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Abstract: Transcutaneous spinal cord stimulation (tSCS) provides a promising therapy option for
individuals with injured spinal cords and multiple sclerosis patients with spasticity and gait deficits.
Before the therapy, the examiner determines a suitable electrode position and stimulation current for
a controlled application. For that, amplitude characteristics of posterior root muscle (PRM) responses
in the electromyography (EMG) of the legs to double pulses are examined. This laborious procedure
holds potential for simplification due to time-consuming skin preparation, sensor placement, and
required expert knowledge. Here, we investigate mechanomyography (MMG) that employs ac-
celerometers instead of EMGs to assess muscle activity. A supervised machine-learning classification
approach was implemented to classify the acceleration data into no activity and muscular/reflex
responses, considering the EMG responses as ground truth. The acceleration-based calibration pro-
cedure achieved a mean accuracy of up to 87% relative to the classical EMG approach as ground
truth on a combined cohort of 11 healthy subjects and 11 patients. Based on this classification, the
identified current amplitude for the tSCS therapy was in 85%, comparable to the EMG-based ground
truth. In healthy subjects, where both therapy current and position have been identified, 91% of the
outcome matched well with the EMG approach. We conclude that MMG has the potential to make
the tuning of tSCS feasible in clinical practice and even in home use.

Keywords: transcutaneous spinal cord stimulation (tSCS); acceleration; mechanomyography (MMG);
supervised classification; multiple sclerosis (MS); spinal cord injury (SCI); machine learning

1. Introduction

Damage to the upper motor neurons can lead to gait deficits, spasticity, or even full loss
of motor function. Transcutaneous spinal cord stimulation (tSCS) constitutes a promising,
noninvasive therapy option for these patients. Several studies describe a decrease in
spasticity and even enhancement of voluntary movement through tSCS in patients with
spinal cord injury [1–6]. Moreover, recent investigations have shown similar results in
patients with multiple sclerosis (MS) [7,8], reporting a reduction in spasticity as well as an
increase in gait velocity and improvement of postural stability.

For tSCS application, an adhesive hydrogel electrode on the lumbar spinal cord
and counter electrodes on the abdomen or iliac crest conduct current through the upper
body [5]. The objective is to target large- to medium-diameter afferent nerve fibers within
the posterior roots, which are known to have enhancing effects on motor control and
inhibiting effects on lower limb spasticity [6,9]. Prior to the application of tSCS therapy, a
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suitable electrode position along the spine and a therapy intensity need to be identified
individually for each patient. To prevent discomfort or pain during the therapy in patients
with intact body sensation, an electrode location at which a preferably low current activates
afferent fibers is desired. Typically, a calibration procedure is conducted using double
stimulation pulses of increasing intensity while recording the electromyogram (EMG) of
posterior root muscles (PRMs) in the legs. The EMG responses evoked by the first stimulus
and their suppression after the second stimulus indicate the recruitment of afferents [10].
The placement of the back electrode can then be adjusted in a manual trial-and-error
manner [8] or in an automated process [11]. In the latter, the EMG responses are classified
according to the amplitude of the response to the first and suppression characteristics
of the response to the second stimulation pulse. The use of EMG sensors involves time-
consuming skin preparation with disinfection and abrasive paste, as well as electrode
placement for several leg muscles. This procedure is usually required to take place in
an expert environment to position the sensors and interpret the signals (in the case of a
manual procedure). Thus, current calibration approaches are not suitable for home use and
continue to hold great potential for simplification.

In this paper, we introduce a concept for simplification and automation of the calibra-
tion procedure. With this novel approach, we strive to simplify the measurement setup by
using mechanomyography (MMG) instead of EMGs. Mechanomyography describes the
recording of mechanical muscular activity by means of accelerometers, piezoelectric sen-
sors, or condenser microphones [12]. The applications range from fatigue detection [13,14]
and examination of neuromuscular disorders [15] to prosthetic control [16]. Furthermore,
previous studies have investigated MMG signals in the context of electrical evoked muscle
contractions [17,18].

In our approach, we use an accelerometer-based sensor setup for activity recordings
of PRMs. The accelerometers are integrated in inertial sensors, also known as inertial
measurement units (IMUs) or wearables. We propose a new stimulation procedure that
differs from the exclusively EMG-based tuning. In addition to double stimuli, we also
apply single-pulse stimulation. We subtract the MMG response of the single stimulus from
the response of the double stimulus to extract the acceleration caused by the second pulse
of the double stimuli. Such a procedure is necessary because acceleration responses take
much longer than EMG responses and therefore overlap in the recordings.

Calibration procedures with healthy individuals and MS patients were conducted
while recording EMG and acceleration data from selected PRMs. For the first time, we
deployed a machine learning (ML) approach on these data in order to automatically classify
the recorded acceleration when considering the EMG classes as ground truth. Not only do
IMUs simplify the process, as no skin preparation and electrode placement is necessary, but
they are also associated with ecological and economical advantages, as the time savings and
simplification during the preparation process decrease demand for expert knowledge and
the personnel expenses. Moreover, disposable materials as EMG electrodes are avoided,
which decreases the long-term costs and improves sustainability.

2. Materials and Methods

The presented approach involved several steps, which we describe extensively in
the subsections following this summary. The investigation starts with EMG and IMU
sensor data acquisition from the leg muscles during a tSCS calibration procedure on healthy
subjects and MS patients. Subsequently, the recorded EMG and acceleration data were
passed through a preprocessing pipeline. Here, we cleaned and filtered the data. In addition,
the EMG signals were separated into different classes depending on the EMG’s amplitude
characteristics. These class labels describe the occurrence or absence of a muscular response
after a tSCS stimulus and were considered as ground truth for the subsequent machine
learning approach. With this approach, we want to investigate whether muscular responses
visible in acceleration signals can be classified in accordance with the EMG-based class
labels. For that, we extracted characteristics (features) in the time and frequency domain
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from all muscular responses after a tSCS stimulus in the acceleration signals. Additionally,
the metadata of each participant (e.g., age, height) as well as stimulation properties were
added to this feature table. By grouping these extracted features, we generated two different
feature sets. After that, three machine learning algorithms were trained and tested using the
previously generated feature sets and the ground truth class labels. We trained and tested
all algorithms on three datasets: only patient data, only data from healthy subjects, and a
mixed dataset consisting of both groups. The output of the different algorithms includes
class labels for each recorded acceleration signal. By comparing the ground truth labels and
the output, we can estimate the accuracy of each algorithm. During a calibration procedure,
the detected response classes provide information on each subject’s individual optimal
therapy intensity and electrode position. To evaluate the performance of the classification
algorithms in the context of the application, we determined these parameters from the
ground truth class labels as well as from the class labels returned by the machine learning
algorithms. All steps are subsequently described in more detail.

