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Abstract: Micro-hexapods, well-suited for navigating tight or uneven spaces and suitable for mass
production, hold promise for exploration by robot groups, particularly in disaster scenarios. However,
research on simultaneous localization and mapping (SLAM) for micro-hexapods has been lacking.
Previous studies have not adequately addressed the development of SLAM systems considering changes
in the body axis, and there is a lack of comparative evaluation with other movement mechanisms. This
study aims to assess the influence of walking on SLAM capabilities in hexapod robots. Experiments were
conducted using the same SLAM system and LiDAR on both a hexapod robot and crawler robot. The
study compares map accuracy and LiDAR point cloud data through pattern matching. The experimental
results reveal significant fluctuations in LiDAR point cloud data in hexapod robots due to changes in
the body axis, leading to a decrease in map accuracy. In the future, the development of SLAM systems
considering body axis changes is expected to be crucial for multi-legged robots like micro-hexapods.
Therefore, we propose the implementation of a system that incorporates body axis changes during
locomotion using inertial measurement units and similar sensors.

Keywords: SLAM; LiDAR; hexapod robot; crawler robot; micro-hexapod

1. Introduction

In recent years, significant strides have been made in the research and development
of LiDAR-based simultaneous localization and mapping (LiDAR-SLAM), particularly in its
application to disaster exploration robots. However, to our knowledge, no prior research has
explored the implementation of LiDAR-SLAM on micro-hexapods. This study conducts a
comparative experiment involving LiDAR-SLAM mapping using a hexapod robot and small-
scale crawler robot to obtain maps. We quantitatively assess the impact of micro-hexapod
locomotion on LiDAR-SLAM by processing map data through image processing techniques.

Several robots designed for hazardous environment exploration have been developed
in recent years [1]. These robots offer a safe and efficient alternative to human exploration.
The advent of SLAM technology has played a pivotal role in creating highly accurate
maps of the surrounding environment and providing precise self-position estimation,
leading to increased utilization in disaster exploration robots [2]. SLAM can be categorized
into various types, such as V-SLAM, LiDAR-SLAM, and Depth SLAM, depending on the
sensors used. Among these, LiDAR-SLAM stands out for its high accuracy over a wide
area [3]. Despite its capability to generate highly accurate map data based on high-density
point-cloud data, LiDAR-SLAM is complex and computationally intensive, leading to
accumulated position measurement errors and deviations from the true position. Efforts
have been made to reduce the computational load and enhance the accuracy of LiDAR-
SLAM [4,5].
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Moreover, various types of robots designed for exploration purposes have been devel-
oped [1]. Among these, multi-legged robots, known for their superior mobility [6], have
been proposed for exploration due to their ability to navigate rough terrains effectively.
The micro-hexapod [7–14] is a robot that combines elements of micro-robots [15–19] and
hexapod robots [20–23], the latter being robots with six legs. Micro-robots are particularly
appealing for their suitability in confined spaces, cost-effectiveness, and potential for mass
production. Leg-type robots, especially hexapod robots, can walk stably without constant
posture control [23–26].

The introduction of LiDAR-SLAM to micro-hexapods is expected to enhance their
capabilities as disaster exploration robots. However, there has been a lack of quantita-
tive research evaluating the map information and self-positioning accuracy achieved by
implementing LiDAR-SLAM on micro-hexapods. Previous studies explored SLAM im-
plementation in hexapod robots [27–30]. However, these studies did not evaluate the
differences between various locomotion mechanisms, such as crawler robots and hexapod
robots. These studies operated under the assumption that SLAM could perform with the
same level of accuracy on a hexapod robot as on robots with different locomotion methods.
In this context, our study aims to evaluate the accuracy of mapping estimation by several
types of SLAM on a hexapod robot. In practice, leg movements differ from the continuous
ground contact typical of other robots, introducing factors such as tilt, sway, and vibration
due to leg movements. Therefore, it is essential to quantitatively evaluate the impact of leg
movement on SLAM in the context of hexapod robots.

