
Citation: Qian, L.; Cong, L. Channel

Features and API Frequency-Based

Transformer Model for Malware

Identification. Sensors 2024, 24, 580.

https://doi.org/10.3390/s24020580

Academic Editor: Sergio Toral Marín

Received: 7 December 2023

Revised: 13 January 2024

Accepted: 15 January 2024

Published: 17 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Channel Features and API Frequency-Based Transformer Model
for Malware Identification
Liping Qian and Lin Cong *

School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture,
Beijing 100044, China; qianliping@bucea.edu.cn
* Correspondence: 2108550021003@stu.bucea.edu.cn

Abstract: Malicious software (malware), in various forms and variants, continues to pose significant
threats to user information security. Researchers have identified the effectiveness of utilizing API
call sequences to identify malware. However, the evasion techniques employed by malware, such as
obfuscation and complex API call sequences, challenge existing detection methods. This research
addresses this issue by introducing CAFTrans, a novel transformer-based model for malware de-
tection. We enhance the traditional transformer encoder with a one-dimensional channel attention
module (1D-CAM) to improve the correlation between API call vector features, thereby enhancing
feature embedding. A word frequency reinforcement module is also implemented to refine API
features by preserving low-frequency API features. To capture subtle relationships between APIs
and achieve more accurate identification of features for different types of malware, we leverage
convolutional neural networks (CNNs) and long short-term memory (LSTM) networks. Experimental
results demonstrate the effectiveness of CAFTrans, achieving state-of-the-art performance on the
mal-api-2019 dataset with an F1 score of 0.65252 and an AUC of 0.8913. The findings suggest that
CAFTrans improves accuracy in distinguishing between various types of malware and exhibits
enhanced recognition capabilities for unknown samples and adversarial attacks.

Keywords: malware identification; deep learning; dynamic analysis; API sequence; transformer

1. Introduction

With the continuous development of Internet technology, malware attacks are occur-
ring frequently, leading to an ongoing arms race between malware authors and security
software companies. According to AV-TEST reports, there has been a significant surge
in the number of discovered malware samples in recent years. From 2019 to 2020, the
addition rose to 113 million, and from 2020 to 2021, it further increased to over 170 million,
representing a growth of nearly 33%, making it one of the most robust figures in the past
decade [1]. Currently, the phenomenon of cyber attacks is on the rise, with many servers
facing the pressure of DDoS attacks, and ransomware and phishing emails are constantly
emerging [2]. In order to safeguard the security of user information, accurately detecting
different types of malware in the system has become a challenging issue in the field of
security [3].

Malware can be defined as code that operates without being detected by system admin-
istrators and executes malicious actions through system vulnerabilities, thereby affecting
the system’s regular operation [4]. This insidious software is designed with nefarious intent,
seeking unauthorized access to computer systems and network resources. The realm of
malware encompasses a wide array of variants, each with distinct functionalities, including
backdoors, botnets, downloaders, spyware, rootkits, ransomware, adware, worms, viruses,
and more, each with its pernicious purpose [5].

Malware analysis methods can be categorized into static analysis and dynamic analysis
based on whether they execute malicious code. Early researchers favored signature-based

Sensors 2024, 24, 580. https://doi.org/10.3390/s24020580 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24020580
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24020580
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24020580?type=check_update&version=1

Sensors 2024, 24, 580 2 of 22

static analysis methods for feature extraction [6–8]. Specifically, signature-based methods
distinguish different types of malware by identifying characteristic segments in the source
code binary, requiring significant manual effort from skilled researchers. As detection
techniques evolve, malware creators continually enhance the architecture of malicious
code by inserting irrelevant code logic or employing techniques such as polymorphism
(encryption/packing) and dynamic execution of malicious code to conceal malicious be-
havior [4]. Due to their limitation of recognizing only existing features, signature-based
methods fail to detect malicious intent in the face of adversarial attacks. This also results
in the vulnerability of feature extraction methods in static analysis, making it easier for
attackers to employ obfuscation techniques to evade detection. This significantly restricts
the capability to detect novel zero-day attacks. Currently, researchers are actively seeking
an automated and high-precision detection technology.

Dynamic analysis involves executing malware in a real-time environment or a virtual
environment like a sandbox to extract features, compensating to some extent for the
shortcomings of static analysis. We can obtain behavioral information about the software
in a virtual environment through dynamic analysis, such as network activities, registry
interactions, DLL loading, etc. [3]. API call features play a crucial role in dynamic analysis.
These calls contain information about the software’s utilization and modification of system
resources. When individual API calls are combined into a sequence, it signifies that the
software has executed a series of coherent operations on the system, and there are unique
semantic associations among the APIs in the sequence. Capturing the calling relationships
in the API sequence of malware enables better differentiation of different types of malware,
which is highly significant [9].

The API sequences of regular software and malware are constructed with specific
differences stemming from variations in their functionalities. Malware explores vulner-
abilities or executes malicious activities by systematically traversing system API calls to
circumvent permission controls. Additionally, malware may attempt to communicate with
a malicious control server, transmit or receive malicious instructions, or transfer sensitive
information without user consent. More severe forms of malware may endeavor to modify
system configurations, delete or tamper with files, or perform other operations that threaten
system security. Different types of malware involve distinct API commands, reflecting their
diverse functional requirements. This functionality-driven distinction manifests in the API
sequences, aiding malware detection systems in identifying potential threats.

In recent years, with the advancement of deep learning technologies, researchers
have begun employing deep neural networks for malware detection. Applications such as
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and large pre-
trained models from natural language processing have been applied to the task of detecting
malware API sequences [10–13]. Although researchers have achieved excellent results using
API sequence features in malware detection tasks, there are still research gaps in classifying
different types of malware and detecting unknown attacks. Detecting unknown attacks has
become particularly crucial, categorizing them into two types: originating from the same
family and attacks of unknown types. Presently, researchers are predominantly focused on
classifying known data, yet we frequently encounter entirely new unknown samples in the
real world. This experiment addresses certain limitations in current research by extracting
malicious behavior characteristics from known data to detect unknown samples. Therefore,
extracting features from various types of malware API sequences and capturing semantic
information to enhance the identification of unknown samples is essential.

