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Abstract: This paper provides a comprehensive overview of the security vulnerability known as rowham-
mer in Dynamic Random-Access Memory (DRAM). While DRAM offers many desirable advantages,
including low latency, high density, and cost-effectiveness, rowhammer vulnerability, first identified in
2014, poses a significant threat to computing systems. Rowhammer attacks involve repetitive access to
specific DRAM rows, which can cause bit flips in neighboring rows, potentially compromising system
credentials, integrity, and availability. The paper discusses the various stages of rowhammer attacks,
explores existing attack techniques, and examines defense strategies. It also emphasizes the importance
of understanding DRAM organization and the associated security challenges.

Keywords: dynamic random-access memory; rowhammer; security; vulnerability

1. Introduction

Dynamic Random-Access Memory (DRAM) has gained widespread adoption as the
main memory across a spectrum of computing systems, ranging from smartphones and
personal computers to workstations and servers. The pervasive usage of DRAM can be
attributed to its inherent advantages, such as low latency, high density, and low cost
per bit. However, within the realm of DRAM’s strengths lies a security vulnerability
known as rowhammer. This vulnerability, first introduced in 2014 [1], has been extensively
researched, revealing its significant potential to compromise the confidentiality, integrity,
and availability of computing systems [2–9].

A typical rowhammer attack involves the repetitive access of a specific row within a
DRAM chip [1]. This aggressive access can inadvertently trigger bit flips in neighboring
victim rows, causing unexpected changes in their values. Many research groups have
explored various repetitive access patterns, such as single-sided, double-sided, or multi-
sided access patterns, in an effort to enhance the probability of inducing bit flips or to
circumvent rowhammer defense mechanisms, such as target row refresh [10–18].

Previous studies have emphasized the importance and challenges of a preparatory
stage prior to accessing a DRAM row, which relies on a comprehension of the operating
system and the underlying processor architecture. For example, the identification of DRAM
row adjacency for a rowhammer attack necessitates memory profiling since the consecutive
memory addresses used by a program do not align linearly with DRAM rows. Moreover,
the rapid repetitive activation of a DRAM row to induce bit flips requires bypassing a cache
hierarchy employed to minimize DRAM memory accesses.
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This paper provides a comprehensive review of recent advancements in rowhammer
attacks. To elucidate, we deconstruct the attack process into three stages: (1) setup, (2) repet-
itive access, and (3) exploitation, as illustrated in Figure 1. Subsequently, we present existing
techniques within each stage, delving into their underlying mechanisms. Additionally,
we conduct an exhaustive examination of defense strategies against rowhammer attacks,
categorizing them into three distinct groups based on where each mitigation technique is
applied, as depicted in Figure 2.
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The rest of this paper is organized as follows. Section 2 provides a brief review
of DRAM organization and the rowhammer mechanism. Section 3 discusses the setup
stage that initiates the rowhammer attack. Section 4 reviews various row access patterns
employed in executing rowhammer attacks, categorized into single-sided, double-sided,
and multi-sided attacks. Section 5 examines applications of rowhammer attacks that
pose threats to the credentials, integrity, and availability of computing systems. Section 6
discusses existing mitigation techniques, including software-based, memory controller-
based, and DRAM-based approaches. Section 7 discusses new challenges and needs for
rowhammer research on DDR5 DRAM, and Section 8 concludes the paper.

2. Background
2.1. DRAM Background

DRAM is organized as a hierarchy of two-dimensional arrays of cells, where each cell
is responsible for storing a single bit of data using a combination of a capacitor and an
access transistor as shown in Figure 3a. The binary data value of each cell is determined by
the charge state of its capacitor. To access and retrieve data from individual cells, word-lines,
and bit-lines are employed to establish the path to the desired data location. The word-line
connects to all cells in the same row horizontally, while the bit-line connects all cells in the
same column vertically.
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When the word-line is activated, typically by issuing a row activation command,
commonly referred to as an ACTIVATE command, it enables all the access transistors
within that row, establishing connections between the capacitors to their respective bit-lines
(See Figure 3b). This operation transfers the data from the row into a dedicated row buffer.
The row buffer reads the charge from the cells, resulting in the inevitable charge leakage
in the cells, and promptly writes this charge back into the cells. Subsequently, all access
operations on a subset of the row, such as a column read command (READ) or a column
write command (WRITE), are managed by the row buffer on behalf of that row. When
there are no further accesses to the row, the word-line voltage is de-asserted to disengage
the capacitors from the bit-lines, typically accomplished by issuing a precharge command
known as PRECHARGE.

DRAM poses inherent challenges in data retention due to various leakage mechanisms,
including gate-induced drain leakage and subthreshold leakage [1,44,45]. To mitigate data
loss, the cell’s charge must undergo restoration, a process known as refreshing. This
involves activating the row to which the cell belongs. Upon row activation, the row
buffer reads the cell’s charge value and promptly restores it to its original state. For more
efficient refresh operations involving multiple rows simultaneously, DRAM has a dedicated
command known as REFRESH [1].

2.2. Rowhammer Mechanism

Rowhammer is a security vulnerability in DRAM, enabling an attacker to change
the data stored within memory cells. Rowhammer attacks take advantage of the physical
proximity of these cells within the memory array. By repetitively and rapidly activating a
specific row, it can result in charge leakage from the capacitors of victim cells in adjacent
rows [46–49]. Three potential causes for this phenomenon have been hypothesized, as
posited by [47]:

(1) Bridging between neighboring rows: The study in [50] demonstrated the formation of
conductive channels between separate wires and capacitors in DRAM. Additionally,
the study in [48] illustrates that the frequent toggling of a word-line can expedite the
charge flow between two bridged cells.

(2) Electromagnetic coupling: The alteration of voltage in a word-line can introduce noise
into a neighboring word-line via electromagnetic coupling, inducing the leakage of
charge from the victim cells [49,51,52].

(3) Hot carrier injection: Prolonged toggling of a word-line can lead to hot-carrier injec-
tion [53]. The injection of hot carriers into adjacent rows may escalate charge leakage
from victim cells.

This charge leakage may cause some victim cells to fail to retain their charge for the
prescribed refresh interval. Consequently, this phenomenon leads to the alteration of the
stored data, resulting in a bit flip from 0 to 1 or vice versa, as illustrated in Figure 4a.
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Rowhammer attacks represent a significant security concern because they bypass
traditional security mechanisms and can be conducted using software applications without
requiring physical access to the targeted machine. Figure 4b shows x86 assembly code that
induces the rowhammer effect, assuming that memory addresses X and Y are mapped to
different DRAM rows in the same memory bank [1].