We experimentally investigated the effect of leg movement on LiDAR-SLAM in a small
hexapod robot. Experiments involved both a small hexapod robot and crawler-type robot,
generating maps in each case. The experiment was conducted in a simple environment
to disregard the impact of environmental complexity on the map and measure only the
impact of the robot’s body axis changes on the map. We compared and evaluated the
similarity between the ideal map data and map data obtained in our experiments. This
study aims to investigate the influence of hexapod robot leg mobility mechanisms on SLAM
through controlled experiments involving two robots with distinct mobility mechanisms.
We employed Hu moment invariants for pattern matching to compare and evaluate maps.
The results of this comparison will allow us to quantitatively measure the impact of leg
movement on LiDAR-SLAM in hexapod robots. Based on our findings, we intend to
propose a system for future LiDAR-SLAM on micro-hexapods.

This paper consists of four sections. In Section 1, we describe the research background
regarding SLAM installed in micro hexapods and the purpose of this paper. Section 2
details the hardware and software configurations of the hexapod and crawler robot used in
the experiment and describes how to evaluate the data obtained from the SLAM experiment.
Section 3 presents the results of the map data and LiDAR point cloud data obtained in the
SLAM experiment and presents the results of pose fluctuations during the walking of the
hexapod and crawler robot. Section 4 presents the conclusion of this paper.

2. Materials and Methods
2.1. Methodology Overview

In this study, we conducted a controlled experiment in which we implemented LiDAR-
SLAM using two robots that differ solely in their locomotion mechanisms. The primary
goal is to investigate the impact of different movement mechanisms on SLAM while main-
taining consistency across all other components. To facilitate this controlled experiment, it
was imperative to utilize identical components (computers, LiDAR, etc.) across both robots,
with the exception being the locomotion mechanism. Additionally, we considered potential
scale effects when reducing the size. Therefore, both robots were scaled down to match the
dimensions of a micro-hexapod. However, it is worth noting that, at the current state of
technology, micro-hexapods smaller than 10 cm in size are still in the research and develop-
ment stage, making it challenging to introduce LiDAR-SLAM to them. Consequently, we
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designed and constructed a small hexapod robot and a compact crawler robot specifically
for use in our experiments.

In this experiment, we employed Hector-SLAM, a two-dimensional (2D) LiDAR-
SLAM approach utilizing scan matching with LiDAR point cloud data. Our objective was
to create a 2D environmental map exclusively using the point cloud data acquired by the 2D
LiDAR. Subsequently, we evaluated the resulting 2D environmental map through pattern
matching—a method used to measure the similarity between images and identify objects.
To assess the comparison between ground truth and measurement data, we utilized the Hu
moment invariants method for pattern matching.

2.2. Robot Specifications

In this study, we created a hexapod robot and a crawler robot, illustrated in Figure 1a,b,
with their specifications summarized in Table 1. Key shared components include the
computer board and LiDAR system. The computer board, a Raspberry Pi 4 (8 GB), is a
compact device measuring 86 × 55 mm, serving to control the robot’s movements during
LiDAR-SLAM operations. For LiDAR, we employed RPLIDAR’s A1M8 two-dimensional
LiDAR—a mechanical device capable of 360◦ rotation and producing 2D maps.
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Table 1. Specifics of the robot.

Spec Hexapod Robot Crawler Robot

Size (W × H × L) (mm) 205 × 183 × 220 100 × 168 × 120
Weight (g) 1020 736

Speed (mm/s) 7 100

2.2.1. Hexapod Robot

The compact hexapod robot, as depicted in Figure 1a, features Tower Pro’s SG92R
micro servo motor as the leg actuator, as shown in Figure 2a. These micro servo motors,
with dimensions of 23 × 12.2 × 27 mm and a weight of 9 g, provide a maximum torque of
2.5 kgf-cm. The completed hexapod leg is presented in Figure 2b.