Text classification is a significant problem in natural language processing (NLP),
where the task involves learning from text and extracting features to enable automatic
categorization. Notably, API sequences can also be regarded as a specific type of text. In this
context, extracting semantic relationships from API sequences aids in better identifying the
distinct functionalities executed by various types of malicious software, akin to perceiving
potential sentiments. This approach effectively enhances accuracy and performance in our
classification tasks.

Sensors 2024, 24, 580 3 of 22

We propose a malware detection model, CAFTrans, based on API sequences. The
model enhances the representation of API features by utilizing natural language processing
techniques combined with call frequency and attention to unique API behaviors. CAFTrans
has two distinctive features: a unique one-dimensional channel attention module and a
feature reinforcement module based on word frequency. Firstly, API sequences undergo
embedding representation through a transformer network. In each encoder, we employ a
one-dimensional channel attention module to reinforce the specificity of features, making
API vector features more distinct. Subsequently, a word frequency reinforcement module
is applied to enhance the feature values of high-frequency API calls while preserving the
features of low-frequency API calls. Finally, a downstream classifier composed of CNN
and LSTM is used to identify the unique correlations in API sequences of different malware
types, enabling better differentiation among various types of malware. The contributions
of this paper are as follows:

• We integrate NLP techniques into the field of computer security and have designed a
novel transformer model specifically for detecting malware API sequences;

• By introducing a unique one-dimensional channel attention mechanism, we enhance
the model’s effectiveness in API embedding. Additionally, the word frequency rein-
forcement module not only preserves the details of the sequences but also emphasizes
the features of segments, enabling the model to better distinguish between differ-
ent types of malware. We showcase the model’s classification results by visualizing
clustering effects. Furthermore, we conducted ablation experiments to validate the
contributions of each module to the detection performance;

• We subjected the model to adversarial testing using unknown samples. The test results
indicate that the model demonstrates increased robustness, effectively identifying
unknown samples.

• We compared our model with previous researchers’ work and various machine learn-
ing methods to validate its performance. Our model achieved superior results, with a
mean time to detection (MTTD) of 1.2 ms for individual samples.

This paper’s remaining content is structured as follows: Section 2 discusses previous
researchers’ relevant work and background information on malware APIs. Section 3
provides a detailed overview of the design of our model. Following that, Section 4 offers
the experimental details, evaluating the performance of our proposed model for malware
detection using the mal-api-2019 dataset. The experiments encompass analyses of detection
performance, ablation experiments, data cluster analysis, and detection of attacks with
unknown samples. In Section 5, we describe some limitations and provide discussions.
Finally, Section 6 summarizes the paper.

2. Related Work

This section presents an extensive review of contemporary research that utilizes API
sequences as features in dynamic analysis. Furthermore, we explore the current state-of-
the-art obfuscation techniques adopted by malware creators.

Researchers widely recognize API sequences as pivotal features for malware detection.
Various approaches have been extensively employed in this domain, including frequency-
based, sequence-based, and graph-based methods.

2.1. Frequency-Based Methods

Tian et al. [14] employed pattern recognition and statistical frequency methods to
analyze API sequences. They achieved an accuracy of over 97% in distinguishing be-
tween malicious and benign software. The authors’ work demonstrates that studying
the frequency of API calls in malware can provide theoretical support for identifying its
malicious nature.

Kim [15] was inspired by NLP and proposed a novel dynamic analysis method for
detecting malware. Kim traced the API call characteristics of the malware and applied
n-grams for feature extraction from the sequences. Kim calculated each gram’s term

Sensors 2024, 24, 580 4 of 22

frequency-inverse document frequency (TF-IDF) weight. Finally, Kim performed binary
classification on weighted n-gram features using an SVM classifier. The author achieved a
detection accuracy of 96% on the dataset collected from VirusShare.

Dabas et al. [16] collected three feature sets, which included API call usage, API call
frequency, and API call sequences. These feature sets were augmented using TF-IDF,
resulting in a more robust integrated API feature set. Experimental results demonstrated
that when tested with SVM, KNN, LR, and DT algorithms, all achieved accuracy rates
of over 99.6%. By utilizing TF-IDF to assist the feature set, they effectively address the
problem of high dimensionality in the integrated API feature set.

2.2. Sequence Association-Based Methods

With the advancement of NLP techniques, many researchers have started to employ
transfer learning methods to apply NLP techniques to malware detection tasks. Recurrent
neural networks (RNNs) and convolutional neural networks (CNNs), based on NLP, have
been widely utilized in API sequence classification tasks to learn the malicious semantics
within them.

Zhang et al. [17] proposed an innovative method to detect zero-day and obfuscated
malware. This approach utilizes feature hashing techniques to encode API names and
their corresponding call parameters. It employs multiple 1D convolutional networks to
transform the features extracted from each API call. Finally, a Bi-LSTM is used to learn
both forward and backward semantic information from the transformed features. Through
experimentation, the researchers demonstrated that their model outperformed baseline
models on the extracted dataset, showing superior performance.

Li et al. [18] devised a novel architecture for extracting API feature associations: API
semantic chains and API phrases. In API semantic chains, the authors represented the
semantic information of each API call as a four-dimensional vector with behavior, action
objects, categories, and attributes. They then used a 1D convolutional network to merge
these features. The authors designed a multi-scale convolutional structure for API phrases
to extract association information at different distances within the sequence. The accuracy
of the data extracted by the authors reached 97.31%, and the F1 score was 0.9724.

2.3. Graph-Based Methods

In their work, Amer et al. [19] established separate behavior transition graph models
for normal software and malware by exploring the contextual relationships within API
scenes. Additionally, they proposed a novel heuristic detection algorithm that determines
the maliciousness of a target by calculating its confidence in malicious transitions. This
method proved effective in detecting obfuscated API sequences. The proposed model
demonstrated its ability to effectively learn both explicit and implicit relationships within
API sequences. The results showed that the model could accurately detect and analyze the
presence of malicious behaviors in the API sequences.

Li et al. [20] introduced a novel malware analysis framework called DMalNet. This
framework utilizes a novel encoder architecture to combine API names with their corre-
sponding parameter features and extract semantic features from them. These semantic
feature relationships are then converted into graph-based structural representations. Finally,
an enhanced graph isomorphism network (GINE) and a graph attention network (GAT)
are employed to learn the features of the API call graph. DMalNet demonstrated excellent
performance in both malware detection and classification tasks.