3. Setup for Rowhammer

This section discusses the preparation steps leading up to initiating a rowhammer
attack. It begins with an examination of memory profiling, followed by techniques for
circumventing the cache hierarchy to gain direct access to DRAM cells. Lastly, it explores
strategies for overcoming different defenses against rowhammer attacks. Table 1 provides
a summary of the referenced papers that pertain to the setup of a rowhammer attack.

Table 1. List of referenced papers for rowhammer setup.

Setup Cited Paper Year Methods

Memory profiling

Project Zero [3] 2015 Pagemap/Huge pages/Timing

Pagemap [54] 2015 Pagemap

DRAMA [55] 2015 Pagemap/Huge pages/Timing

Cross-VM Row Hammer [5] 2015 Timing

Rambleed [2] 2020 Pagemap

Row hammer with crosshair [56] 2016 The retention error behavior with respect to the temperature

Solar-DRAM [57] 2018 Timing

Design-induced latency variation [58] 2017 Timing

A surgical precision hammer [59] 2018 Pagemap/Huge pages/Timing

Drammer [60] 2016 Pagemap/Huge pages/Timing

Bypassing a cache
hierarchy

DRAM disturbance errors [1] 2014 Cache Flushing

A new approach [61] 2016 Non-temporal store-based bypassing

Half-Double [62] 2022 Cache Eviction

BLASTER [63] 2023 Cache Eviction

Bypassing
mitigation
techniques

Memory deduplication attacks in
sandboxed JavaScript [64] 2015 Escaping a Sandbox

The spy in the sandbox [65] 2015 Escaping a Sandbox

Rowhammer.js [6] 2016 Escaping a Sandbox

TRRespass [66] 2020 Bypassing TRR

BLACKSMITH [67] 2022 Bypassing TRR
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3.1. Memory Profiling

In order to carry out a successful rowhammer attack, the attacker must repeatedly
access a specific row that is adjacent to the row containing victim cells. This operation
requires an understanding of DRAM address mapping since, typically, software and
processors employ virtual addresses and physical addresses, respectively, rather than
DRAM addresses.

One possible method for establishing virtual-to-physical address mapping involves access-
ing information provided by the operating system. For example, in Linux, the/proc/self/pagemap
file contains comprehensive data regarding the translation from virtual to physical ad-
dresses. Given that this file was initially accessible to users, prior research conducted
by [2,55,60] has demonstrated that processes in userland can gain knowledge of the
physical memory layout. (The Linux kernel has discontinued unprivileged access to
the/proc/self/pagemap file, starting from version 4.0 [54].)

Another alternative is to leverage huge virtual pages that are supported by contiguous
physical pages [55,60]. Since a huge page spans 2 MB of contiguous physical addresses, the
attacker enables the utilization of relative offsets to access particular physical memory pages
without requiring the precise translation of information from virtual to physical addresses.

Various methods exist for DRAM address mapping, including the utilization of DRAM
access latency as a side channel, the adjustment of DRAM timing parameters, and the appli-
cation of a thermal gradient on a DRAM device [55–59]. The authors in [55] demonstrated
that accessing two distinct rows within the same bank results in a longer latency when
compared to accessing two rows located in different banks, as shown in Figure 5. This
latency difference stems from the row buffer’s function as a direct-mapped cache, capable
of holding just a single row per bank. Consequently, this disparity can be utilized as a side
channel to infer the adjacency of rows within a DRAM device.
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In addition, the techniques discussed in [57,58] rely on measuring the distance from a
row to the row buffer. This approach introduces errors by accessing memory using DRAM
timing values that are shorter than the standard timings. In essence, data stored in a cell
closer to the row buffer has a shorter distance to traverse compared to data stored farther
away, reducing the likelihood of encountering errors. Hence, the likelihood of errors can be
used to estimate DRAM addresses approximately.

The authors in [56] proposed a method to determine the physical positions of DRAM cells
by conducting a retention error analysis while subjecting the DRAM device to a controlled
temperature gradient. This allows attackers to derive the spatial relationships between
individual DRAM cells, facilitating the execution of highly focused rowhammer attacks.

3.2. Bypassing a Cache Hierarchy

Bypassing a cache hierarchy is an essential prerequisite for achieving direct access to
DRAM and subsequently executing a rowhammer attack. Existing cache bypass methods
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can be broadly categorized into three primary approaches: cache flushing, cache eviction,
and non-temporal store-based bypassing [3,5,60,61].

Cache flushing, which involves purging data from the cache, represents the most
straightforward method to guarantee that each memory access originates from DRAM
instead of the CPU cache. For x86 architecture, the research [3] effectively utilized the clflush
command, specifically designed for cache flushing. In the context of ARM architecture,
such as ARMv7, the cacheflush() system call can be employed [60].

Researchers in [5,62,63] proposed cache eviction techniques that do not rely on clflush
or cacheflush() instructions, which may be unavailable on recent architectures. These
techniques involve carefully crafting memory access patterns to indirectly evict cache lines,
ensuring that subsequent accesses target DRAM.

Furthermore, non-temporal store instructions, such as movnti or movntdq for x86 archi-
tecture, as demonstrated in [61], offer an alternative approach to bypassing the cache. To
ensure that each non-temporal store instruction reaches the DRAM chip, write-combining
buffers must be flushed. This can be achieved by following the non-temporal store instruc-
tion with cached memory access to the same address where the instruction writes data.

3.3. Escaping a Sandbox

JavaScript operates within a strict sandboxed environment, limiting its access to files
and system services and lacking concepts like virtual addresses and pointers. Additionally,
its timing precision falls short of that in native code, making rowhammer attacks seem
challenging. However, pioneering research by [64,65] has revealed that JavaScript-based
cache attacks can exploit timing accuracy to differentiate cache hits from misses, opening
the door to timing attacks.

In JavaScript, when memory is allocated, browsers like Firefox and Google Chrome
designate an anonymous 2 MB page for a large array. Accessing this array with a 4 KB
address triggers page faults, causing latency spikes each time the 2 MB page commences.
This distinctive behavior enables the identification of the 2 MB page frame. Armed with
knowledge about the array’s offset, it is possible to gain insight into the least significant
21 bits of both virtual and physical addresses. Armed with these data, it is possible to create
a tool to convert virtual addresses into their corresponding physical addresses.

