected two frames of each motion for comparison against the ground
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truth. In addition, because of the nature of the FMCW radar measurement, an exact and
complete match of [x, y, z] between the predicted and ground truth keypoints was simply
unrealistic; therefore, finding a method for evaluating the predicted results was crucial.
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Figure 12. Comparison between raw point clouds, the ground truth, and the PCE model’s predicted
points in two frames (1st and 10th) for five different actions (walking, squatting, sitting, jumping,
and falling).

To evaluate the quality of the point clouds, we calculated the average 3D IoU for
every L frame scenario across the f test samples in the dataset according to the formula
3DIoUi =

1
N ∑N

j=1 3DIoUij, ∀i ∈ {1, 2, . . . 10}. The average 3D IoU results for all L frames
from Dataset1 and Dataset2 are outlined in Tables 2 and 3, respectively. In the 10th frame,
the average 3D IoU is lower than that in the other frames. The reason for this result was
that sometimes the number of points was too small because the motion may have already
been completed in advance. We also compared the raw point clouds from the radar and the
DBSCAN method, which is the most popular method for removing outliers and improving
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the quality of point clouds. The proposed method outperformed the other methods. In
addition, the PCE with the proposed HyLoss function outperformed the traditional MSE
loss function.

Table 2. Average 3D IoU of Dataset1 in each frame.

1 2 3 4 5 6 7 8 9 10 Mean

Raw (baseline) 0.276 0.265 0.262 0.249 0.269 0.233 0.215 0.194 0.202 0.183 0.234
Raw + DBSCAN [26] 0.300 0.287 0.266 0.257 0.249 0.225 0.212 0.207 0.191 0.189 0.259
PCE_MSE 0.609 0.633 0.623 0.636 0.618 0.597 0.596 0.579 0.574 0.525 0.599
Proposed PCE_HyLoss 0.635 0.669 0.687 0.681 0.664 0.652 0.653 0.627 0.628 0.619 0.651

Table 3. Average 3D IoU of Dataset2 in each frame.

1 2 3 4 5 6 7 8 9 10 Mean

Raw 0.300 0.287 0.266 0.257 0.249 0.225 0.212 0.207 0.191 0.189 0.238
Raw + DBSCAN [26] 0.276 0.265 0.262 0.249 0.269 0.233 0.235 0.224 0.222 0.193 0.242
PCE_MSE 0.591 0.613 0.625 0.614 0.612 0.628 0.591 0.571 0.574 0.526 0.595
Proposed PCE_HyLoss 0.649 0.673 0.677 0.697 0.652 0.665 0.624 0.629 0.614 0.618 0.650

Furthermore, we computed the centroids of the coordinates of the point clouds. For
accuracy, the centroids of the coordinates of the predicted point clouds were compared
with the centroids of the coordinates of the ground truth labels by calculating the mean
absolute error (MAE) in the x-, y-, and z-coordinates. The centroid of the coordinates was(

max(x)+min(x)
2 , max(y)+min(y)

2 , max(z)+min(z)
2

)
. The average MAEs for all L frames tested in

Dataset1 and Dataset2 are shown in Figure 13. We also compared the raw point clouds
from the radar, DBSCAN, and PCE models using the traditional MSE loss function instead
of the proposed HyLoss. The average MAE of the predicted method was comparable to
that of the other methods. In other words, the localization of the centroid from the PCE
model was the closest to the ground truth. In addition, we computed the average MAE of
the width, depth, and height of the bounding box along the x-, y-, and z-axis. As shown in
Figure 14, the width, depth, and height of the predicted bounding box were significantly
lower than those of the other methods for both Dataset1 and Dataset2. This result indicates
that the PCE model with the proposed HyLoss offers a better image of the human body for
a wide range of people and environments.
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4.2.2. Classification for Fall Detection

In terms of fall detection, the predicted high-quality point clouds of Dataset0, Dataset1,
and Dataset2 were fed into the feature extractor to obtain the human pose parameters. The
lightweight CNN shown in Figure 9 was used to classify normal and fall events. Dataset0
was used to train the lightweight CNN classifier, Dataset1 was used for validation with
new people, and Dataset2 was used for validation with new people and new environments.
Neither Dataset1 nor Dataset2 were involved in the entire training process. To validate
the choice of PCE architecture parameters, we compared the average actuary, recall, and
F1 of the PCE model with various parameters. The results are summarized in Table 4.
Every encoder is denoted by E, and every decoder is denoted by D. For example, the
proposed PCE model can be described as raw+32E+32E+16E+32D. Clearly, the proposed
architecture is suitable. In addition, a comparison of the PCE with the traditional MSE loss
function revealed that the accuracy, recall, and F1 score of the proposed HyLoss function
outperformed those of the traditional function, which shows that the proposed HyLoss
function improves the fall detection system.

Table 4. Classification result of the proposed PCE model using different architectures.