Chen et al. [21] proposed a deep neural network (DNN)-based method for malware
detection called MalPro. MalPro utilizes a logic-regression-based approach to calculate a
weight value representing the sensitivity of API pairs to malicious behavior. It then generates
a process graph by processing the API sequences and uses fully connected layers to output
the graph’s features. Finally, attention weights and process graph features are combined using
weights and learned through a DNN to extract essential behavioral information.

Sensors 2024, 24, 580 5 of 22

However, to ensure the integrity of connections between nodes in the graph, it is
often necessary to handle longer raw API sequence inputs to maintain the accuracy of the
analysis process. Nevertheless, this processing requirement may result in a need to wait for
the completion of API extraction work before conducting malicious checks, contradicting
the principles of real-time detection in dynamic analysis. Additionally, due to the unique
structure of the graph involving a substantial amount of edge and node information, the
analysis process may incur higher computational costs to efficiently address the demands
of handling nodes and edges in the graph.

2.4. Adversarial Attack Trouble

With researchers increasingly turning to deep learning techniques for malware de-
tection, the challenge of countering adversarial attacks using obfuscation methods [22]
has become a classic issue, as observed in other domains. Szegedy et al. [23] were among
the first to identify vulnerabilities in deep learning networks, successfully achieving mis-
classification of images by inserting imperceptible pixels. Subsequently, adversarial attack
techniques swiftly expanded to natural language processing, biometrics, malware detection,
and other domains.

Malware authors often employ obfuscation techniques such as packing and com-
pression, dynamic code generation, control flow obfuscation (encryption, oligomorphic,
metamorphic, stealth) [24], and packaging. However, these obfuscation methods do not
yield satisfactory results when applied to detection based on API sequences. This is because
API sequence features are extracted by simulating malware execution. Regardless of how
malware authors modify code structures, the presented malicious behavior remains un-
changed, i.e., API sequence features remain constant. Directly obfuscating API sequences
would jeopardize the normal execution of the original program. Researchers have been
dedicated to exploring methods that ensure the regular operation of malware while bypass-
ing obfuscation in API sequence-based detection methods. Inserting no-operation (NOP)
instructions is common in this context.

Gibert et al. [25] introduced an obfuscation technique capable of evading detection by
convolutional neural networks (CNNs). By strategically inserting NOP instructions into
the malicious PE files, they successfully led the classifier to misclassify the malware. Their
experiments showed a remarkable 56.53% decrease in detection accuracy for a particular
family of malware samples, achieving a 100% success rate in obfuscation.

Park et al. [26] introduced the Adversarial Malware Alignment Obfuscation (AMAO)
algorithm, which calculates the optimal positions for inserting semantic NOP instructions
or sequences that do not affect the program logic. The authors utilized the FGSM or C&W
algorithms to generate adversarial samples. During the evaluation, if the obfuscated sample
failed to evade classifier detection, the adversarial attack generation process was iteratively
repeated until successful obfuscation was achieved. Their experiments effectively reduced
the accuracy of CNNs to 0%.

The researchers presented a method for obfuscating API sequences, which effectively
evades detection by RNNs [27]. They utilized a generative RNN to process the original API
sequences and generate adversarial API sequences. Experimental results demonstrated
that this obfuscation technique can successfully evade detection by various structures of
recurrent neural networks.

Drawing from the insights provided by the researchers’ work above, it becomes evi-
dent that adversarial samples pose a critical challenge in malware detection. Consequently,
designing a more robust network architecture to detect adversarial samples effectively
is essential.

3. Proposed Method

In this section, we present our transformer-based model designed for malware detec-
tion. We begin with Section 3.1, which discusses the challenges of utilizing API sequences
for malware recognition. Moving on to Section 3.2, we comprehensively describe our

Sensors 2024, 24, 580 6 of 22

model’s architecture, focusing on the transformer framework and the downstream classifier.
In Section 3.3, we delve into the preprocessing steps involved in handling API sequences.
Lastly, Sections 3.4 and 3.5 are dedicated to detailing the components of our model, which
include the API feature enhancement, the word frequency enhancement module, and the
CNN- and LSTM-based downstream classifier.

3.1. Challenges

In the process of utilizing API sequences for malware classification tasks, we must
consider the following challenges:

1. How to identify obfuscated malware. Malware authors commonly employ various
obfuscation techniques within their code to delay malware detection or increase the
reverse engineering burden for analysts. These techniques may involve inserting
meaningless or scrambled code segments. Consequently, the corresponding API se-
quences exhibit noise caused by these obfuscation structures. Effectively dealing with
this noise in the API sequences becomes crucial in optimizing the model’s performance.

2. How to identify unknown samples. With advancements in detection technology,
malware continues to evolve. However, authors often reuse old code segments,
leading to similarities in the paths of their API calls [28]. Learning the characteristics
of specific API segments aids researchers in identifying attacks originating from the
same family.

3. How to focus on key APIs that can determine the maliciousness of a sequence. Mal-
ware typically follows a fixed attack route to compromise user devices, resulting in
specific APIs being executed multiple times. Paying attention to specific segments of
APIs within a sequence helps the model better grasp API semantics, thereby enhancing
detection effectiveness.

3.2. System Framework

We propose a transformer-based detection model to effectively identify malware API
sequence features, as shown in Figure 1. The framework aims to enhance the features of
specific APIs in different types of malware for improved performance in classification tasks.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 22

Consequently, designing a more robust network architecture to detect adversarial sam-
ples effectively is essential.

3. Proposed method
In this section, we present our transformer-based model designed for malware detec-

tion. We begin with Section 3.1, which discusses the challenges of utilizing API sequences
for malware recognition. Moving on to Section 3.2, we comprehensively describe our
model’s architecture, focusing on the transformer framework and the downstream classi-
fier. In Section 3.3, we delve into the preprocessing steps involved in handling API se-
quences. Lastly, Sections 3.4 and 3.5 are dedicated to detailing the components of our
model, which include the API feature enhancement, the word frequency enhancement
module, and the CNN- and LSTM-based downstream classifier.

3.1. Challenges
In the process of utilizing API sequences for malware classification tasks, we must

consider the following challenges:
1. How to identify obfuscated malware. Malware authors commonly employ various

obfuscation techniques within their code to delay malware detection or increase the
reverse engineering burden for analysts. These techniques may involve inserting
meaningless or scrambled code segments. Consequently, the corresponding API se-
quences exhibit noise caused by these obfuscation structures. Effectively dealing with
this noise in the API sequences becomes crucial in optimizing the model’s perfor-
mance.