2.1. Data Acquisition Protocol

A tSCS calibration process was conducted on 11 healthy volunteers (female: 4, male:
7, age: 34.2 ± 6.9 years) and 11 MS patients (female: 6, male: 5, age: 55.9 ± 9.2 years).
Individual participant characteristics are shown in Table 1. Each healthy subject underwent
several calibration sessions with varying back electrode positions. The patient dataset
consists of two data recordings recorded on two different days for each individual patient,
to whom only one electrode position was applied per recording day. These data originate
from an ongoing study, which examines the immediate effect of tSCS on gait and spasticity
in MS patients. As the tuning process is not the primary focus in this study, and we strive to
keep the demands of the individual patient at a low level, the number of electrode positions
is minimal. However, to still investigate the electrode positions, data from several positions
were recorded within the healthy cohort. In order to place a 5 × 10 cm hydrogel stimulation
electrode (axion GmbH, Leonberg, Germany) on the spine, the intervertebral space L3/L4
was identified through palpation. After disinfecting the skin, the back electrode was placed
on the spine. For the healthy participants, it was placed successively at three different
positions: with the lower edge of the electrode 4 cm caudal to L3/L4, on L3/L4, and 4 cm
cranial to L3/L4. For the subjects S4 and S10, an additional fourth calibration session with
the electrode located 8 cm cranial to L3/L4 was conducted. We chose an additional, even
more cranial, position due to lack of reflex activity in the quadriceps muscle, indicating
that the three previously recorded positions would not be ideal for a potential therapy
application. Regarding the MS patient group, only one electrode position was tested
per recording day, varying from 0–4.5 cm cranial to L3/L4. Two interconnected counter
electrodes of size 12 × 7 cm (axion GmbH, Leonberg, Germany) were positioned on the
abdomen (cf. Figure 1A).

Table 1. Participants; PPMS: primary progressive MS, SPMS: secondary progressive MS.

Subject Age (Years) Sex BMI Height (cm) Diagnosis Dataset

S1 35 M 24.1 173 healthy 3 electrode positions
S2 30 M 21.5 200 healthy 3 electrode positions
S3 38 M 22.5 180 healthy 3 electrode positions
S4 33 M 25.5 175 healthy 4 electrode positions
S5 38 M 24.8 184 healthy 3 electrode positions
S6 33 F 20.7 177 healthy 3 electrode positions
S7 27 F 18.6 159 healthy 3 electrode positions
S8 28 F 20.3 160 healthy 3 electrode positions
S9 25 F 20 173 healthy 3 electrode positions
S10 40 M 21.6 190 healthy 4 electrode positions
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Table 1. Cont.

Subject Age (Years) Sex BMI Height (cm) Diagnosis Dataset

S11 49 M 30.7 176 healthy 3 electrode positions
P1 65 M 28.09 176 PPMS 2 datasets of 2 days, 1 electrode position
P2 48 F 25.71 159 SPMS 2 datasets of 2 days, 1 electrode position
P3 66 F 25.76 174 PPMS 2 datasets of 2 days, 1 electrode position
P4 50 F 16.7 173 PPMS 2 datasets of 2 days, 1 electrode position
P5 53 F 19.53 160 PPMS 2 datasets of 2 days, 1 electrode position
P6 35 F 19.5 181 PPMS 2 datasets of 2 days, 1 electrode position
P7 60 M 23.88 165 PPMS 2 datasets of 2 days, 1 electrode position
P8 58 M 20.15 174 PPMS 2 datasets of 2 days, 1 electrode position
P9 55 M 26.01 186 PPMS 2 datasets of 2 days, 1 electrode position
P10 65 M 23.67 178 PPMS 2 datasets of 2 days, 1 electrode position
P11 60 F 19.33 164 PPMS 2 datasets of 2 days, 1 electrode position
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Figure 1. Measurement setup and determination of response suppression from subtracted MMG
signals. (A) Sensor and electrode placement: Stimulation electrodes (blue) are placed on the back
and abdomen. IMUs (gray) are located in between EMG (green/black) electrodes on the selected
muscles. (B) Filtered and averaged EMG and MMG responses of double as well as single-pulse data.
Amplitude characteristics of A1 and A2 of the double-pulse data are used to classify the EMG signal,
while signal characteristics of single and double-pulse data are extracted from the acceleration signals
as features for the machine learning algorithm (example signals extracted from the dataset of S2).
The gray area indicates time windows for feature extraction. Red triangles mark the stimulation
pulses. (C) Subtraction DIFF between MMG double and MMG single-pulse muscle response to
evade superposition of responses. The gray area indicates time windows for feature extraction. Red
triangles mark the stimulation pulses.

During one calibration session, three double (inter-pulse interval of 50 ms) and three
single biphasic pulses (1 ms per phase) were applied with 5 s in between the stimulation
incidences with the RehaMove3 stimulator (Hasomed GmbH, Magdeburg, Germany). This
stimulation pattern was repeated with increasing stimulation intensities using an increment
of 5 mA and starting at an intensity of 5 mA. The examiner terminated the calibration
process when reaching the subject’s discomfort level.
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Electrical and mechanical muscular responses of the quadriceps (Q), specifically the
rectus femoris muscle, and triceps surae (TS) were bilaterally recorded by means of synchro-
nized EMG sensors and IMUs (MuscleLab, Ergotest Innovation AS, Stathelle, Norway). The
sample rates were 1 kHz for the EMG and 0.5 kHz for the IMU, respectively. Before the EMG
electrode placement, the examiner prepared the skin using disinfection and abrasive paste.
The IMUs were placed in between the electrodes of the EMG sensors (Hydrogel Kendall
H124SG, Covidien LLC, Mansfield, OH, USA) using elastic straps to ensure that signals
of the same muscles were acquired. The complete electrode and sensor setup is shown
in Figure 1A. The stimulation and data acquisition during the calibration process were
controlled via a customized QT-user interface (QT version 6.3.0 for macOS) programmed
in C++11. Figure 2 shows the full measurement and stimulation equipment.