To minimize the leg size for efficient walking, we designed the hexapod with six legs,
each having two degrees of freedom. A parallel link mechanism controlled the vertical
movement of the legs, distributing force from one axis of the servomotor to the other, with
a link length of 35 mm. Given that the robot’s weight, excluding the legs, is approximately
1 kg, each leg needed to support at least 0.33 kgf to bear the weight of the robot with three
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legs. The maximum vertical output of this leg was 0.71 kgf, providing an additional force
approximately twice as much as needed.
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The hardware configuration of the hexapod robot is shown in Figure 3. The Raspberry
Pi manages the robot movement and transmits LiDAR data to ROS topics. The data are
then sent to the host computer via Wi-Fi communication for LiDAR-SLAM processing. The
Raspberry Pi also governs the servo motors through I2C communication with the servo
motor driver.
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The node configuration of the hexapod robot is depicted in Figure 4. On the host
PC, we execute roscore, hector_slam_launch, range_data_csv, and hexapod_controller.
Subsequently, on the Raspberry Pi mounted on the robot, we run rplidar_ros and hexa-
pod_ros. LiDAR data are collected by rlidar_ros and transmitted to hector_slam_launch
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and range_deta_csv via topic communication. Action commands to the hexapods are
sent from hexapod_controller to hexapod_ros through Topic communication to control the
movement of the legs.
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2.2.2. Crawler Robot

We constructed a compact crawler-type robot, as depicted in Figure 1b, similar in
size to the hexapod robot. This small crawler robot was designed with an Arduino as its
primary controller, measuring 10 × 10 cm and weighing approximately 280 g, inclusive of
batteries.

For the crawler part of our crawler robot, we used the ZUMO shield shown in Figure 5.
The ZUMO shield is a product designed to control ZUMO by attaching an Arduino UNO
microcontroller board. For this application, the GPIO pins of the Raspberry Pi are directly
interfaced with the Arduino, allowing the Raspberry Pi to govern the device without
relying on the Arduino.

The hardware configuration of the crawler robot is illustrated in Figure 6. Similar to
the hexapod robots, the Raspberry Pi manages the robot motion and transmits LiDAR data
within ROS topics. Data transmission from the Raspberry Pi to the host computer occurs
through Wi-Fi communication, and LiDAR-SLAM processing is carried out on the host PC.
Motor control is established by connecting the GPIO pins of the Raspberry Pi to the pins on
the ZUMO shield, transmitting PWM signals to the motor driver within the ZUMO.
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The node configuration of the crawler robot is presented in Figure 7. As with the
hexapod robots, we execute roscore, hector_slam_launch, range_data_csv, and teleop_node
on the host PC. On the Raspberry Pi mounted on the robot, we run rplidar_ros and
zumo. Like the hexapod robots, LiDAR data are collected by rplidar_ros and sent to
hector_slam_launch and range_deta_csv via topic communication. Action commands to
the crawler robot are transmitted from teleop_node to zumo through Topic communication
to control the robot’s movements.
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2.3. SLAM

In this study, we will employ Heterogeneous Cooperating Terrain-based Outdoor
Robot SLAM (Hector-SLAM) as our 2D-SLAM system. Hector-SLAM, developed by the
“Hector” robotics research team at the Technical University of Darmstadt, Germany, is
specifically designed for outdoor environments. The system operates based on a grid map
and relies on scan matching as its fundamental principle.

Hector-SLAM facilitates mapping and self-position estimation exclusively using Li-
DAR scan data. While it can achieve enhanced SLAM precision when combined with
additional inputs such as odometry and inertial measurement unit (IMU) data, we exclu-
sively utilize pure LiDAR scan data for mapping and assess the impact. Therefore, we have
chosen Hector-SLAM, an open-source SLAM system capable of self-position estimation
solely from LiDAR data, to perform SLAM using LiDAR exclusively.

2.4. Evaluation Method

In this experiment, we utilize Hu moment invariants [31] to evaluate the similarity
between the generated map and the ground truth, as well as the resemblance between
temporally adjacent LiDAR point cloud data images. Hu moment invariants are selected
due to their inherent properties of invariance with respect to translation, size, and rotation,
making them an appropriate choice for evaluating shape similarity.