2. How to identify unknown samples. With advancements in detection technology,
malware continues to evolve. However, authors often reuse old code segments, lead-
ing to similarities in the paths of their API calls [28]. Learning the characteristics of
specific API segments aids researchers in identifying attacks originating from the
same family.

3. How to focus on key APIs that can determine the maliciousness of a sequence. Mal-
ware typically follows a fixed attack route to compromise user devices, resulting in
specific APIs being executed multiple times. Paying attention to specific segments of
APIs within a sequence helps the model better grasp API semantics, thereby enhanc-
ing detection effectiveness.

3.2. System Framework
We propose a transformer-based detection model to effectively identify malware API

sequence features, as shown in Figure 1. The framework aims to enhance the features of
specific APIs in different types of malware for improved performance in classification
tasks.

Figure 1. The proposed CAFTrans system framework. Figure 1. The proposed CAFTrans system framework.

This study uses pre-processed API call sequences as the training corpus after complet-
ing the pre-processing. During the API extraction phase, we utilized a publicly available
API dataset as the experimental data for our research. To mitigate the impact of noise in
the dataset, we initially subjected it to a consistent pre-processing workflow, which will be
elaborated in the following chapter.

After completing the pre-processing, we extracted the TF-IDF frequency of each API in
the sequence for each dataset sample to be used in weighting operations, enhancing feature
representation. Next, we employed an improved transformer model to generate word
vector representations for each sample sequence. This step will be detailed in Section 3.4.

During the multi-scale feature extraction stage, we used three one-dimensional con-
volutions with different scales to extract n-gram features of varying lengths and then

Sensors 2024, 24, 580 7 of 22

concatenated them. We employed a bidirectional LSTM model to learn the semantic corre-
lations among these features. Ultimately, a multi-layer perceptron (MLP) was utilized as
the downstream classifier to classify the labels of the target samples.

3.3. API Sequence Pre-Processing Method

Eliminating redundant APIs from malware API sequences has proven effective [29–32].
Our research used the following three commonly used methods to remove duplicate calls.

Single continuous repetition. Malware often exhibits repetitive execution of identical
operational behaviors involving various files or requests for multiple resources, as observed
in sequences like “regopenkeyexa regopenkeyexa regopenkeyexa ntopenkey ntqueryval-
uekey ntclose”, where “regopenkeyexa” is invoked multiple times. Additionally, malicious
actions might undergo multiple retry attempts due to unsuccessful implementation. These
repeated API calls may indicate preparatory work or preliminary steps the malware takes
before engaging in malicious behavior. Concurrently, malware developers may intention-
ally introduce this continuous repetition to increase the complexity of analysis, confusing
researchers and making the malware more deceptive. This makes it challenging for analysts
to determine their true intentions and actions accurately.

Paragraph repetition. Malware authors often reuse the same code logic multiple
times to expedite malware creation or increase the difficulty of reverse engineering for
analysts. For example, in the sequence “NtQueryValueKey LdrUnloadDl RegCloseKey
NtQueryValueKey LdrUnloadDl RegCloseKey NtReadFile GetFileSize”, the combination
of “NtQueryValueKey LdrUnloadDl RegCloseKey” is repeatedly employed. Additionally,
to achieve continuous malicious activities, information gathering, or data transmission,
the code may adopt a looping structure, leading to the repeated execution of code blocks
within the loop.

Too-short sequences. The extraction results of short API sequences often reveal ab-
normal interruptions in the execution process of malware, such as the program halting
after executing “_CorExeMain”, “_CorDllMain”, or “exception”. This interruption can
occur for two reasons: Firstly, malware may employ anti-analysis techniques to disrupt
the extraction of behavioral information by dynamic analyzers. When the malware detects
a virtualized environment, it actively interrupts its execution process to avoid detection.
Secondly, to evade static or dynamic analysis detection, malware may employ strategies
such as delayed execution or execution only under specific conditions or environments.
This approach conceals its malicious behavior, making detection more challenging.

After removing noise, we set the API sequence length to a fixed value. APIs exceeding
this length are truncated, and those with insufficient length are padded with “0”.

3.4. API Feature Generation and Enhancement

Word2Vec has achieved significant success in the field of NLP [33]. This word embed-
ding technique is based on shallow neural networks, representing the meaning of a word as
a high-dimensional feature vector derived from the distribution of the word in its context.
These embedding feature vectors capture semantic and syntactic relationships between
words and exhibit semantic similarities suitable for NLP tasks such as word clustering and
similarity calculation.

However, the Word2Vec model does not consider the positional information of words
in the input sequence; it primarily focuses on the co-occurrence patterns of words, disre-
garding their order and positional information within sentences. Suppose the training data
is of a small scale or lacks representativeness, resulting in less satisfactory generalization of
embedding effects. In our research, we employed an innovative approach by utilizing a
transformer model for embedding the processing of API sequences. Specifically, we first
constructed an API vocabulary based on API tokens in the tracking corpus and represented
each API name with a numerical value. Subsequently, we trained a transformer model on
the API token sequence to capture the correlations between consecutive API calls.

Sensors 2024, 24, 580 8 of 22

In this paper, we utilize the transformer model to capture hidden contextual con-
nections between features and effectively model the patterns within API sequences. Our
transformer model consists primarily of three parts: an embedding section, an encoder
section, and a one-dimensional channel attention enhancement section. As illustrated
in Figure 2, the API sequence is input into the encoding layer, composed of six stacked
encoders, after undergoing token embedding and positional embedding. We modified the
encoder structure of the traditional transformer, and the modified encoder layer comprised
multi-head attention layers, a position-wise feedforward network, and a one-dimensional
channel attention module. The final one-dimensional channel attention module effectively
assists the transformer in expressing the semantic features of APIs.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 22

between words and exhibit semantic similarities suitable for NLP tasks such as word clus-
tering and similarity calculation.

However, the Word2Vec model does not consider the positional information of words
in the input sequence; it primarily focuses on the co-occurrence patterns of words, disre-
garding their order and positional information within sentences. Suppose the training data
is of a small scale or lacks representativeness, resulting in less satisfactory generalization of
embedding effects. In our research, we employed an innovative approach by utilizing a
transformer model for embedding the processing of API sequences. Specifically, we first
constructed an API vocabulary based on API tokens in the tracking corpus and represented
each API name with a numerical value. Subsequently, we trained a transformer model on
the API token sequence to capture the correlations between consecutive API calls.