5

2

4

3
1

Figure 2. Measurement equipment: MuscleLab synchronization unit (1) and wireless two-channel
EMG sensor (2) with one of its channels connected to the quadriceps muscle (white arrows) and
the other channel connected to the triceps surae muscle; IMU sensor (3) placed in between the
EMG electrodes; laptop with user interface (4) showing the raw signals of acceleration and EMG
for all four recorded muscles upon receiving the data after the stimulus; and RehaMove3 stimulator
(5) connected to electrodes on the back and abdomen. The stimulator and sensor synchronization
unit are connected to the laptop.

2.2. Preprocessing

To classify the EMG responses according to the response amplitude characteristics,
the recorded EMG signals during double-pulse stimulation pass through a data processing
pipeline implemented in Python 3.9 and adapted from our previously published algorithm
for EMG-based analysis [11]. Firstly, the stimulation artifacts are detected in the EMG to
synchronize the sensor acquisition precisely with the stimulation. An artifact is marked if
the double derivative of the EMG signal is greater than a threshold. Subsequently, the EMG
signals are cropped to a common time window, starting 10 ms before the first stimulus
and ending 400 ms after the first stimulus. The cropping is followed by a 50 Hz anti-
humming [19] and a sliding-median filter with a kernel size of 31 samples. The latter serves
as a high-pass filter without applying a ringing effect on the signal. Finally, a similarity
check among the three repetitions is conducted with connectivity matrices. Only repetitions
with a sufficiently high coefficient of determination between them are averaged. If none
of the repetitions are similar, the corresponding signal is marked as faulty. The averaged
signals can then be classified according to the characteristics of the peak-to-peak response
of the first (A1) and the suppression (S) of the second pulse (A2) [11], with S:

S =

(
1 − A2

A1

)
× 100. (1)
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The EMG responses of each muscle and each applied intensity can subsequently
be categorized in a 2-class (distinguishing between response and no response) or 3-class
(distinguishing between reflex response, direct muscular response, and no response) man-
ner, as shown in Table 2. Note that • class 1 of the 2-class classification is equivalent
to (• class 1 ∩ • class 2) of the 3-class classification. The classes assigned to the EMG re-
sponses are considered ground truth for the supervised classification routine. By analyzing
the distribution of classes in the four muscles along the applied stimulation intensity and
the different electrode positions, a suitable stimulation amplitude and electrode location
can be chosen.

Table 2. 2- and 3-class approaches, EMG (ground truth) class classification characteristics.

EMG Classification (Ground Truth)

2-class Classification 3-class Classification

• class 0: no response, A1 < 50µV • class 0: no response, A1 < 50µV
• class 1: response, A1 > 50µV • class 1: reflex response, (A1 > 50µV) & (S > 60 %)

• class 2: muscle response, (A1 > 50µV) & (S < 60 %)

• invalid data: discarded due to similarity check error in EMG or MMG signal or noisy EMG data

Regarding the MMG data, only the acceleration in the z-direction corresponding to
the axis orthogonal to the skin is considered for the feature extraction. For preprocessing of
the MMG responses of double as well as single pulses, the timestamps of the stimulation
artifacts found in the EMG signal are used to crop the signal accordingly to the cropped
EMG. Subsequently, the average of the first 10 ms is subtracted from the signal as a non-
dynamic gravity filter. The similarity check of the three repetitions is conducted again
using connectivity matrices. Analogous repetitions are averaged. As shown in Figure 1B,
the mechanical muscular responses in the acceleration signal are much longer than the
electrical muscle activity of the EMG, and the responses to the first and second impulse
overlap. To separate the responses on the first and second pulse of a double stimulus, we
applied the following procedure: the response to the first stimulus is directly measured
by applying just a single pulse. We then subtract this response from the response of a
double-pulse stimulation. The resulting signal (DIFF) represents the response to the second
stimulus of a double pulse and enables direct assessment of the response suppression S (cf.
Figure 1C). Finally, the averaged single- and double-pulse responses as well as the DIFF
signal are used to extract features.

2.3. Data Distribution

The full dataset used for this classification approach consists of 2196 events. An event
comprises an averaged EMG and MMG muscle response to a single-pulse and double-pulse
stimulation for a certain muscle at a specific application current and electrode position.
The composition of the data is shown in Figure 3. In total, 5% of the data events had to be
excluded from the set for the ML-based classification due to errors during the similarity
check in the preprocessing pipeline of the EMG and MMG signal, as none of the repetitions
were marked as similar. These errors may occur due to movement of the subject during
data acquisition, due to occurrence of spontaneous rhythmic muscle twitches, or due to
failure of the stimulation artifact detection in the EMG signal. Less than 1% was excluded
because of noise in the averaged EMG signal, also resulting from spontaneous muscular
activity differing in the three repetitions. The remaining data exhibit an uneven distribution
of the ground truth classification. Class 0 is dominant, with 54% of the data belonging
to this class, followed by class 1 with 39%, and class 2 with only 7% of all events. As the
maximum current applied during the tuning process varies among the participants, the
proportion that the individual subjects contributes to the dataset ranges from 6–13% for the
healthy participants and 5–17% for the patients.
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Figure 3. Data composition considering the 3-class EMG classification (Table 2). (A) Class distribution
of the full dataset; 5% of the data points are invalid due to similarity check errors during averaging or
noise in EMG. (B) Composition of the 2196 valid events, including proportion of healthy and patient
data. (C) Proportion each healthy participant contributes. (D) Proportion each patient contributes.
Please note, that the percentages in (C,D) are rounded and therefore do not sum up to 100%.