3.4. Bypassing Target Row Refresh

Target Row Refresh (TRR) is a well-known defense mechanism against rowhammer
attacks. Unlike traditional DRAM, which refreshes rows at regular intervals, TRR selectively
refreshes rows identified as potential victim rows, effectively thwarting attacks. Recent
strategies to bypass TRR can be broadly classified into two approaches: those that exploit
weaknesses within TRR’s operation and those that completely circumvent TRR. The former
includes techniques like the half-double rowhammer attack, which will be discussed in
Section 4. The latter encompasses methods such as TRRespass [66] and BLACKSMITH [67],
a multi-sided rowhammer strategy utilizing fuzzing techniques.

4. Repetitive Access Patterns for Rowhammer

There exist various row access patterns for executing rowhammer attacks, catego-
rized into three primary types: single-sided, double-sided, and multi-sided attacks. In a
single-sided rowhammer attack, repetitive memory accesses are focused on only one row,
typically the one adjacent to the target row. In a double-sided rowhammer attack, two
memory rows are repeatedly accessed, effectively surrounding the target row. A multi-
sided rowhammer attack involves more than two memory rows to circumvent rowhammer
mitigation techniques such as TRR [8,62,68].

4.1. Single-Sided Attack

The single-sided attack is primarily directed at a single row adjacent to the target
victim row. However, when the memory controller utilizes an open-page policy, where
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a memory row remains buffered until the next memory row is accessed, the single-sided
attack requires accessing of two separate rows within the same bank to clear the contents of
the row buffer. This discrepancy arises despite the name “single-sided attack”, suggesting
the targeting of only a single memory location.

In contrast to the open-page policy, modern systems have adopted more advanced
memory controller policies that proactively close rows ahead of their actual necessity,
aiming to enhance overall performance [69–71]. Building upon this shift, authors in [8]
proposed a novel technique known as one-location hammering. In this approach, the attacker
executes a Flush + Reload [8] loop exclusively on a single memory address, operating at the
maximum possible frequency. This continuous activity effectively reopens the same DRAM
row every time the memory controller attempts to close it. Since one-location hammering
does not access different rows within the same bank, it has the capacity to bypass certain
existing defense mechanisms designed to detect the original single-sided attack patterns.

4.2. Double-Sided Attack

The double-sided attack entails the simultaneous hammering of two memory rows,
effectively sandwiching the target victim row, as illustrated in Figure 6a. In contrast to
the single-sided attack, the double-sided approach typically has the potential to induce
a greater number of bit flips. However, it demands a more extensive understanding of
virtual-to-physical mappings, as the two rows subjected to hammering must be strategically
positioned on opposite sides of the target row. The research discussed in [8,47,62] effectively
leveraged the double-sided attack to induce successful bit flips via rowhammer.
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4.3. Multi-Sided Attack

Considering that both the single-sided attack and double-sided attack are designed to
induce bit flips in an adjacent row, rowhammer defense mechanisms such as TRR often
operate under the assumption that aggressor–victim pairs are indeed adjacent. To evade
detection, researchers have explored the concept of multi-sided attacks, exemplified by
techniques such as half-double [62] and TRRespass [66].

The half-double technique initially targets two far aggressors, F1 and F2, as shown in
Figure 6b. This deliberate choice ensures that only a subtle charge leakage occurs in the
victim row, which is insufficient to induce a bit flip. Interestingly, the half-double approach
leverages TRR counterintuitively. By consistently accessing F1 and F2 beyond the threshold
that triggers a TRR, a TRR is induced in the adjacent row near aggressors N1 and N2. This
action subsequently involves accessing the near aggressor rows, which, in turn, influences
the victim row, resulting in a bit flip. Additionally, the blaster [63] with a row distance of 4
from the victim row is currently being researched.

TRRespass introduced a black-box multi-sided rowhammer fuzzer that discovers
accessing patterns effective under TRR based on the observation that modern TRR imple-
mentations are generally susceptible to rowhammer attacks with many aggressor rows [66].
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5. Exploitation of Rowhammer

Rowhammer attacks possess the potential to undermine the fundamental pillars of
computer system security, which are commonly represented by the confidentiality, integrity,
and availability (CIA) triad. Table 2 presents a list of referenced papers pertaining to the
CIA triad in the context of rowhammer attacks.

Table 2. List of referenced papers pertaining to the CIA triad.

CIA Triad Cited Paper Year Target

Confidentiality
degradation

Project Zero [3] 2015 An operating system for privilege escalation

Drammer [60] 2016 An ARM-based device for privilege escalation

Cross-VM Row Hammer [5] 2016 The physical hardware in virtual machines (VMs)

Flip Feng Shui [4] 2016 The memory-storing cryptographic keys

RAMBleed [2] 2020 An operating system for privilege escalation

Integrity
degradation

Cross-VM Row Hammer [5] 2016 Withing an OpenSSH server

Rowhammer.js [6] 2016 Within a remote computing system

ECCploit [7] 2019 Within error correction code (ECC) memory

Bit-flip attack [72] 2019 Within the neural network, parameter bits stored in DRAM

ZeBRA [73] 2021 Within the neural network, parameter bits stored in DRAM

Availability
degradation

SGX-Bomb [9] 2017 Accessibility in the cloud

Another Flip [8] 2018 Accessibility in the cloud

5.1. Confidentiality Degradation

Rowhammer attacks targeting an operating system have the potential to facilitate
privilege escalation, thereby degrading confidentiality. In the study conducted by Seaborn
et al. [3], researchers demonstrated the exploitation of rowhammer-induced bit flips to
attain kernel privileges on x86-64 Linux systems, even when executed as an unprivileged
userland process. On systems vulnerable to the rowhammer issue, this process was able to
initiate bit flips within page table entries (PTEs). Consequently, it successfully acquired the
capability to modify its own page table, and thus granting itself read-write access to the
entirety of physical memory.

Moreover, rowhammer attacks can target shared memory resources in cloud comput-
ing environments where multiple virtual machines (VMs) share the same physical hardware.
In the study conducted by Xiao et al. [5], a privilege escalation attack was executed within
a cloud environment, enabling malicious users to acquire read and write permissions to
other users’ VMs. The attack method involved identifying weak memory DRAM cells
via memory profiling and employing double-sided rowhammering. Subsequently, the
attack mapped the page directory within the VM’s operating system kernel to the page
containing the weak memory cell. The attack then executed the rowhammer technique to
flip the vulnerable bits within the page directory at the anticipated locations, redirecting
them to a different page table than originally intended. Via this process, the researchers
demonstrated that a guest VM can read and write any memory page on the machine.