Dataset0 Dataset1 Dataset2

Acc Recall F1 Acc Recall F1 Acc Recall F1

64E + 64E + 32E + 32D 0.993 0.994 0.995 0.976 0.977 0.977 0.972 0.973 0.972
16E + 16E + 16E + 32D 0.986 0.984 0.985 0.971 0.973 0.973 0.971 0.973 0.972

32E + 32E + 16E + 16E + 32D 1.000 0.994 0.994 0.991 0.993 0.993 0.988 0.988 0.988
32E + 32E + 16E + 32D + 32D 1.000 0.990 0.989 0.989 0.989 0.989 0.986 0.987 0.988

PCE_MSE (with traditional loss) 0.997 0.995 0.995 0.975 0.976 0.976 0.970 0.971 0.972
PCE with HyLoss (ours) 0.993 0.992 0.993 0.991 0.992 0.993 0.989 0.988 0.988

The purpose of PCE is to improve the reliability of the classification during fall
detection tasks. Therefore, we compared the performance of the PCE classification reliability
(instead of position errors or IoU) with existing point cloud models. First, the predicted
points are shown in Figure 9. The results are listed in Table 5. The accuracy of the raw points
and DBSCAN method for Dataset0 were higher than 0.98 because the test data included
some people in the training set. The accuracy of the raw points (baseline) and DBSCAN
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method for Dataset1 and Dataset2 were lower than 0.8 because the raw data from the
radar detection contained many invalid points from new test data, and DBSCAN could not
adequately remove a sufficient number of outlier points. However, the performance of the
proposed method exhibited no obvious changes for any of the three datasets. This means
that the point clouds predicted by the PCE could improve the performance of classification
when new people and environments are involved. For computing the complexity analysis,
the proposed method had 0.017 million parameters, which was a much smaller number
than that of the other methods. The floating-point operations (FLOPs) associated with
the proposed method was 0.303M, which was also lower than that of the other methods.
In addition, the fall detection system achieved high accuracy and required less response
time. For the response times of all the competing methods, we ran them on the same
platform. Because all of them required the same computing time for feature extraction and
classification, we only calculated the computing time of PCE on a single sample at a time.
Although the accuracy was not favorable for new people and environments, the response
time of the proposed method was shorter than that of the others. In summary, our work
balances accuracy and speed.

Table 5. Classification performance of same datasets using current point cloud generation methods.

Params FLOPs Response Dataset0 Dataset1 Dataset2

(M) (M) Time (ms) Acc Recall F1 Acc Recall F1 Acc Recall F1

Raw -- -- -- 0.992 0.993 0.992 0.783 0.766 0.772 0.798 0.783 0.789
Raw + DBSCAN [26] -- -- -- 0.991 0.990 0.991 0.798 0.811 0.805 0.781 0.800 0.794
PointNet [27] 0.815 119 25.331 0.972 0.971 0.971 0.964 0.967 0.967 0.954 0.954 0.955
PCN [28] 4.430 4339 160.390 1.000 1.000 1.000 0.987 0.988 0.989 0.981 0.982 0.983
TopNet [37] 6.193 1916 149.867 0.995 0.996 0.995 0.988 0.987 0.987 0.986 0.985 0.984
GRNet [38] 64.938 10,962 4266.643 1.000 1.000 1.000 0.971 0.972 0.973 0.978 0.978 0.978
RFNet [39] 2.369 6532 434.403 0.996 0.995 0.995 0.991 0.991 0.990 0.989 0.989 0.988
PCE (ours) 0.017 0.303 20.326 0.993 0.992 0.993 0.991 0.992 0.993 0.989 0.988 0.988

However, fall detection based on radar currently uses different data formats, such
as time-frequency maps and range-Doppler maps, and there is no public fall detection
dataset for radar. It is difficult to find a baseline for a fall detection system; therefore, we
compared the reported performance with that of other studies. As shown in Table 6, the
proposed system achieves better performance for new people and environments. Although
the performances of studies [22,40] was above 0.9, they were tested only on the same people
and in the same environment. The performance of these studies may vary for new people
and environments in a way similar to the results of the DBSCAN method shown in Table 5.
In addition, although CW radar has lower cost, the accuracy of the proposed FMCW fall
detection system was 0.989, which was higher than the CW radar system [41,42]. Moreover,
even though the 77 GHz 3T4R radar has a higher resolution than our sensor, the proposed
fall detection system could still outperform it [22].

Table 6. Comparison between the proposed method and other fall detection methods that use radar.

Study Sensor Data Format
Test Dataset

Performance
New Environment New People

[22] FMCW 77 GHz 3T4R Point clouds No No Accuracy: 0.98

[40] FMCW 24 GHz 2T4R Time-frequency map No No Recall: 0.95 F2: 0.92

[41] CW 25GHz Time-frequency map No No Accuracy: 0.825

[42] CW 24GHz Root mean-squared of signal No No Accuracy: 0.977 Recall: 0.90

ours FMCW 24 GHz 2T4R Point Clouds Yes Yes Accuracy: 0.989 Recall: 0.988
F1: 0.988



Sensors 2024, 24, 648 14 of 16

To investigate the potential of our fall detection system for real-time implementation,
we evaluated the computational time of one sample for all the steps in our work. As shown
in Table 7, although the computing time for the PCE and classification was 20.349 ms in
total, the signal processing cost a significant amount of time because, in this study, we used
the super-resolution algorithm MUSIC for DOA, which is considered to be the bottleneck
of real-time fall detection systems. However, further research is required to design a system
with lower computing costs for real-time detection and mobile devices. Furthermore, it is
difficult to collect samples when real falls start among older adults. The limitations of the
sample size may cause potential biases. In the future, we will improve our experiment and
test it with large-scale experiments in more practical environments and with more subjects.

Table 7. Response time for each step in the system.

Step Computing Time

Signal processing 6204.3 ms
CPE model 20.32 ms

Classification 0.029 ms

5. Conclusions

This study demonstrated a fall detection system based on the 3D point clouds of a
24 GHz FMCW radar. Unlike other conventional methods that utilize more costly hardware
to improve detection accuracy, we used a low-cost small radar antenna array operating at
24 GHz to maintain high accuracy. By applying the PCE model to a fall detection system,
we improved the quality of the point clouds and also the system performance, especially
the accuracy, sensitivity, and generalization ability for new users and environments. As a
result of our efforts to reduce computing costs in signal processing, the proposed method
has the potential for widespread applications in monitoring the health of the elderly in an
indoor environment without considering privacy protection.
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