As per the definition provided in [32], the 2D moment is expressed as follows:

mpq =
∫ ∞

−∞

∫ ∞

−∞
xpyq f (x, y)dxdy (1)
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p, q = 0, 1, 2, . . .

where f (x, y) is the density distribution function. Applying this to digital images, we
obtain the following:

mpq =
∫ ∞

−∞

∫ ∞

−∞
xpyq I(x, y) (2)

The central moment µpq is defined as follows:

µpq = ∑
x

∑
y
(x − x)p(y − y)q I(x, y) (3)

where
x =

m10

m00
, y =

m01

m00
(4)

The central moment is invariant to the translation of the image. To achieve scale
invariance, we employ normalization, and the normalized central moment µpq is defined
as follows:

µpq =
µpq

µ
γ
00

(5)

Normalized central moments yield the following seven distinct moments. In the
context of a mirror image, the seventh moment undergoes a change in sign.

H1 = µ20 + µ02 (6)

H2 = (µ20 + µ02)
2 + 4µ2

11 (7)

H3 = (µ30 − 3µ12)
2 + (3µ21 − µ03)

2 (8)

H4 = (µ30 + µ12)
2 + (µ21 + µ03)

2 (9)

H5 = (µ30 − 3µ12)(µ30 + µ12)
[
(µ30 + µ12)

2 − 3(µ21 + µ03)
2
]
+ (3µ21 − µ03)(µ21 + µ03)

[
3(µ30 + µ12)

2 − (µ21 + µ03)
2
]

(10)

H6 = (µ20 − µ02)
[
(µ30 + µ12)

2 − (µ21 + µ03)
2
]
+ 4µ11(µ30 + µ12)(µ21 + µ03) (11)

H7 = (3µ21 − µ03)(µ30 + µ12)
[
(µ30 + µ12)

2 − 3(µ21 + µ03)
2
]
− (µ30 − 3µ12)(µ21 + µ03)

[(
3(µ30 + µ12)

2 − (µ21 + µ03)
2
]

(12)

Let the two contours to be compared be contours A and B, and we define Hu moments
as: HA

i , HB
i (i = 1, 2, . . . 7).

The norm D(A, B) between contours A and B is expressed as follows.

D(A, B) =
7

∑
i=1

∣∣∣∣∣ 1
mA

i
− 1

mB
i

∣∣∣∣∣ (13)

where
mA

i = sign
(

HA
i

)
log

(
HA

i

)
(14)

Define the norm D(A, B) as the similarity. The smaller the similarity value, the greater
the similarity between the shapes of the two images. In this paper, the above evaluation is
performed using OpenCV’s matchShapes() function.

3. Results and Discussion

In this research, two experiments were conducted.
In Section 3.1, an experiment was conducted to evaluate the extent to which the

magnitude of the body axis change during movement varies depending on the difference
in the robot’s movement mechanism. The small hexapod robot and crawler robot were
equipped with the same IMU to estimate the robot’s posture during movement.
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In Section 3.2, based on the fact that the magnitude of the body axis changes depending
on the difference in the robot’s moving mechanism, we performed SLAM on the small
hexapod robot and the crawler robot and evaluated the generated maps and LiDAR point
cloud data during the SLAM execution.

3.1. Robot Body Axis Changes

The experiment was conducted to evaluate the extent to which body axis changes
during locomotion are affected by differences in the robot’s locomotion mechanism. The
small hexapod robot and crawler robot were placed in a straight line on the flat table shown
in Figure 8. The robot was placed in a straight line on the flat table. The running time of the
hexapod robot was long enough to measure the periodic motion of the crawler robot, and
the same running time was used for the crawler robot.
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The angular velocity of each robot was measured using the same IMU during running,
and the roll and pitch angles were estimated by integrating the angular velocity. Figure 9a
shows the posture variation of the hexapod robot while running, and Figure 9b shows the
posture variation of the crawler robot.
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Figure 9a,b show that the hexapod robot undergoes periodic posture fluctuations during
running, accompanied by periodic changes in the roll and pitch angles of its body axes.