In addition, rowhammer attacks can target the memory-storing cryptographic keys. If
an attacker successfully flips bits in the memory where encryption keys are stored, they can
decrypt sensitive data, compromising the confidentiality of encrypted communications or
stored data. In the study conducted by Kaveh Razavi et al. [4], the authors demonstrated
how rowhammer attacks could compromise the security of OpenSSH public-key authenti-
cation and forge GNU Privacy Guard signatures from trusted keys. This compromise, in
turn, threatened the integrity of the Ubuntu/Debian update mechanism. Also, the study
conducted by Andrew Kwong et al. [2] revealed the alarming possibility of extracting an
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RSA-2048 key on OpenSSH 7.9 via a combination of their proposed memory profiling and
double-sided rowhammering techniques.

5.2. Integrity Degradation

Rowhammer attacks can alter the content of a DRAM cell without the need for di-
rect access, thereby leading to a deterioration of data integrity. The study presented in
Rowhammer.js [6] introduced the rowhammer attack framework that necessitates nothing
more than a website utilizing JavaScript to induce errors within a remote computing sys-
tem. Furthermore, the study in ECCploit [7] demonstrated integrity degradation within
error correction code (ECC) memory. This research involves identifying bit flips that ECC
can initially correct, only to subsequently combine these bit flips in such a way that ECC
becomes incapable of correction or detection.

Additional studies cited in [72,73] have demonstrated that rowhammer-induced bit
flips within the neural network parameter bits stored in DRAM can significantly undermine
inference accuracy. The study in [72] showed that only 13 bit flips of weight parameters
of a ResNet-18 convolutional neural network could degrade top-1 accuracy from 69.8% to
0.1%. The study in [73] underscored that a mere couple of bit flips within a mobile-friendly
neural network can notably impair its accuracy. In Figure 7, attention maps at various
convolution layers in MobileNetV2, extracted using Grad-CAM [74], reveal a substantial
shift in the map’s location after just two bit flips.
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5.3. Availability Degradation

It is possible to conduct a denial-of-service attack in a cloud environment using
rowhammer attack methods. Such an attack has the potential to reduce accessibility in the
cloud. Intel Software Guard Extensions (SGX) are x86 instruction extensions that verify
the OS, hypervisor, and hardware for tampering. If there are any errors in confidentiality
or integrity, Intel SGX is suspended until the system is restarted. These techniques can
be misused to shut down numerous cloud systems by introducing errors into several
machines [8,9].

6. Rowhammer Defenses

Despite persistent and ongoing research efforts to develop defense strategies against
rowhammer attacks, vulnerabilities remain prevalent [2–9]. The diminishing technology
nodes in DRAM chips amplify the threat, enabling rowhammer attacks to succeed with
fewer row activations [46,47,68]. This underscores the need to reevaluate and enhance
existing defense mechanisms. In this section, we categorize rowhammer defense strategies
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into three areas based on where their mitigation technique is applied: software, memory
controller, and DRAM as shown in Table 3. Subsequently, we analyze strategies within
each category using the criteria of protection concepts, tracking mechanisms, and remedies.

Table 3. Overview of recent rowhammer mitigations.

Location Mechanism Year Protection
Concepts

Tracking
Mechanism Remedy

Software

COF [39] 2023 Deterministic Counter Physical Isolation

SoftTRR [11] 2021 Deterministic Counter Reactive Refresh

RADAR [36] 2020 Deterministic - Reactive Refresh

RIP-RH [27] 2019 Deterministic - Physical Isolation

CTA [37] 2019 Deterministic - Physical Isolation

ALIS [28] 2018 Deterministic - Physical Isolation

GuardION [29] 2018 Deterministic - Physical Isolation

ZebRAM [30] 2018 Deterministic - Physical Isolation

CATT [23] 2017 Deterministic Cache Physical Isolation

ANVIL [10] 2016 Probabilistic Counter Reactive Refresh

Memory
Controller

LightRoAD [42] 2023 Deterministic Counter, Cache Reactive Refresh

SRS [38] 2023 - Counter Reactive Refresh

PT-Guard [19] 2023

Hydra [12] 2022 - Counter Reactive Refresh

Aqua [32] 2022 Probabilistic - Physical Isolation

RSS [31] 2022 Probabilistic - Physical Isolation

Discreet-PARA [41] 2021 Probabilistic Counter Reactive Refresh

BlockHammer [16] 2021 Deterministic Counter Proactive Throttling

HammerFilter [40] 2021 Deterministic Counter Proactive Throttling

CAT-TWO [20] 2020 Deterministic Counter Reactive Refresh

Graphene [15] 2020 Deterministic Counter Reactive Refresh

TWiCe [14] 2019 Deterministic Counter Reactive Refresh

MRLoc [18] 2019 Probabilistic Counter, Queue Reactive Refresh

CBT [13] 2016 Probabilistic Counter Reactive Refresh

CRA [24] 2015 Probabilistic Counter, Cache Reactive Refresh

PARA [1] 2014 Probabilistic - Increased Refresh Rate

DRAM

REGA [33] 2023 Deterministic - Reactive Refresh

Dsac [21] 2023 Probabilistic Counter Reactive Refresh

CSI [35] 2023 - - -

HiRA [34] 2022 Probabilistic - Reactive Refresh

Mithril [22] 2022 Deterministic Counter Reactive Refresh

ProTRR [17] 2022 Probabilistic Counter Reactive Refresh

Silver Bullet Technique [43] 2021 Probabilistic - Reactive Refresh

Panopticon [25] 2021 Deterministic Counter, Queue Reactive Refresh

ProHIT [26] 2017 Probabilistic Queue -
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Protection concepts are divided into two types, deterministic and probabilistic, based
on the degree of protection they offer against rowhammer attacks. Deterministic methods
are designed to entirely prevent rowhammer attacks under specific environments and con-
ditions. They employ distinct rules or mechanisms, such as using a counter to monitor the
number of ACTIVATE commands in a row and refreshing that row before a predetermined
threshold is reached. In contrast, probabilistic methods aim to thwart rowhammer attacks
with a certain likelihood, thereby minimizing performance overhead. While they do not
guarantee the complete prevention of rowhammer attacks, their goal is to increase the
complexity of the attack, making it more challenging for the attacker.