In this paper, we utilize the transformer model to capture hidden contextual connec-
tions between features and effectively model the patterns within API sequences. Our
transformer model consists primarily of three parts: an embedding section, an encoder
section, and a one-dimensional channel attention enhancement section. As illustrated in
Figure 2, the API sequence is input into the encoding layer, composed of six stacked en-
coders, after undergoing token embedding and positional embedding. We modified the
encoder structure of the traditional transformer, and the modified encoder layer com-
prised multi-head attention layers, a position-wise feedforward network, and a one-di-
mensional channel attention module. The final one-dimensional channel attention module
effectively assists the transformer in expressing the semantic features of APIs.

Figure 2. Modified transformer with 1D-channel attention module.

3.4.1. API Embedding Layers
In past studies, researchers typically used n-gram features of API sequences as the

basis of their analysis [10,15,32]. However, our research indicates that employing this
method significantly increases the number of tokens due to the complexity of API compo-
sition. Using n-grams of API sequences as features results in a huge input dimension for
the embedding layer, leading to data sparsity issues and consequently reducing the ex-
pressive capacity of the embedding layer. Therefore, learning the semantic relationships
and grammatical structures embedded within the data becomes quite challenging.

Before inputting the API sequence into the transformer, it must undergo token em-
bedding and positional encoding operations to map the API names appropriately.

The token embedding function is formed by the fundamental embedding layer, pro-
ducing vector representations for text sequences. Positional encoding represents temporal
features in the data by employing sine and cosine functions to calculate positional embed-
dings. This enables the model to capture specific locations in sequential data adeptly with-
out explicitly introducing positional information. As a result, the model can understand
the relative positional relationships among various positions. Equations (1) and (2) are
presented below:

PosEncoder pos, 2i = sin pos

10000 2i/dmodel
 (1)

Token
Embedding

Positional
Encoding

Multi-
head

Attention

Add
&

Norm

Feed
Forward

Add
&

Norm

1D-
Channel

Attention
Module

N

Figure 2. Modified transformer with 1D-channel attention module.

3.4.1. API Embedding Layers

In past studies, researchers typically used n-gram features of API sequences as the
basis of their analysis [10,15,32]. However, our research indicates that employing this
method significantly increases the number of tokens due to the complexity of API com-
position. Using n-grams of API sequences as features results in a huge input dimension
for the embedding layer, leading to data sparsity issues and consequently reducing the
expressive capacity of the embedding layer. Therefore, learning the semantic relationships
and grammatical structures embedded within the data becomes quite challenging.

Before inputting the API sequence into the transformer, it must undergo token embed-
ding and positional encoding operations to map the API names appropriately.

The token embedding function is formed by the fundamental embedding layer, pro-
ducing vector representations for text sequences. Positional encoding represents temporal
features in the data by employing sine and cosine functions to calculate positional em-
beddings. This enables the model to capture specific locations in sequential data adeptly
without explicitly introducing positional information. As a result, the model can under-
stand the relative positional relationships among various positions. Equations (1) and (2)
are presented below:

PosEncoder(pos, 2i) = sin
(

pos
10000(2i/dmodel)

)
(1)

PosEncoder(pos, 2i+1) = cos
(

pos
10000(2i/dmodel)

)
(2)

Here, i represents the positional index (starting from 0), pos denotes the dimension
index of the positional embedding (also starting from 0), and dmodel represents the input
dimension of the model.

3.4.2. Encoding Layers

The encoding layer transforms API embeddings into a more comprehensive represen-
tation by assigning different weights to different parts, focusing on the essential sections of
the input sequence to capture semantic and contextual information. Within the transformer
architecture, the encoding layer consists of six iterated encoders.

Sensors 2024, 24, 580 9 of 22

The incorporation of the self-attention mechanism enables us to more effectively
capture long-range dependencies among elements within API sequences. The core process
of the self-attention mechanism involves calculating attention weights through Q and K,
which are then applied to V to obtain the overall weighted output. This process can be
conceptually understood as mapping a query to a series of key-value pairs. Specifically,
for input Q, K, and V, the formula for computing the output vector is represented in
Equation (3).

Attention(Q, K, V)= softmax
(

Q·KT
√

dk

)
·V (3)

However, the self-attention mechanism has some drawbacks when encoding informa-
tion at the current position, and it tends to concentrate attention excessively on its own
position [34]. Using a multi-head attention mechanism allows the output of the attention
layer to contain encoding representations from different subspaces, thereby enhancing the
model’s expressive capability. The calculation method for multi-head attention is shown in
Equations (4) and (5).

{head}i= Attention
(

Q·Wi
Q, K·Wi

K, V·Wi
V
)

(4)

MultiHeadAttention(Q, K, V)= Concat({head}1, · · · , {head}h)·W
O (5)

Here, Q, K and V represent the query, key, and value vectors respectively. Wi
Q, Wi

K,
and Wi

V are the weight matrices for the i th attention head. WO is the output weight matrix.

3.4.3. One-Dimensional Channel Attention Module

In natural language processing, representing each word with high-dimensional vec-
tors is a widely adopted approach by researchers. Word embeddings map each word to
a continuous, high-dimensional real-number vector space, placing words with similar
semantics closer together in the vector space. In contrast, semantically unrelated words are
positioned farther apart. When API names are embedded into high-dimensional feature
vectors, their semantic information is also dispersed across different positions in the vector.
The purpose of designing this module is to enhance the model’s understanding of API
semantics by capturing features at specific positions.

In their work, Woo et al. [35] presented an effective feed-forward Convolutional
Block Attention Module (CBAM) that utilizes conventional operations to extract features
from vectors’ maximum and average pooled outputs. This module directs the network’s
attention toward relevant elements and spatial locations, emphasizing crucial features
while suppressing responses from irrelevant regions. Building on the original CBAM,
we extend its capabilities by adapting the channel attention module to focus on essential
features within a 1D vector, thus broadening its applicability beyond the image domain.

The modified 1D channel attention module is used at the end of the encoder and
iterated through six layers to enhance the feature vector output by the encoder. The specific
process is shown in Algorithm 1.