2.4. Feature Extraction

We conceived a list of features in the time and frequency domain to assess mechanical
muscle activity characteristics from the MMG. For each evaluated electrode position and
stimulation current, these features were extracted for all investigated muscles. Features
can be sorted into different categories and serve as input to the supervised classification
approaches:

• meta: subject’s metadata, e.g., age, height (four features);
• stim: stimulation parameters: current and electrode position (two features);
• MMG data: sensor data information from MMG (30 features).

The full list of features is displayed in Table 3. The amplitude features, such as MMG
single median or MMG DIFF rms, are determined on a window basis from the MMG
signals. For the thigh muscles (quadriceps), we chose a window of 10–60 ms after the first
stimulation pulse (winA1) for features extracted from the MMG single-pulse response,
starting before the onset of the MMG response and ending before the onset of possible
muscle response to stimulus two in the double-pulse data. The corresponding window of
10–60 ms after the second stimulus (winDIFF) is selected for amplitude feature extraction
from DIFF. For the calf muscles (triceps surae), we shifted both windows, winA1 and
winDiff, 5 ms to the right, as the response onset is delayed compared to the thigh muscles.
The features 35 and 36 in Table 3 are extracted from the second sensor of the same leg
and not from the sensor from which all other MMG data features are determined. These
two features were chosen as an approach to perceive possible crosstalk of other muscle
activation. To simplify and automate the application of tSCS therapy, we created machine
learning approaches using MMG signals and corresponding EMGs recorded from PRMs
during double and single tSCS pulses. The EMG responses could easily be sorted into
classes based on the amplitudes of first and second pulse responses. These classes were
taken as ground truth for the supervised classification algorithms. For the ML-based
classification approaches, two combinations of different feature categories were considered.
MMG data & meta (SET-OBSERVE), as an observation approach as well as a combination of
meta & stim (SET-PREDICT), act as a sensor-less prediction approach without any features
extracted from MMG.
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Table 3. Features divided into the categories meta, stim, and MMG data.

No. Feature Name Category Description

1 BMI meta body mass index 2
2 sex meta 0: male, 1: female
3 age meta age
4 height meta body height
5 position stim value in cm distance of lower electrode edge from L3/4
6 current stim stimulation current
7 sensor MMG data 0 for Q; 1 for TS
8 MMG single mean MMG data mean in single-pulse signal in winA1
9 MMG single median MMG data median in single-pulse signal in winA1
10 MMG single std MMG data std in single-pulse signal in winA1
11 MMG single RMS MMG data RMS in single-pulse signal in winA1
12 MMG DIFF mean MMG data mean in DIFF signal in winDIFF
13 MMG DIFF median MMG data median in DIFF signal in winDIFF
14 MMG DIFF std MMG data std in DIFF signal in winDIFF
15 MMG DIFF rms MMG data RMS in DIFF signal in winDIFF
16 freshnet distance MMG MMG data freshnet distance between double- and single-pulse signal in winDIFF
17 p2p MMG single MMG data peak-to-peak amplitude in single-pulse signal in winA1
18 p2p MMG DIFF MMG data peak-to-peak amplitude in DIFF in winDIFF

19 r2 MMG single double MMG data squared correlation coefficient between single- and double-pulse data in a
window of 50 ms:end

20 r MMG single double MMG data correlation coefficient between single- and double-pulse data in a window of
50 ms:end winDIFF

21 mpf double MMG data mean power frequency of double-pulse signal
22 mpf single MMG data mean power frequency of single-pulse signal
23 mpf DIFF MMG data mpf DIFF
24 auc spectral density single MMG data area under spectral density curve of single-pulse signal
25 auc spectral density double MMG data area under spectral density curve of double-pulse signal
26 auc spectral density DIFF MMG data area under spectral density curve of DIFF
27 max spectral density single MMG data max in spectral density curve of single-pulse signal
28 max spectral density double MMG data max in spectral density curve of double-pulse signal
29 max spectral density DIFF MMG data max in spectral density curve of DIFF
30 zcr single MMG data zero-crossing rate in single-pulse data
31 zcr double MMG data zero-crossing rate in double-pulse data
32 zcr DIFF MMG data zero-crossing rate in DIFF
33 max slope DIFF MMG data max slope in DIFF in winDIFF
34 max slope single MMG data max slope in single-pulse signal in winA1
35 p2p MMG single 2nd muscle MMG data peak-to-peak amplitude in single-pulse signal in winA1 of other leg muscle
36 p2p MMG diff 2nd muscle MMG data peak-to-peak amplitude in DIFF in winDIFF of other leg muscle

2.5. ML-Based Classification Approach

We investigated three standard ML approaches to classify the data. The Random Forest
(RF) Classifier, the Support Vector Machine (SVM) classifier, as well as Linear Discriminant
Analysis (LDA) were considered as possible solutions to the classification problem. The
algorithms were applied in a leave-one-subject-out (LOSO) cross-validation loop using the
python package scikit-learn (1.3.2). Thus, the dataset of each subject serves as test data
for a model trained with the data of the remaining subjects. The balanced accuracy score
for imbalanced datasets embedded in the sklearn package was chosen as a measure to
validate the classification and avoid overestimating the model performance. To investigate
the impact of the different subject groups on the classifiers, three datasets serve as an input
for all models: the whole dataset including patients as well as healthy subjects (ALL), only
data of healthy subjects (HEALTHY), and only data of patients (PATIENTS). Due to the
lack of direct muscle responses (• class 2), especially in the patient dataset (cf. Figure 3D),
all machine learning models were implemented as a 3-class classification problem as well
as a 2-class classification problem (cf. Table 2).

Hyperparameter optimization for the three classifiers was implemented as a random
search with 50 iterations. Table 4 shows the optimized parameters. The hyperparameter
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cross-validation was again realized in a LOSO manner. However, in the hyperparameter
LOSO loop, only the training data, which consist of n−1 subjects, was considered. The
hyperparameters were chosen according to the maximum mean balanced accuracy achieved
among the LOSO cross-validation sets. Note that the hyperparameters were solely extracted
for the 3-class classification problem. The parameters for the 2-class classification were
chosen accordingly. The class weights were set to a balanced state according to the class
distribution of the respective dataset for all classifiers.