The tracking mechanism involves various proposed mechanisms to track attacks, with
counters being the most commonly used method. Using counters allows for the precise
monitoring of the number of ACTIVATE commands in a row within DRAM [11–17,20–22].
By refreshing the specific row before it exceeds a predetermined threshold, attacks can be
prevented. Additionally, other mechanisms, such as Queue or Cache, have been suggested
to track and detect attack patterns [18,23–26].

Remedy refers to the countermeasures implemented after detecting a rowhammer
attack to mitigate or defend against it. The focus is on minimizing the impact of the attack
or completely blocking it. For instance, the reactive refresh method refreshes adjacent
rows upon detecting an attack to prevent bit flips. Proactive throttling [1,16,75] delays the
activation frequency of DRAM for a certain period once an attack is detected, reducing the
likelihood of a successful rowhammer attack. Another method, physical isolation [23,27–30],
protects sensitive data by physically separating them from potential attackers.

6.1. Software-Based Mitigations

Software-based mitigation strategies are predominantly implemented within the oper-
ating system kernel, given the operating system’s direct oversight of hardware resources.
These strategies can be broadly categorized into two types: heuristic-based attack detec-
tion [10,11,36] and physical isolation [27–30].

6.1.1. Heuristic-Based Attack Detection

Heuristic-based attack detection leverages hardware performance counters to identify
potential attackers and refresh the rows at risk of being bit-flipped before any damage
occurs. For instance, ANVIL [10] employs CPU performance counters to gather memory
access data and monitor DRAM rows. By observing the DRAM row access patterns in
the cache, it can force a refresh on neighboring rows that might be victimized if repeated
accesses are detected. On the other hand, SoftTRR [11] offers deterministic protection
to the page table. It does so by monitoring memory accesses to all rows near the page
table using a counter. When the number of observed accesses surpasses a set threshold, it
refreshes the rows. This strategy is particularly effective against page table-based privilege
escalation attacks, which rank among the most detrimental system attacks. However, a
notable limitation is that hardware performance counters are not universally available
across all CPUs. This means rowhammer attacks might still transpire on devices that are
not being monitored.

RADAR [36] focuses on detecting rowhammer triggers by concentrating on the ab-
normal electromagnetic (EM) signals emitted during the hammering process. It uses a
wireless-based external device to capture the spectrum of the DRAM clock signal and
employs a convolutional neural network (CNN) to detect anomalous patterns.

6.1.2. Physical Isolation

Physical isolation has garnered substantial attention as a robust software-implemented
defense against rowhammer attacks. This technique employs guard rows to absorb bit
flips, thereby limiting an attacker’s ability to manipulate bits. As illustrated in Figure 8,
even when a bit flip transpires, the guard rows absorb the impact, ensuring the attacker’s
influence does not permeate the isolation layer. CATT [23] introduces a protective layer
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for the kernel by placing guard rows between it and the user memory. By confining the
attacker’s reach to the user space, it ensures that bit flips induced by rowhammer remain
within the attacker’s domain, preserving kernel stability. However, a study by Gruss
et al. [8]. Revealed that attacks could be executed irrespective of the isolation between
user and kernel memory. Addressing this, RIP-RH [27] augmented Linux’s page allocation
mechanism, enabling the dynamic management of simultaneous user-space processes.
By physically segregating each process, it showcased the inability of attacks on adjacent
memory segments.
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ZebRAM [30] employs a zebra pattern to isolate rows that house critical data. But,
dedicating 50% of memory to guard rows is inefficient. To counteract this, it repurposes
the guard rows as optionally compressed swap spaces, enhancing performance. Both
GuardION and ALIS adopt a targeted approach to memory protection, emphasizing
specific attack vectors rather than blanket protection. GuardION [29] zeroes in on Direct
Memory Access (DMA)-based attacks, a primary threat vector for mobile devices, while
ALIS [28] hones in on remote attacks that pinpoint memory allocated to DMA buffers.

The challenge with physical isolation techniques is the inevitable reduction in available
memory capacity. As technology nodes in DRAM chips continue to shrink, the memory
area resilient to rowhammer attacks diminishes [1,47]. The expanding scope of rowhammer
vulnerabilities necessitates a more extensive physical gap between sensitive data and the
memory regions accessible to potential attackers [76].

There are also mitigation techniques that reinforce page table isolation. All traditional
kernel privilege escalation attacks aim to corrupt the page table. In response, Cell-Type-
Aware memory allocation (CTA) [37] proposes a memory allocation technique at the
operating system (OS) level that assigns page table pages to a dedicated memory area,
which is physically high-addressed and separated by guard rows. Assigning page table
entries (PTEs) to high physical addresses means that even if a bit-flip attack changes
the address to point to a lower new physical address, it will not point to another PTE,
thus preventing kernel privilege escalation. PT-Guard [19] protects the page table from
tampering by storing a message authentication code (MAC) within the Page Table Entry
(PTE) cache line itself to detect data tampering.

Copy-on-Flip [39] enhances ECC at the software level to mitigate attacks, a method
previously considered insufficient for defending against rowhammer. As soon as an attacker
successfully templates enough bit flips, the vulnerable victim page is taken offline, and at
the same time, the affected data is protected via migration.

Software-based solutions, while innovative, pose practical deployment challenges and
frequently come with significant performance overheads. All isolation methods have a
limited scope of target achievement and require the application of DRAM-aware memory
allocation, making their adoption in commercial systems challenging. Additionally, these
methods often rely on the incorrect assumption that logical and physical DRAM addresses
are identical or they are customized to address specific attack scenarios, limiting their
overall efficiency. Recognizing these constraints, the focus of research has shifted toward
solutions within memory controllers and DRAM since 2019.
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6.2. Memory Controller-Based Mitigations

The predominant defense strategy employed by memory controllers involves moni-
toring the activation commands of DRAM using a counter. When this counter surpasses a
set threshold, it identifies a potential rowhammer attack and refreshes neighboring rows
to avert bit flips, as shown in Figure 9. While this approach offers robust protection
deterministically, the memory overhead associated with the counter is substantial. Con-
sequently, a pivotal challenge in counter-based defense mechanisms is minimizing the
counter’s overhead.
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To address the overhead, counter-based defense mechanisms use different counter-
structures. Counter-based Row Activation (CRA [1,24]) method suggests caching the
counters for recently accessed rows within the memory controller and relegating the re-
mainder to the main memory. This approach stems from the prohibitive cost of maintaining
an individual counter for every row directly within the memory controller. Another method,
the Counter-based Tree (CBT [13]), segments rows into clusters to monitor their activations.
It dynamically recalibrates the range of rows each counter oversees based on the activation
frequency of rows. By accounting for the frequency of row accesses, CBT enhances the
energy and spatial efficiency of the counters. Nonetheless, both the CRA and CBT tech-
niques experience performance downturns under antagonistic memory access patterns.
This decline is attributed to frequent counter cache misses and recurrent refreshes when
multiple rows fall under the purview of a singular counter [14,77].