Figure 3 shows our proposed one-dimensional channel attention module, which
operates as follows: Firstly, it extracts the 1D maximum pooling features and 1D av-
erage pooling features of the API feature vectors using nn.AdaptiveMaxPool1d() and
nn.AdaptiveAvgPool1d() respectively. Subsequently, these two features are passed into
the 1D convolutional feature extraction module, which consists of two convolutional maps
of different lengths. The first convolutional network reduces the features’ dimensionality,
followed by applying the RELU() activation function. Next, the second convolutional
network restores the features to their original dimensions. Lastly, the sigmoid function
activates the attention weights, confining them within the range {0, 1}. This process is
depicted in Equation (6).

CA(x)= σ(MLP(MaxPool1d(x)) + MLP(AvgPool1d(x)))
= σ

(
W1

(
W0

(
xc

max1d
))

+ W1

(
W0

(
xc

avg1d

))) (6)

Sensors 2024, 24, 580 10 of 22

Algorithm 1 CAFTrans encoder algorithm combining 1D channel attention

Input: API embedding vector Src, padding mask Src_key_padding_mask.
Output: Encoder_output.
1. Use_1D channel attention← True
2. Encoder_output← Src
3. for encoder_layer← CAFTrans Encoder ModuleList do
4. Encoder_output← encoder_layer(Src, Src_key_padding_mask)
5. if Use_1D channel attention is True then
6. Attention_Weight← 1D ChannelAttention Function(Encoder_output)
7. Encoder_output← Vector weighting operation (Attention_Weight, Encoder_output)
8. Encoder_output← Norm(Encoder_output)
9. end if
10. end for
11. return Encoder_output

Sensors 2024, 24, x FOR PEER REVIEW 10 of 22

The modified 1D channel attention module is used at the end of the encoder and
iterated through six layers to enhance the feature vector output by the encoder. The spe-
cific process is shown in Algorithm 1.

Algorithm 1 CAFTrans encoder algorithm combining 1D channel attention.
Input: API embedding vector Src, padding mask Src_key_padding_mask.
Output: Encoder_output.
1. Use_1D channel attention ← True
2. Encoder_output ← Src
3. for encoder_layer ← CAFTrans Encoder ModuleList do
4. Encoder_output ← encoder_layer(Src, Src_key_padding_mask)
5. if Use_1D channel attention is True then
6. Attention_Weight ← 1D ChannelAttention Function(Encoder_output)
7. Encoder_output ← Vector weighting operation (Attention_Weight, En-
coder_output)
8. Encoder_output ← Norm(Encoder_output)
9. end if
10. end for
11. return Encoder_output

Figure 3 shows our proposed one-dimensional channel attention module, which op-
erates as follows: Firstly, it extracts the 1D maximum pooling features and 1D average
pooling features of the API feature vectors using nn.AdaptiveMaxPool1d() and nn.Adap-
tiveAvgPool1d() respectively. Subsequently, these two features are passed into the 1D
convolutional feature extraction module, which consists of two convolutional maps of dif-
ferent lengths. The first convolutional network reduces the features’ dimensionality, fol-
lowed by applying the RELU() activation function. Next, the second convolutional net-
work restores the features to their original dimensions. Lastly, the sigmoid function acti-
vates the attention weights, confining them within the range {0, 1}. This process is depicted
in Equation (6).

CA x = σ MLP MaxPool1d x + MLP AvgPool1d x

= σ W1 W0 xmax1d
c + W1 W0 xavg1d

c
(6)

Here xmax1d
c and xavg1d

c represent the max pooling feature and the average pooling
feature, respectively. The final channel attention feature map generated in the multi-layer
perceptron (MLP) network is CA∈RC/r·1, and r stands for the number of dimensionality
reduction.

Figure 3. The enhancement process of one-dimensional channel attention to transformer output vec-
tor.
Figure 3. The enhancement process of one-dimensional channel attention to transformer output vector.

Here xc
max1d and xc

avg1d represent the max pooling feature and the average pooling
feature, respectively. The final channel attention feature map generated in the multi-layer
perceptron (MLP) network is CA ∈ RC/r·1, and r stands for the number of dimensional-
ity reduction.

Using the channel attention module allows learning the correlation between dissimilar
channels and weighting the importance of each channel. The model can enhance its
performance and representation capacity by adaptively selecting salient feature channels.

3.4.4. TF-IDF API Frequency Enhancement Module

The TF-IDF technique is the most widely embraced word weighting method in natural
language processing. Its widespread applications span a variety of domains, including in-
formation retrieval, text mining, modeling, and more. Recently, researchers have extended
TF-IDF to API sequence classification tasks [16,19,32], employing this method to assess the
significance of individual APIs within the context of the entire sequence. The equations for
the calculations are illustrated in Equations (7)–(9)

TF− IDFi,j = TFi,j × IDFi (7)

TF(i, j) =
ni,j

∑k nk,j
(8)

IDFi = log
|D|∣∣{j :tiϵdj

}∣∣ (9)

While TF-IDF can reduce the emphasis on high-frequency API calls, it may lose some
crucial information for low-frequency calls. Due to the transformer’s self-attention mecha-
nism, generated API sequence word vectors often exhibit longer contextual dependencies
and can simultaneously consider global and local semantic information. In TF-IDF weight-

Sensors 2024, 24, 580 11 of 22

ing, low-frequency calls may receive smaller weights, but these calls could indicate the
malicious nature of the sequence, information that previous studies might overlook.

To improve TF-IDF weights, we introduce a baseline weight α. Subsequently, the
weights undergo a normalization process, mapping them to the [0, 1] range, and serve as
the final weights. This ensures that the model, while focusing on high-frequency calls, does
not overlook low-frequency calls, ensuring that the transformer word vector information
can be better perceived by the downstream classifier in capturing the features of the API,
as demonstrated in Equation (10).

TF− IDFi,j = Norm
(
TF− IDFi,j + α

)
(10)

3.5. Downstream Classifier

Introducing convolutional neural networks (CNNs) has led to significant research
achievements in visual and natural language processing domains. Kim [36] was the first
to apply CNNs to text classification tasks, discovering that this method could effectively
extract contextual semantic relationships between textual content. Meanwhile, TextCNN,
known for its simplicity and speed, has successfully identified local text features. It has
been applied in tasks such as text classification, semantic representation learning, and
sentiment analysis, demonstrating excellent performance. Consequently, more researchers
have begun to explore the potential of TextCNN. Our study employed multiple TextCNN
convolutional modules to capture feature relationships of one-dimensional API vectors at
different distances.