The classification models and their results for the different datasets (ALL, HEALTHY,
PATIENTS), the two feature sets (SET-OBSERVE, SET-PREDICT), the 2-class and 3-class
classification, and the three classifiers (SVM, RF, LDA) were documented by means of the
python package mlflow (2.8.1). Consequently, 36 different combinations of dataset, feature
set, number of classes, and classifier were investigated.

Table 4. Choice of hyperparameters for the python classifiers of sklearn.

Model Python Classifier Hyperparameters

SVM SVC gamma, C
RF RandomForestClassifier min_samples_split, min_samples_leave, max_depth,

max_samples
LDA LinearDiscriminantAnalysis n_components, solver, tol

2.6. Identification of Stimulation Parameters

To find a suitable therapy current and electrode position, the assigned class distribution
in the four muscles along the applied stimulation intensity is analyzed for each individual.
An example of the class distribution extracted from EMG data with the proposed position
and therapy current is presented in Figure 4. For extracting the parameter pair (position,
current), the following nested search is applied to each individual subject [11]:

1. At least two• class 1 labels in one current among all muscles present in the respective
electrode position;

2. Largest number of class 1 labels per current;
3. Smallest current difference between onset of leg response and presence of maximum

number of class 1 labels;
4. Lowest stimulation current;
5. Largest sum of all class 1 labels in the respective position.

We chose a sub-motor-threshold therapy current of 90% of the intensity, where the first
reflex occurred [8,11]. By extracting the therapy parameters for both EMG and SET-OBSERVE
and SET-PREDICT classifications, the ML-based classification approach and its accuracy can
be assessed in the context of tSCS application. Note that, for the patients, only the stimulation
current is determined, as only one electrode position is available in the datasets.
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Figure 4. Example of EMG 3-class classification (see Table 2) of S8. The four circles represent the
EMG classification determined for the four examined muscles per applied stimulation current and
electrode position. The best parameter choice for tSCS is marked with a red frame; the optimal
electrode position would be 4 cm cranial to L3/L4, and the optimal therapy current 0.9 × 15 mA.
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3. Results
3.1. ML-Based Classification Approach

We first attempted to quantify the balanced accuracy of the ML-based classification
approaches to determine differences in the results evolved from the different classifiers and
datasets. The mean balanced accuracies for the test data of the 3-class classification problem
among all subjects represented in the datasets ALL, HEALTHY, and PATIENT are displayed
in Table 5. The corresponding results for the 2-class classification problem are shown in
Table 6. The mean balanced accuracy and standard deviations are additionally visualized
in Figure 5. The feature set that includes acceleration data (SET-OBSERVE) performs better
in terms of mean balanced accuracy than the dataset consisting of stimulation information
and metadata (SET-PREDICT). A clear performance lead of one classifier type is not visible.
For the dataset ALL and 3-class classification, SET-OBSERVE reaches a maximum mean bal-
anced accuracy of 0.74 for the RF, while the maximum value for SET-PREDICT is 0.68, also
using the RF classifier. The standard deviation of the PATIENTS dataset is conspicuously
higher than for the other datasets. Regarding the 2-class classification, the RF classifier
yields the best balanced accuracy for most dataset and feature set combinations. The cor-
responding maximum mean balanced accuracies are 0.87 (SET-OBSERVE) for the RF and
SVM classifier and 0.78 (SET-PREDICT) for the RF classifier. Therefore, we can see a clear
increase in performance, differentiating only between response and no response, without
distinguishing further between reflex and direct muscular response. This is reflected in
an increased mean balanced accuracy as well as a decrease in the standard deviation. The
inaccuracies between class 1 and class 2 response classification are also visible in the confu-
sion matrices presented in Figure 6. The example shown refers to results regarding dataset
ALL, feature set SET-OBSERVE, and the Random Forest 3-class classifier. The sensitivity of
class 0 is higher than for classes 1 and 2 (Figure 6B). In particular, the proportion of falsely
classified class 1 events sorted into class 2 is conspicuous. Subsequently, we determine how
the reported accuracies affect the identified stimulation parameter.

Table 5. Mean and standard deviation of balanced accuracy in test data across all subjects in the
corresponding datasets for the 3-class classification approach.

Dataset Feature Set SVM RF LDA

ALL SET-OBSERVE 0.72 ± 0.12 0.74 ± 0.11 0.71 ± 0.14
SET-PREDICT 0.64 ± 0.11 0.68 ± 0.09 0.63 ± 0.11

HEALTHY SET-OBSERVE 0.78 ± 0.08 0.78 ± 0.07 0.70 ± 0.11
SET-PREDICT 0.72 ± 0.09 0.68 ± 0.08 0.62 ± 0.10

PATIENTS SET-OBSERVE 0.68 ± 0.18 0.74 ± 0.17 0.67 ± 0.16
SET-PREDICT 0.58 ± 0.15 0.66 ± 0.18 0.57 ± 0.16

Table 6. Mean and standard deviation of balanced accuracy in test data across all subjects in the
corresponding datasets for the 2-class classification approach.

Dataset Feature Set SVM RF LDA

ALL SET-OBSERVE 0.87 ± 0.09 0.87 ± 0.08 0.86 ± 0.07
SET-PREDICT 0.77 ± 0.14 0.78 ± 0.1 0.77 ± 0.13

HEALTHY SET-OBSERVE 0.89 ± 0.07 0.91 ± 0.05 0.88 ± 0.05
SET-PREDICT 0.84 ± 0.06 0.86 ± 0.05 0.81 ± 0.08

PATIENTS SET-OBSERVE 0.82 ± 0.12 0.89 ± 0.06 0.77 ± 0.10
SET-PREDICT 0.69 ± 0.16 0.76 ± 0.09 0.65 ± 0.15
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Figure 5. Mean balanced accuracy and standard deviation of test data among all subjects for the
3-class classification and 2-class classification problems.
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Figure 6. Quantification of classification results through a confusion matrix example for 3-class
classification of dataset ALL, feature set SET-OBSERVE, and RF model. (A) Summed confusion matrix
for all subjects. (B) Ratios for each row (ground truth class) among all subjects.