To address the performance setbacks, several alternative strategies have been put for-
ward. Time Window Counter (TWiCe) [14] identifies rowhammer attacks using a minimal
set of counters by periodically removing rows with insufficient activation frequency. This
technique employs the lossy-counting algorithm to evaluate the greater row activation
frequency and DRAM cell retention time and determines the maximum number of counter
entries required per DRAM bank. An extension of TWiCe was introduced in CTA [37].
Graphene [15] employs the Misra-Gries algorithm [78] to accurately pinpoint and mon-
itor rows activated frequently. This counter-based probabilistic method offers assured
protection at a reduced expense. BlockHammer [16] identifies attacks by assessing the
resemblance between a specific thread’s memory access pattern and a genuine rowhammer
attack. Instead of preemptively refreshing potential victim row, it provides a proactive
throttling technique that actively limits memory accesses that are deemed malicious. Utiliz-
ing two Counting Bloom Filters (CBFs), it evaluates the activation frequency of all rows and
blacklists those exceeding a predetermined threshold, thereby preventing further access
to detected attackers. HammerFilter [40] similarly isolates attackers probabilistically. It
optimizes Counting Bloom Filter (CBF) operations by adding a HALF-DELETE operation
to reduce the access frequency of refreshed rows.

Beyond counter-centric defenses, both probabilistic and physical isolation solutions
have been explored. The probabilistic method, Probabilistic Adjacent Row Activation
(PARA [1]), activates surrounding rows of a suspected attack probabilistically upon de-
tecting an access pattern. By probabilistically activating rows, it diminishes performance
and energy overheads, making the system less predictable to adversaries and thereby
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decreasing rowhammer-induced error likelihood [70]. While it does not entirely thwart
rowhammer attacks, it curtails the attack’s efficacy via irregular refresh patterns, thereby
mitigating potential damage. Discreet-PARA [41] significantly reduces the performance
overhead of PARA by combining a counter that counts the activities in a section of a
bank with cache storage space, triggering the original PARA only when activities occur
in frequently activated sections. ProHIT [26] and MRLoc [18] recognize the limitations of
PARA and enhance performance by adding memory accesses to track the history of row
activations and issue additional refreshes. ProHIT [26] manages access history by randomly
adding neighboring rows of activated rows to a priority table. By checking the table at
each refresh.

And performing an additional refresh on the row with the highest priority, ProHIT
prevents damage to the most likely victims, thereby increasing the reliability of PARA.
MRLoc [18] solves the high-power consumption problem that can occur with PRoHIT. It
stores neighboring rows of activated rows in a queue, uses the frequency of insertion into
the queue to determine the refresh probability, and then uses this probability to provide
optimized additional refreshes.

Randomized Row Swap (RRS) [31] and Aqua [32] adopt Physical Isolation as their
countermeasure, severing the spatial link between attacker and victim rows to stave off
rowhammer attacks. RRS [31] identifies frequently activated rows via a streaming algorithm
using the Hot-Row Tracker (HRT) and Row-Indirection Table (RIT) and then isolates these
attacker rows by replacing them with randomly selected rows, protecting potential victims
as shown in Figure 10. SRS [38] discovered a vulnerability in RRS caused by latent row
activations resulting from swap–unswap operations and introduced Secure Row-Swap
to counter this issue. Aqua [32] dynamically migrates attacker rows to the quarantine
area, disrupting the spatial relationship between attacker and victim rows, as illustrated in
Figure 10b. While these strategies considerably diminish rowhammer attack susceptibility,
they come with performance and memory overhead trade-offs.
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An alternative Memory Controller-Based Mitigation method is LightRoAD [42]. LightRoAD
leverages hardware counters to monitor cache misses, cache flushes, and DMA accesses,
triggering responsive actions when the cumulative values of these counters reach a pre-
defined threshold. This approach enables the system to proactively detect and respond to
manipulative actions, providing insights into the specific components and processes that
may be exploiting vulnerabilities.

Defense mechanisms rooted in memory controllers boast the merit of being largely
executable without necessitating hardware modifications. These approaches have the
strength of directly identifying DRAM access patterns. However, they do not provide abso-
lute protection as they overlook the physical proximity within the DRAM chip [79]. Most
data integrity check-based solutions only have detection capabilities and do not include
correction features. PRoHit [26] and MRLoc [18] have significantly optimized PARA [1], but
they are still vulnerable to certain attacks [15]. The augmented area required for the counter
structure and the heightened expense associated with modifying the memory controller
also pose challenges.
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6.3. DRAM-Based Mitigations

Early hardware-centric defenses against rowhammer, as proposed by Kim et al. [1],
encompassed strategies like elevating the refresh rate, implementing target row refresh
(TRR [12–16,18,20,23,28–31]), and utilizing error-correcting codes (ECC [7,76]). By am-
plifying the DRAM’s refresh rate, the window of opportunity for an attacker to exe-
cute a rowhammer assault narrows, potentially diminishing the attack’s potency [80–82].
However, this method inadvertently escalates power consumption and hampers sys-
tem performance. With the advent of DDR4, a more sophisticated defense mechanism,
TRR [12–16,18,20,23,28–31], was ushered in. TRR leverages hardware counters to scrutinize
memory access behaviors. Instead of the conventional blanket refresh approach applied to
all memory, TRR selectively refreshes specific DRAM rows perceived to be susceptible to
rowhammer. This targeted approach can curtail issues related to power consumption and
performance degradation. TRR can be orchestrated in software, within the CPU’s memory
controller, or directly inside the DRAM. Nonetheless, relying solely on TRR is not foolproof
against certain intricate attack modalities [66]. ECC [7,76], while designed to rectify errors,
remains susceptible to rowhammer onslaughts, especially those that manipulate multiple
bits within a memory word. Kim et al. highlighted this vulnerability. Although employing
ECC can ramp up the intricacy of the attack, it does not offer an absolute safeguard. This
limitation was evident in attacks like ECCploit [7].