The fundamental idea of TextCNN is to utilize the structure of CNNs for classification.
The model takes a sequence of word vectors and uses different window sizes to capture
local information in the sentence and extract relevant features. In our experiments, we
employed three different convolutional kernels of sizes 3, 5, and 7 to extract dependencies
between different distances in API sequences, the orange part represents the result after
processing with a kernel of size 3, the green part represents the result after processing with
a kernel of size 5, and the blue part represents the result after processing with a kernel of
size 7, as illustrated in Figure 4.

By embedding the API sequence using a transformer, we obtained a matrix with
a fixed length of S and a hidden vector length of 512. This matrix is represented as:
API_SEQUENCE1:S = (API1, · · · , APIS)

T .
For further processing, we used this matrix as an input for a CNN with three different

kernel sizes. During the convolution process, we slid convolutional kernels of varying
window lengths over the vectors represented by API1 to APIn, with a sliding step of 1.
When the kernel length is K, a sequence of length S is processed into a sequence of length
S − K + 1, represented as:(API1, · · · , APIS)

T = (X1, · · · , XS−K+1)
T . Due to the use of

kernels with different sizes, the generated sequence lengths vary. We applied a padding
operation to ensure uniform sequence length, adding placeholders on both sides of the
vectors. After the convolutional processing, the GELU activation function was employed
to better capture information in the negative regions to some extent.

To integrate the crucial features extracted through convolution, we conducted an
element-wise summation of the convolutional results, X = LayerNorm[X3 ⊕ X5 ⊕ X7],
where X represents the fused features, and LayerNorm denotes the layer normalization
operation. The LayerNorm operation was employed to standardize the features of each
sample, promoting a smoother feature distribution across various samples to enhance
the model’s generalization capability [37]. Additionally, it aids in mitigating challenges
like vanishing and exploding gradients, expedites convergence, and augments the overall
generalization capacity of the model.

Due to the unique syntax of API names in classifying malware API sequences, they
can also be considered a particular type of text. By storing long-distance information in
the hidden state and short-term memory in the cell state, the sequential dependencies
can be captured to provide richer semantic representations. Numerous researchers have

Sensors 2024, 24, 580 12 of 22

demonstrated through experiments [18,38] that the application of long short-term memory
(LSTM) [39] networks can drive the development of malware detection and classifica-
tion techniques.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 22

Figure 4. Multi-scale feature extraction using convolutional networks with different convolution
kernels.

By embedding the API sequence using a transformer, we obtained a matrix with a
fixed length of S and a hidden vector length of 512. This matrix is represented as:
API_SEQUENCE1:S = API1, ⋯ ,APIS

T.
For further processing, we used this matrix as an input for a CNN with three different

kernel sizes. During the convolution process, we slid convolutional kernels of varying
window lengths over the vectors represented by API1 to APIn, with a sliding step of 1.
When the kernel length is K, a sequence of length S is processed into a sequence of length
S - K + 1, represented as: API1, ⋯ , APIS

T = X1, ⋯ , XS-K+1
T. Due to the use of kernels with

different sizes, the generated sequence lengths vary. We applied a padding operation to
ensure uniform sequence length, adding placeholders on both sides of the vectors. After
the convolutional processing, the GELU activation function was employed to better cap-
ture information in the negative regions to some extent.

To integrate the crucial features extracted through convolution, we conducted an el-
ement-wise summation of the convolutional results, X = LayerNorm X3⊕X5⊕X7 , where
X represents the fused features, and LayerNorm denotes the layer normalization operation.
The LayerNorm operation was employed to standardize the features of each sample, pro-
moting a smoother feature distribution across various samples to enhance the model’s
generalization capability [37]. Additionally, it aids in mitigating challenges like vanishing
and exploding gradients, expedites convergence, and augments the overall generalization
capacity of the model.

Due to the unique syntax of API names in classifying malware API sequences, they
can also be considered a particular type of text. By storing long-distance information in
the hidden state and short-term memory in the cell state, the sequential dependencies can
be captured to provide richer semantic representations. Numerous researchers have
demonstrated through experiments [18,38] that the application of long short-term
memory (LSTM) [39] networks can drive the development of malware detection and clas-
sification techniques.

Following the concatenation of all convolutional layer outputs, the Bi-LSTM network
processes the data in both forward and reverse directions, facilitating the capture of rela-
tionships between API calls.

Due to the unique gate structure of LSTM networks [40], they can selectively learn
information in API sequences, thereby capturing long-term dependencies in the se-
quences. Our experiments employed Bi-LSTM, which considers past and future features,
unlike traditional unidirectional LSTM. It utilizes two LSTM layers, one to process the
input in the original sequence order and one in the reverse sequence order. The outputs
from both LSTM layers are then concatenated to capture bidirectional semantic relations
between the APIs. This can be expressed as Equations (11)–(13).

…

…

H=3

H=5

H=7

Multi-scale Feature Extraction Feature Aggregation

API

API

API

API

…

API

API
Sequnces

Figure 4. Multi-scale feature extraction using convolutional networks with different convolution kernels.

Following the concatenation of all convolutional layer outputs, the Bi-LSTM net-
work processes the data in both forward and reverse directions, facilitating the capture of
relationships between API calls.

Due to the unique gate structure of LSTM networks [40], they can selectively learn
information in API sequences, thereby capturing long-term dependencies in the sequences.
Our experiments employed Bi-LSTM, which considers past and future features, unlike
traditional unidirectional LSTM. It utilizes two LSTM layers, one to process the input in
the original sequence order and one in the reverse sequence order. The outputs from both
LSTM layers are then concatenated to capture bidirectional semantic relations between the
APIs. This can be expressed as Equations (11)–(13).

→
ht =

→
LSTM(ht−1, Wt, Ct−1) (11)

↼
ht =

↼
LSTM(ht−1, Wt, Ct−1) (12)

Ht =

[
↼
ht,
→
ht

]
(13)

Here
→
ht represents the forward feature information, and

↼
ht represents the backward

feature information.
While previous researchers often preferred using max-pooling to downsample the

final features of the LSTM network [17,41], our experiments have adopted a distinct ap-
proach. However, reducing the model’s parameter size causes the loss of temporal order
relationships and finer-grained information between time steps, ultimately leading to a
decrease in the model’s recognition performance.