3.2. Extraction of Stimulation Parameters

From the determined ML-based classifications, we identified the suitable personalized
therapy current and, in the case of healthy subjects, optimal electrode position, to assess the
classifier performances through their application. We extracted suitable therapy currents
from the ground truth classification of the EMG as well as from all ML-based classification
results for all subjects and measurement days (two for each patient, one for each healthy
subject). An example of the classification overview and current extraction is shown in
Figure A1. Additionally, the optimal electrode position was determined for each healthy
subject. Figure 7 illustrates the difference between the ground truth therapy current and
the currents extracted from all ML-based classification results. If no current was found due
to a lack of class 1 events, the stimulation current was set to 0 mA. Overall, SET-OBSERVE
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is superior compared to SET-PREDICT in terms of discrepancy between EMG- and ML-
based therapy current. Furthermore, the therapy current for healthy subjects is more
accurate compared to the current identified for the patients, which has a higher variance. 2-
class and 3-class classifications show a similar parameter distribution. A direct comparison
between ground truth and ML-based therapy parameters for the RF classifier is additionally
visualized in Figures 8 and 9. Only results of the better performing SET-OBSERVE, which
includes MMG data characteristics, are displayed. Most of the extracted currents are located
around the optimal diagonal (cf. Figure 8). However, for the patient data, some outliers are
located on the x-axis, when no current could be extracted in the ground truth, or y-axis, when
no current could be extracted in the ML-based prediction. All outliers on the x-axis originate
from one of the measurements of patients P1 and P2, where no stimulation current could be
found in the EMG classification. The extracted electrode positions from the classification of
SET-OBSERVE are, for the most part, located on the optimal diagonal (cf. Figure 9).
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Figure 7. Differences between therapy currents extracted from EMG- and ML-based class distribution
for both feature sets and all determined datasets and models. A negative value indicates that a higher
therapy current was identified with the corresponding machine learning models compared to using
the EMG. The whisker length is set to a maximum of 1.5 × the box height. (A) Differences in therapy
current (EMG- minus ML-based) for SET-OBSERVE and SET-PREDICT and all datasets regarding
the 3-class classification. (B) Differences in therapy current for dataset ALL, distinguishing between
patients and healthy subjects regarding the 3-class classification. (C) Differences in therapy current
and all datasets regarding the 2-class classification. (D) Differences in therapy current for dataset
ALL, distinguishing between patients and healthy subjects regarding the 2-class classification.
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in the ground truth classification.
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We additionally conducted a statistical analysis of the proportion of correctly de-
termined therapy parameters for 3-class and 2-class classifications, respectively. These
results are shown in Figures 10 and 11. The same therapy current could only be found for
a maximum of 36–45% of the subjects/measurement day regarding 3-class classification
(Figure 10A), depending on the model and dataset. The highest proportion was achieved in
the PATIENTS dataset and the RF classifiers, as well as among the healthy subgroup in the
ALL dataset with the RF classifier. The corresponding maximum proportions for the 2-class
classifications are 36–59% (Figure 11A). Again, the highest proportion was achieved in the
PATIENTS dataset and RF, as well as the healthy subgroup in the ALL dataset. However,
these numbers increased to maximum values of 79–91% for the 3-class (Figure 10C) and
82–100% for the 2-class classification (Figure 11C) when considering a small margin of 5 mA
around the ground truth current. In both cases, the HEALTHY dataset with the RF classifier
yields the best results. For the combined ALL dataset, up to 85% (LDA) of the extracted
currents were within the applied margin. The right combination of therapy current and
electrode position was determined for up to 45% of the healthy subjects for the dataset ALL
and RF with regard to 3-class classification (Figure 10B). The same maximum value was
achieved for dataset ALL and the SVM and LDA classifier regarding the 2-class classifica-
tion (Figure 11B). With the 5 mA margin, these numbers improved to 64% (Figure 10D) and
91% (Figure 11D), respectively. The RF classifiers provide the highest proportion of correct
therapy parameters for most datasets regardless of 2- or 3-class classification.
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Figure 10. Proportion of correctly identified stimulation parameters from ML-based classification
regarding the 3-class classification, considering the parameters extracted from the EMG as ground
truth. Only the feature set SET-OBSERVE is shown. (A) Proportion of measurements in which exactly
the same therapy current was extracted as in the EMG. (B) Proportion of measurements in which
exactly the same current and electrode position were found as in the EMG; only the proportion of
healthy subjects is shown. (C) Proportion of measurements in which the found therapy current for
ML-based classification was within the current extracted from the EMG ± 5 mA. (D) Proportion of
measurements in which the found therapy current for ML-based classification was within the current
extracted from the EMG ± 5 mA and in which the same electrode position was found as in the EMG;
only the proportion of healthy subjects is shown.



Sensors 2024, 24, 634 15 of 21

A B

C D

sa
m

e 
cu

rr
en

t, 
 s

am
e 

po
si

ti
on

sa
m

e 
cu

rr
en

t ±
 5

 m
A

sa
m

e 
cu

rr
en

t ±
 5

 m
A

, s
am

e 
po

si
ti

on

total
n = 33

healthy
n = 11

patients
n = 22

0.0

0.2

0.4

0.6

0.8

1.0

sa
m

e 
cu

rr
en

t

ALL

healthy
n = 11

HEALTHY

patients
n = 22

PATIENTS

SVM

RF

LDA

ALL HEALTHY
0.0

0.2

0.4

0.6

0.8

1.0
SVM

RF

LDA

ALL HEALTHY
0.0

0.2

0.4

0.6

0.8

1.0 SVM

RF

LDA

total
n = 33

healthy
n = 11

patients
n = 22

0.0

0.2

0.4

0.6

0.8

1.0
ALL

healthy
n = 11

HEALTHY

patients
n = 22

PATIENTS

Figure 11. Proportion of correctly identified stimulation parameters from ML-based classification
regarding the 2-class classification, considering the parameters extracted from the EMG as ground
truth. Only the feature set SET-OBSERVE is shown. (A) Proportion of measurements in which exactly
the same therapy current was extracted as in the EMG. (B) Proportion of measurements in which
exactly the same current as well as electrode position was found as in the EMG; only the proportion
of healthy subjects is shown. (C) Proportion of measurements in which the found therapy current for
ML-based classification was within the current extracted from the EMG ± 5 mA. (D) Proportion of
measurements in which the found therapy current for ML-based classification was within the current
extracted from the EMG ± 5 mA and in which the same electrode position was found as in the EMG;
only the proportion of healthy subjects is shown.