Recent research has aimed to diminish the performance overhead associated with
conventional DRAM-based mitigation techniques. ProTRR [17] introduced a method
leveraging FEINTING technology to proactively identify and refresh rows potentially
targeted by attacks. Being probabilistic, it zeroes in on the most frequently attacked
rows, although some might still evade detection. This offers a more balanced trade-off
among DRAM vulnerability, counter quantity, and additional refreshes compared to older
methods. REGA [33] combats rowhammer by concurrently refreshing distinct rows during
data transfer. It separates the DRAM sense amplifier’s row refresh operation from the data
transfer task. By sequentially refreshing all rows in the DRAM sub-array receiving the
activation command, it obviates the need to monitor the attacker. This approach is pivotal
for future mitigation techniques as it scales the refresh count based on activation intensity.
HiRA [34] can concurrently refresh DRAM rows while activating or refreshing other rows
within the same bank. This minimizes performance degradation from periodic refreshes by
cutting down the overall row refresh latency.

DRAM-based solutions predominantly revolve around additional preventive refreshes
for potential rowhammer victim rows [17,21,22,25,33–35]. However, securing adequate
non-disruptive time at the DRAM interface for these refreshes is challenging. Techniques
like invoking an adjacent row refresh request (ARR) or incorporating a refresh process
should be explored to ensure potential victim rows have adequate time for rowhammer
protective measures. Mithril [22] tackled this challenge by synergizing rowhammer de-
fense efforts between the memory controller and DRAM. It is anchored in the Refresh
Management (RFM) introduced in the DDR5 standard [83]. Here, the memory controller
dispatches an RFM to the target bank at a specific activation frequency without pinpointing
the target row. The DRAM then harnesses the time buffer provided by the RFM command
to implement suitable rowhammer protective actions. A counter-based streaming algo-
rithm determines the rows needing a refresh, and a greedy selection strategy guarantees
deterministic protection. Panopticon [25] adapts an existing DDR4 specification signal,
ALERTn, to deter the memory controller from initiating a new DRAM command when a
potential victim row requires refreshing. This utilizes unique counters for DRAM rows and,
when a counter reaches the rowhammer threshold, temporarily queues the row address,
masquerading as a missed access to delay other accesses. The Silver Bullet Technique [43]
analyzes the worst-case access pattern, defines the tolerable maximum hammering value,
and then proactively refreshes potential victim rows.
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7. Discussion: Rowhammer on DDR5 DRAM

Previous studies have focused on the execution of rowhammer attacks as well as
the development of mitigations for DDR3 or DDR4 memory modules [1–49,54–72,75–82].
However, there exists a need to expand this research to the latest generation, such as DDR5.
DDR5 DRAM undergoes a more aggressive scaling process, aiming for increased density
and larger bandwidth [84–87]. The increased scaling of the DRAM cell in DDR5 renders
it more susceptible to data retention failures. In response to this vulnerability, the DDR5
standard incorporates a Single-Error-Correction (SEC) code as an In-DRAM error correction
code, enhancing on-chip reliability [85,87].

In scenarios involving SEC-protected data, a two-bit error induced by phenomena
like rowhammer may be erroneously transformed into a triple-bit error due to incorrect
decoding [85]. SEC codes guarantee a minimum Hamming distance of three between
valid codewords. Illustrated in Figure 11, consider codewords v1 and v2 with a Hamming
distance of three. If a two-bit error occurs on v1, resulting in w2, and the Hamming distance
between w2 and v2 is one, the SEC decoder inaccurately interprets the received word w2
as v2. Consequently, the number of error bits in a DRAM chip increases from two to
three. Also, the aliasing has the potential to disrupt the consistent asymmetric DRAM error
pattern caused by rowhammer, which typically induces 1-to-0 (0-to-1) errors in true cells
(anti-cells) [1,2,37].

Sensors 2024, 24, x FOR PEER REVIEW 16 of 20 
 

 

In scenarios involving SEC-protected data, a two-bit error induced by phenomena 
like rowhammer may be erroneously transformed into a triple-bit error due to incorrect 
decoding [85]. SEC codes guarantee a minimum Hamming distance of three between valid 
codewords. Illustrated in Figure 11, consider codewords v1 and v2 with a Hamming dis-
tance of three. If a two-bit error occurs on v1, resulting in w2, and the Hamming distance 
between w2 and v2 is one, the SEC decoder inaccurately interprets the received word w2 as 
v2. Consequently, the number of error bits in a DRAM chip increases from two to three. 
Also, the aliasing has the potential to disrupt the consistent asymmetric DRAM error pat-
tern caused by rowhammer, which typically induces 1-to-0 (0-to-1) errors in true cells 
(anti-cells) [1,2,37]. 

 
Figure 11. Aliasing on two-bit error occurrence by In-DRAM ECC. 

It is noteworthy that established mitigation techniques such as CTA [37] have relied 
on the predictable asymmetric DRAM error pattern induced by rowhammer, a reliance 
that may become obsolete in the presence of In-DRAM error correction code. Hence, fu-
ture research on DDR5 rowhammer needs to identify the aliasing issue stemming from 
the In-DRAM error correction code feature. To address the aliasing issue in DDR5 DRAM, 
future research should delve into developing effective countermeasures and mitigations. 
Understanding and mitigating the impact of rowhammer-induced errors, especially in 
scenarios involving SEC-protected data, is crucial for maintaining the integrity and relia-
bility of DDR5 memory modules. 

8. Conclusions 
In this paper, we provided a comprehensive review of recent advancements in row-

hammer attacks, breaking down the attack process into three stages: setup, repetitive ac-
cess, and exploitation. We delved into existing techniques within each stage, offering in-
sights into their underlying mechanisms. Furthermore, we conducted an exhaustive ex-
amination of defense strategies against rowhammer attacks, categorizing them into three 
distinct groups based on where each mitigation technique is applied. 

Author Contributions: Conceptualization, D.K., H.P. and I.Y.; methodology, D.K., H.P. and I.Y.; 
software, D.K., H.P. and I.Y.; validation, D.K., H.P., I.Y., Y.K.L., Y.K., H.-M.L. and K.-W.K.; formal 
analysis, D.K., H.P., I.Y., Y.K.L., Y.K., H.-M.L. and K.-W.K.; investigation, D.K., H.P., I.Y., Y.K.L., 
Y.K., H.-M.L. and K.-W.K.; resources, D.K., H.P., I.Y., Y.K.L., Y.K., H.-M.L. and K.-W.K.; data cura-
tion, D.K., H.P., I.Y., Y.K.L., Y.K., H.-M.L. and K.-W.K.; writing—original draft preparation, D.K., 
H.P. and I.Y.; writing—review and editing, D.K., H.P., I.Y., Y.K.L., Y.K., H.-M.L. and K.-W.K.; visu-
alization, D.K., H.P., I.Y., Y.K.L., Y.K., H.-M.L. and K.-W.K.; supervision, H.-M.L. and K.-W.K.; pro-
ject administration, H.-M.L. and K.-W.K.; funding acquisition, H.-M.L. and K.-W.K. All authors have 
read and agreed to the published version of the manuscript. 