3.2. SLAM Experimental Results

The experiment was conducted in an indoor environment, as depicted in Figure 10a.
Mapping using Hector-SLAM was performed five times for both the hexapod and crawler
robots. To serve as a reference for assessing the similarity with the generated maps, we
established the ground truth map data for the physical environment, depicted in Figure 10b.
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In Figure 10b, white areas represent passable spaces, black areas are impassable objects,
and gray areas are unknown areas.
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3.2.1. Traveled Path

Figure 11a shows the traveled path of the hexapod robot and Figure 11b shows the
path of the crawler robot. Figure 11c,d are enlarged views of the traveled paths of the first
trial for the hexapod and crawler robot.
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From Figure 11c, the traveled path of the hexapod robot has a blur width. Note that in
Figure 11c,d, the number of self-position estimation plots for the hexapod robot is large
because the speed of the hexapod robot is smaller than that of the crawler robot, and the
period of self-position estimation is constant.

3.2.2. Map Generated by SLAM

Table 2 presents images of maps generated by both the hexapod and crawler robots,
along with their corresponding similarity when compared to the ground truth.

Table 2. Image of the generated map and the similarity between the generated map and the ground truth.
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Observations from the first and third trials of the hexapod robot reveal that maps
generated by this robot sometimes extend beyond the boundaries of the ground truth.
This phenomenon can be attributed to the tilt of the LiDAR sensor, caused by shifts in the
hexapod robot’s body axis, resulting in the detection of voids beneath the wall shown in
Figure 10a. This, in turn, leads to substantial fluctuations in the LiDAR point cloud data. It
is important to note that the protruding regions in the first and third trials of the hexapod
robot are considered as contours independent of the map and have been excluded from the
similarity evaluation.

As indicated in Table 2, the average similarity of the maps generated by the hexapod
robot is 0.0900, whereas for the crawler robot, it is 0.0677. The value for the hexapod is
1.33 times higher than that for the crawler robot. This demonstrates that employing a
hexapod robot for map generation results in maps with shapes differing from the physical
environment in comparison to the use of a crawler robot.

3.2.3. Point Cloud Data Acquired by LiDAR

At a specific point in the experiment, we generated LiDAR point cloud data images,
as displayed in Figure 12, by connecting adjacent points from the LiDAR point cloud data
with straight lines. Subsequently, we replicated this image generation process each time the
scan topic, representing LiDAR point cloud data, was published within the ROS system. This
allows us to continuously assess the similarity between temporally adjacent LiDAR point
cloud data images, as illustrated in Figure 13. The assessment of the similarity between these
images was performed continuously from the commencement of the robot movement to its
conclusion. This process was repeated for each trial of the experiment, which included 5 trials
for the hexapod robot and 5 trials for the crawler robot, for a total of 10 trials. This results in the
creation of box plots and their magnified versions, as illustrated in Figure 14a,b, respectively.
The cross marks in the boxplot mean the average value, and the plotted dots mean that they
were calculated as outliers. Furthermore, we utilized the Steel–Dwass method to determine
whether there were significant differences among the 10 groups. The Steel–Dwass method
was performed with JMP 16.0 (SAS Institute, Cary, NC, USA).
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From Figure 14a,b, it is evident that the hexapod robot exhibits higher average and
median values for the similarity between temporally adjacent LiDAR point cloud data
images when compared to the crawler robot. The mean value for the crawler robot is
approximately 0.01, whereas the mean value for the hexapod ranges from 0.04 to 0.13.
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The median value with the hexapod is approximately two times higher than that with the
crawler robot.