4. Discussion

To simplify and automate the application of tSCS therapy, we deployed machine
learning approaches to classify a sensor-based feature set containing MMG data character-
istics from PRMs to double and single tSCS pulses using the corresponding EMG classes
as ground truth. Additionally, a feature set without any sensor information containing
only metadata and stimulation information was determined and classified. Through the
ML-based class distributions, we identified suitable therapy parameters for each subject
and compared these with the ground truth parameters extracted from the EMG classes.

The results show better classification accuracy for the feature set SET-OBSERVE, which
includes MMG data, implying the importance of sensory observations to target individual
therapy parameters. However, the classifiers for the 3-class classification performed only
moderately well for the separation between class 1 (•, reflex response) and class 2 (•,
direct muscular response). Thus, the similarity between these classes regarding the MMG
in the 3-class classification problem is very high, making a separation challenging. We
suspect two reasons for this, as follows.

Firstly, the suppression (1) that is important for the 3-class EMG classification cannot
be determined directly from MMG due to the non-linear summation of the forces and,
therefore, the accelerations, in the case of sequential induced muscle twitches. With
the same muscle activation, and accordingly the same EMG response to the first and
second impulse (no suppression), the increase in force or acceleration due to the second
impulse can be greater than the response to the first impulse [20,21]. This means that
the amplitude of the acceleration in the DIFF signal would be increased compared to the
response of the first impulse, despite the same EMG activity. Another problem is that
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these non-linear effects are strongly dependent on the muscle fiber type [22], and the
composition of muscle fiber types can vary among patients. To reduce these non-linear
force summations after the sequential muscle twitches, we could apply longer inter-pulse
intervals between the double stimulation pulses. However, this would directly influence
the suppression effect in the EMG signals, especially for patients with SCI [10]. As we need
the post-activation suppression information to distinguish between reflex response and
direct muscular response in the ground truth data, lengthening the inter-pulse interval
would not be beneficial for therapy parameter identification.

The second reason for inaccuracies when distinguishing between reflex response
and muscular response could be crosstalk in the acceleration signals due to movement
of joints or contraction of other leg muscles. To provide knowledge on the activity of the
other recorded leg muscle to the algorithm, we added two amplitude features of these
muscles to the feature set SET-OBSERVE. This was done as a simple attempt to internally
track and catch crosstalk. As we fastened the IMUs with elastic straps over the muscle
belly, contractions from muscles with direct contact to the strap could disturb the sensor
signals further. However, lower limb muscles that were not recorded during the calibration
process are part of the PRMs, such as the hamstring or tibialis anterior muscle [23]. Hence,
activity in these muscles can still indicate activation of afferent nerves accountable for
spasticity reduction and therefore lead to suitable therapy parameters. Nonetheless, as
these muscles were not part of our datasets, this assumption is not verifiable and would
have to be examined in further investigations. Crosstalk of joint movement resulting from
the muscle contractions due to the tSCS pulses is also a possible signal disturbance. There is
a considerable delay between a contraction of a distant muscle and a perceptible movement
at the sensor. Keeping the measurement interval close to the stimuli should guarantee
that only local contraction forces and corresponding accelerations are sensed. If crosstalk
is present, then crosstalk from antagonistic muscles across the strap is more likely than
from muscles further away, which can only act on the sensor via joint or leg movements
with a greater time delay. To avoid big influences of superposition because of different
acceleration sources, we chose the windows winA1 and winDIFF to be very close to the
pulse artifact and, therefore, to the reflex or muscle activation time stamp.

After the ML-based classification, we further identified individual therapy parameters
for each subject from the classification results. The therapy current extracted from ground
truth and from ML-based classification corresponded in only a fraction of the subjects.
However, most of the determined currents varied around the optimal value. These fluc-
tuations between ground truth and predicted therapy current result from inaccuracies of
the classifiers, especially around the applied pulse amplitude at which the first muscle
reactions occur. These inaccuracies also transfer to the choice of the electrode position in
healthy subjects. However, a position that was not labeled as optimal through the ground
truth classification can still be potentially suitable for tSCS when an adapted higher current
is applied. Nonetheless, we strive for the most tolerable stimulation for the subject, which
we assume can be extracted from the EMG data acquired at different electrode positions.
Overall, the presented algorithms show good results for both therapy current and position
identification. In order to successfully use MMG for personalized tSCS tuning, synchro-
nized stimulation and IMU recording would be required, as no artifacts are visible in the
acceleration signals.

In this paper, we investigated both 3-class classification as well as a simplified 2-class
classification. The latter generally produced higher balanced accuracy values and more
accurate stimulation parameters. Thus, we pose the question of whether a 2-class classifica-
tion would be precise enough to activate afferents and, hence, achieve a therapeutic effect
after tSCS therapy. Referring to the data we collected in this and in previous investigations,
we observe that if a rather big electrode of 5 × 10 cm is placed over the upper lumbar spine,
class 1 (reflex) responses will be most probably elicited before class 2 (direct muscular)
responses occur. This corresponds with the recruitment order of different nerve fiber types.
Large-diameter proprioceptive sensory nerves have the lowest activation threshold and are
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therefore recruited at lower stimulation intensities than motor fibers [24,25]. To conclude,
since we strive for therapy currents at sub-motor level and since the first responses visible
during the calibration procedures are most likely reflex responses elicited by afferents, a
2-class classification would presumably be sufficient. However, whether that is true for all
groups of patients that would profit from tSCS cannot be confirmed and would have to be
determined in further investigations.