Funding: This work was supported as part of the Military Crypto Research Center (UD210027XD), 
funded by the Defense Acquisition Program Administration (DAPA) and the Agency for Defense 
Development (ADD). This work was supported in part by the BrainLink program funded by the 
Ministry of Science and ICT through the National Research Foundation of Korea (RS-2023-00237308) 
and in part by the National Research Foundation of Korea (NRF) Grant funded by the Korean Gov-
ernment under Grant NRF-2023R1A2C2006290. This work was supported in part by Hongik Uni-
versity. 

Figure 11. Aliasing on two-bit error occurrence by In-DRAM ECC.

It is noteworthy that established mitigation techniques such as CTA [37] have relied
on the predictable asymmetric DRAM error pattern induced by rowhammer, a reliance that
may become obsolete in the presence of In-DRAM error correction code. Hence, future
research on DDR5 rowhammer needs to identify the aliasing issue stemming from the
In-DRAM error correction code feature. To address the aliasing issue in DDR5 DRAM,
future research should delve into developing effective countermeasures and mitigations.
Understanding and mitigating the impact of rowhammer-induced errors, especially in sce-
narios involving SEC-protected data, is crucial for maintaining the integrity and reliability
of DDR5 memory modules.

8. Conclusions

In this paper, we provided a comprehensive review of recent advancements in rowham-
mer attacks, breaking down the attack process into three stages: setup, repetitive access,
and exploitation. We delved into existing techniques within each stage, offering insights
into their underlying mechanisms. Furthermore, we conducted an exhaustive examination
of defense strategies against rowhammer attacks, categorizing them into three distinct
groups based on where each mitigation technique is applied.
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79. Onur, M.; Olgun, A.; Yağlıkcı, A.G. Fundamentally understanding and solving rowhammer. In Proceedings of the 28th Asia and

South Pacific Design Automation Conference, Tokyo, Japan, 16–19 January 2023; pp. 461–468.
80. About the Security Content of Mac EFI Security Update 2015-001; Apple Inc.: Cupertino, CA, USA, June 2015. Available online:

https://support.apple.com/en-us/HT204934 (accessed on 10 September 2023).
81. Fridley, T.; Omar, S. Mitigations Available for the DRAM Row Hammer Vulnerability. 2015. Available online: https://blogs.cisco.

com/security/mitigations-available-for-the-dram-row-hammer-vulnerability (accessed on 10 October 2022).
82. Enterprise, Hewlett-Packard. HP Moonshot Component Pack Version 2015.05.0. 2015. Available online: https://support.hpe.

com/hpesc/public/docDisplay?docId=c04676483&docLocale=en_US (accessed on 1 September 2023).
83. JESD79-5; JEDEC Standard, DDR5 SDRAM. JEDEC Solid State Technology Association: Arlington, VA, USA, July 2020.
84. Kim, D.; Park, M.; Jang, S.; Song, J.Y.; Chi, H.; Choi, G.; Choi, S.; Kim, J.; Kim, C.; Kim, K.; et al. 23.2 a 1.1 V 1ynm 6.4 Gb/s/pin

16Gb DDR5 SDRAM with a Phase-Rotator-Based DLL, high-speed SerDes and RX/TX equalization scheme. In Proceedings of the
2019 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 17–21 February 2019.

85. Pae, S.I.; Kozhikkottu, V.; Somasekar, D.; Wu, W.; Ramasubramanian, S.G.; Dadual, M.; Cho, H.; Kwon, K.W. Minimal aliasing
single-error-correction codes for dram reliability improvement. IEEE Access 2021, 9, 29862–29869. [CrossRef]

86. Park, S.J.; Kim, J.J.; Joo, K.; Lee, Y.H.; Kim, K.; Kim, Y.T.; Na, W.J.; Choi, I.; Yu, H.S.; Kim, W.; et al. Industry’s First 7.2 Gbps 512GB
DDR5 Module. In Proceedings of the 2021 IEEE Hot Chips 33 Symposium (HCS), Palo Alto, CA, USA, 22–24 August 2021; IEEE
Computer Society: Washington, DC, USA, 2021.

87. Lee, S.; Lee, N.H.; Lee, K.W.; Kim, J.H.; Jin, J.H.; Lee, Y.S.; Hwang, Y.C.; Kim, H.S.; Pae, S. Development and Product Reliability
Characterization of Advanced High Speed 14nm DDR5 DRAM with On-die ECC. In Proceedings of the 2023 IEEE International
Reliability Physics Symposium (IRPS), Monterey, CA, USA, 26–30 March 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/0167-6423(82)90012-0
https://support.apple.com/en-us/HT204934
https://blogs.cisco.com/security/mitigations-available-for-the-dram-row-hammer-vulnerability
https://blogs.cisco.com/security/mitigations-available-for-the-dram-row-hammer-vulnerability
https://support.hpe.com/hpesc/public/docDisplay?docId=c04676483&docLocale=en_US
https://support.hpe.com/hpesc/public/docDisplay?docId=c04676483&docLocale=en_US
https://doi.org/10.1109/ACCESS.2021.3059843

	Introduction 
	Background 
	DRAM Background 
	Rowhammer Mechanism 

	Setup for Rowhammer 
	Memory Profiling 
	Bypassing a Cache Hierarchy 
	Escaping a Sandbox 
	Bypassing Target Row Refresh 

	Repetitive Access Patterns for Rowhammer 
	Single-Sided Attack 
	Double-Sided Attack 
	Multi-Sided Attack 

	Exploitation of Rowhammer 
	Confidentiality Degradation 
	Integrity Degradation 
	Availability Degradation 

	Rowhammer Defenses 
	Software-Based Mitigations 
	Heuristic-Based Attack Detection 
	Physical Isolation 

	Memory Controller-Based Mitigations 
	DRAM-Based Mitigations 

	Discussion: Rowhammer on DDR5 DRAM 
	Conclusions 
	References