This observation suggests that the hexapod robot introduces significant fluctuations
in point cloud data each time it acquires LiDAR point cloud data. Moreover, Figure 14a
highlights a greater presence of outliers in the case of the hexapod robot in comparison to
the crawler robot, indicating more frequent extreme fluctuations in point cloud data. This
is attributed to the hexapod robot’s LiDAR tilting due to changes in its body axis, leading
to the detection of voids beneath the wall in Figure 10a and significant variations in the
LiDAR point cloud data.

Furthermore, Figure 14b illustrates that as the experiments progressed, the hexapod
robot group exhibited stair-step increasing values for the third quartile and mean in the
box plot. This can be attributed to the diminishing battery power over the course of the
experiments, resulting in reduced leg-holding torque and greater body axis variations
during walking.

The p-values obtained for each combination using the Steel–Dwass method are pre-
sented in Figure 15. We initially expected that comparisons between robots of the same
type would not yield significant differences, and cases contrary to our expectations are
highlighted in bold.
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Examining Figure 15, it is evident that the distribution of similarity groups between
the hexapod and the crawler robots results in p-values below 0.05 for all combinations,
signifying statistical significance. Consequently, it is established that the hexapod and
crawler robots exhibit varying degrees of variability in LiDAR point cloud data.

Furthermore, in regard to the distribution of similarity groups among the crawler
robots, there is no statistically significant difference in the distribution of similarity for
LiDAR point cloud data images, except for the first trial. In contrast, the hexapod robot
exhibits statistical significance in all combinations, with the exception of the second and
third trials. Thus, this indicates that the hexapod robot’s similarity distribution varies from
trial to trial. This is presumed to be a result of the depletion of battery power during the
experiments, leading to diminished leg-holding torque and increased body axis variations
during walking.
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This experiment highlights that the hexapod robot experiences reduced accuracy in
the generated maps through SLAM and decreased precision in the acquired LiDAR point
cloud data when compared to the crawler robot. These effects are attributed to the tilting
of the LiDAR sensor induced by changes in the body axis. This tilting causes the LiDAR
to deviate from the horizontal plane, resulting in measured distances exceeding their true
values. It is suggested that this issue could potentially be addressed by utilizing an IMU to
detect variations in the body axis of the hexapod robot and the LiDAR sensor, enabling the
correction of LiDAR point cloud data values based on the robot’s pitch and yaw angles.

A limitation of this study is that it does not explore the impact of walking types
other than hexapod walking on SLAM. Bipedal and quadrupedal walking might present
challenges due to the need for dynamic balance. Multipedal walking with eight or more
legs, although maintaining a stable body axis, could be heavily influenced by the terrain
when the robot drags its body.

4. Conclusions

This study focuses on evaluating the influence on maps obtained by implementing a
self-location estimation system, 2D LiDAR-SLAM, on a micro-hexapod. Maps were gener-
ated using 2D LiDAR-SLAM, with a small hexapod robot mimicking a micro-hexapod and
small crawler-type robot. The evaluation of the similarity between ideal and experimental
map data was conducted using pattern matching with Hu moment invariants.

The experimental data indicate that the hexapod robot is more sensitive to small noises
and sudden outliers in the map compared to a typical crawler robot, due to body axis
changes resulting from the walking motion shown in Section 3.1. The average similarity of
maps generated by the crawler robot is 0.0677, whereas for the hexapod robot, it is 0.0900,
yielding an error that is 1.33 times larger. The magnitude of change between temporally
adjacent LiDAR point cloud data was evaluated; the hexapod robot is found to exhibit
larger changes, and significant differences are observed between the hexapod and crawler
robots, as assessed by the Steel–Dwass method.

This study highlights that the dynamic characteristics of the micro-hexapod impact
the accuracy of LiDAR-SLAM maps. As a future scope of this study, the development of a
LiDAR-SLAM system suitable for the micro-hexapod is expected. The use of an IMU to
detect changes in the body axis of the hexapod robot and LiDAR sensor, along with the
correction of LiDAR point cloud data values, is planned. Additionally, it is imperative to
develop a lightweight SLAM system capable of expanding the field of view and enabling
3D mapping by utilizing the swaying of the robot body axis during walking.
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