The newly introduced method with single- and double-pulse stimulation was intended
to improve the classification of muscle and reflex responses in the MMG. However, a
disadvantage of this approach is the double time compared to the EMG-based approach,
which only includes double stimuli. Given the good performance of tSCS-tuning based on
2-class classification, the question arises whether the inclusion of single-pulse data, i.e., the
calculated differences and the corresponding features, is necessary to sufficiently detect
any stimulus-induced activity in the MMG data. This open question will be pursued in
the future.

For our investigations, we included patient tuning data as well as data from healthy
subjects. Due to the limited quantity of our patient dataset, a machine learning approach
using exclusively the available patient data would have been unsatisfying. Therefore, we
included the larger healthy dataset in order to be able to investigate the performance of our
method with several electrode positions. However, our results indicate that the accuracy
of the therapy parameter choice is slightly higher for the patient cohort if we train the
model solely on the PATIENT dataset instead of on the mixed ALL dataset (cf. Figures 10A
and 11A). This could imply that training an individual model for patients with a common
medical condition is beneficial. Another patient group that was not investigated in the
paper but would profit from a simplified tSCS tuning process is the group of patients with
spinal cord injuries. Hence, this cohort should be included in future studies.

Another disparity in the results of the different subject groups is the larger standard
deviation of the balanced accuracy among the MS patient group (cf. Figure 5, dataset
PATIENTS) compared to the mixed dataset (ALL) and healthy dataset (HEALTHY). A
reason for that could be the difference in composition of the two datasets (cf. Figure 3).
The total number of events for the patients accounts for only one-third of the overall
dataset. Additionally, the proportions of class 1 and class 2 events are smaller in the
patient data. Therefore, the transition phase from no response (class 0) to response (class
1 and class 2) during the individual tuning of a patient takes up a larger proportion of
the PATIENT dataset. However, in this transition phase, more natural inaccuracies in the
classification approaches occur due to the small amplitudes of the responses. The smaller
quantity of events and higher proportion of the transition phase could explain the larger
standard deviation of the balanced accuracies. Another reason could be the disparity
in severity and location of neurological defects among the MS patients, which causes
a limited comparability between them. Thus, the LOSO cross-validation performance
can vary considerably within the patient group. To conclude, to further improve the
performance and reliability of our models, larger datasets from MS patients would be
beneficial. Additional models for other patient groups, such as SCI, can be trained when
the corresponding data are available.

For MMG, two sensor technologies are commonly used: piezoelectric contact (PEC)
and accelerometer (ACC). In [26], the frequency responses of PEC and ACC have been
experimentally determined. Results for the sensors without housing restrictions show
that the PEC transducer resembled that of the double integral over time of the ACC
transducer signal, acting as a displacement meter of muscle vibration. As it correlates
better with muscle force, we selected ACC as the sensor technology. However, study [26]
indicates the negative influence of housing restrictions on the measurements. We used
a medically certified system with synchronous EMG and acceleration recording, as this
was mandatory for our investigation. The inertial sensors with accelerometer have a
dimension of 41 × 47 mm and a mass of 20 g. These physical quantities result from the
use of rechargeable batteries for enabling wireless data transmission. The latter increases
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the usability of the system. Latencies in data transmission are not critical, as data from
the sensors are transmitted with synchronized time stamps batch-wise to the laptop after
each applied single or double pulse. Upon receiving the data, non-causal data processing
is performed. The sensor size and mass (inertia) might negatively impact the detection of
muscle responses as they dampen vibration. Possible advantages of smaller and lighter
sensors and different mounting approaches need to be investigated in the future.

As we only looked at a small number of classifiers, there might be other algorithms
that reach a similar or even better performance. We chose classifiers that are suitable for
multi-class classification and tried to include linear (LDA) as well as non-linear algorithms
(RF and SVM with radial basis function kernel) that vary in their computational complexity.
Despite their differences, the performance of the chosen classifiers is similar. Hence, we
expect that other classifier types would perform comparably. With the choice of our
classifiers and their performances, we conclude that machine learning-based classification
algorithms are generally suitable for this application.

Recent publications have determined that selective tSCS targets specific muscle groups
for patients with SCI [27,28]. In this application, finding the accurate electrode position is
more essential than in the calibration procedure that we proposed in this paper, as smaller
electrodes or electrode arrays are used to selectively activate muscles. Hence, applying
the proposed algorithm to these datasets would be another opportunity to investigate its
performance in the context of a more advanced application.

5. Conclusions

In this paper, we investigated the suitability of MMG for tuning individual tSCS ther-
apy parameters. Three different classifier types were examined for supervised classification,
considering the typically used EMG as ground truth data. We compared the accuracy of
the classification for patient data, data from healthy subjects, and for a combined dataset of
n = 22. Furthermore, the classifiers were also tested without using any MMG sensor data to
observe the performance of the prediction model.

Overall, the classifiers performed better with MMG sensor data present in the training
data. The extraction of individual therapy parameters from the classified signals was
possible. Both determined therapy currents (for healthy subjects and patients) as well as
positions (for healthy subjects) show good results for most of the subjects and models.
The algorithm should be further investigated with additional datasets and in different
application contexts. We conclude that the presented use of inertial sensors has the potential
to tune the tSCS current and position beyond clinical research in clinical practice and even
in home use, where EMG-based measurements may be too difficult, time-consuming, or
wasteful in terms of required materials.
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Abbreviations
The following abbreviations are used in this manuscript:

BMI Body Mass Index
DIFF Per value difference between double- and single-pulse MMG responses
EMG Electromyography
IMU Inertial Measurement Unit
LDA Linear Discriminant Analysis
LOSO Leave-One-Subject-Out
ML Machine Learning
MMG Mechanomyography
MS Multiple Sclerosis
Q Quadriceps
RF Random Forest Classifier
SVM Support Vector Machine
TS Triceps Surae
tSCS Transcutaneous Spinal Cord Stimulation
winA1 Window for feature extraction in single-pulse MMG signal 10–60 ms after first stimulus
winDIFF Window for feature in DIFF extraction 10–60 ms after second stimulus
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Figure A1. Example of EMG 3-class classification and prediction (SET-OBSERVE, dataset ALL,
SVM) (see Table 2) for P5. The best parameter choice for tSCS is marked with a red frame for both
classifications. Differences in classification are marked with a bold black frame around the circles.
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