Afterward, two linear layers with dimensions (512, 64) and (64, n) are used for decision-
making, where n represents the number of labels in the dataset. Each linear layer uses
GELU activation to output the estimated malware probability. In the experiment, we set
the hidden size to 256 and employed AdamW as the optimizer. We used the cross-entropy
loss function to measure the loss during the training phase to compute the discrepancy
between the label values and the MLP output results.

4. Experimental Evaluation
4.1. Testing Dataset

Catak et al. [42] detected Windows malware using Cuckoo Sandbox V2.0.6 and labeled
the collected malware samples using the online service VirusTotal. They released a publicly

Sensors 2024, 24, 580 13 of 22

available benchmark dataset named ‘mal-api-2019’. Malware from different families in
the dataset can be classified into eight classes: spyware, downloaders, trojans, worms,
adware, droppers, viruses, and backdoor malware. The dataset comprises 7107 API call
sequences, including 342 different Windows system calls. The distribution of samples for
each category is shown in Table 1 below.

Table 1. Sample distribution of the mal-api-2019 dataset.

Type Instance

Worms 1001
Virus 1001

Trojans 1001
Downloaders 1001

Backdoors 1001
Droppers 891
Spyware 832
Adware 379

In this paper, we equally sample different types of software and employ four standard
evaluation metrics—accuracy, recall, precision, and F1 score—as well as an ROC curve and
the area under the curve (AUC) to assess the performance of CAFTrans, as formulated in
Equations (14)–(17).

Additionally, we rely on the false positive rate (FPR) and false negative rate (FNR) to
assess the model’s discriminative ability for different types of samples. The false positive
rate (FPR) represents the proportion of all actual negative samples incorrectly predicted as
positive by the model. In contrast, the false negative rate (FNR) represents the proportion
of all actual positive samples incorrectly predicted as negative by the model, as formulated
in Equations (18) and (19).

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

ACC =
TP + TN

TP + TN + FP + FN
(16)

F1−score =
2 × Precision × Recall

Precision + Recall
(17)

False Positive Rate(FPR) =
FP

FP + TN
(18)

False Negative Rate(FNR) =
FN

FN + TP
(19)

4.2. Experimental Setup

The experiment used a local server with the following configuration: CPU: Intel i9-
11900K @ 3.50 GHz, GPU: NVIDIA RTX 3090, 128 GB RAM. The code was developed on
a Windows 10 platform, built using PyTorch version 1.13, and PyCharm was used as the
Python compiler with Python 3.10 as the programming language environment.

To partition the training and testing sets, we initially classified malware calls based on
the different labels present in the dataset. Subsequently, we used an 8:2 ratio to achieve
a balanced collection of API call data for each label, ensuring a consistent representa-
tion for each category. This approach enhanced the generalization ability of the model,
minimized the bias effects, reduced the risk of overfitting, and ultimately improved the
model’s stability.

In order to expedite the detection of malicious behavior during the experiments, we
standardized the API sequence length to accept 200 calls. Our network training utilized a

Sensors 2024, 24, 580 14 of 22

learning rate of 1 × 10−4, a maximum of 100 epochs, and a batch size of 64. Table 2 lists the
parameters used in the experiments.

Table 2. Parameter setting in the experiment.

Parameters Set Value

Optimizer AdamW
Learning Rate 1 × 10−4

Decay None
Sequence Length 200

Batch Size 64
Epoch 100

Choosing the appropriate number of epochs is crucial in preventing model overfitting.
Our experiments observed that when the training epochs exceeded 100, the model’s loss
continued to increase, and simultaneously, the accuracy gradually fluctuated. This indicates
that the model was overfitting to the data. We achieved the best experimental results during
the model training process at the 89th epoch. We set the maximum training epoch to 100 to
prevent overfitting due to excessive training.

Choosing the right batch size is equally crucial for achieving optimal results. A
too-large batch size can lead to increased training time and memory overhead, while a
too-small batch size may result in insufficient data generalization. To strike a balance
between accuracy during detection and the associated training time and memory costs, we
opted for a batch size of 64.

4.3. Evaluation

In this section, we present the experimental results of the model, evaluate its per-
formance improvements through a comparison with baseline models, conduct ablation
studies, conduct data cluster analysis, and test against unknown samples. Additionally, we
assess its enhanced generalization capability for recognizing different types of samples.

4.3.1. Baselines Comparative Evaluation

To validate the superiority of our proposed model, we compared its performance with
several baseline models. These baseline models include GaussianNB, LogisticRegression,
KNeighbors, SVM, DecisionTree, and RandomForest, as shown in Table 3. Simultane-
ously, we gathered studies on the mal-api-2019 dataset, encompassing experimental results
from five researchers. We compiled and analyzed these results as reference data, and the
comparative outcomes are illustrated in Table 4.

Table 3. Comparisons with baseline models.

Method ACC Precision Recall F1-Score Processing Time (s)

GaussianNB 0.1500 0.2980 0.1891 0.1122 0.016
LogisticRegression 0.2950 0.3138 0.3094 0.3065 0.154

KNeighbors 0.3525 0.4005 0.3770 0.3745 0.006
SVM 0.3665 0.4302 0.37404 0.3868 2.145

DecisionTree 0.4338 0.4494 0.4511 0.4500 0.339
RandomForest 0.5088 0.5456 0.5189 0.5261 1.807

MLP 0.2256 0.3524 0.2127 0.1892 4.892
GradientBoosting 0.4926 0.5173 0.5061 0.5085 48.220

CAFTrans 0.6461 0.6514 0.6584 0.6525 1.721

Sensors 2024, 24, 580 15 of 22

Table 4. Comparisons with other researchers.

Study Method ACC Precision Recall F1-Score AUC

Demirkıran et al. [43]
Random Transformer Forest (RTF) - - - 0.6149 0.8818

BERT - - - 0.5919 0.8735
CANINE-S - - - 0.5633 0.8339

Li et al. [44] Transformer 0.50 0.50 0.52 0.51 -

Catak et al. [45]
Single LSTM - 0.50 0.47 0.47 -

Bidirectional LSTM - 0.40 0.41 0.39 -

Avci et al. [46] CNN LSTM 0.8847 0.5441 0.1703 0.2483 0.836

Cannarile et al. [47] ExtraTrees 0.557 0.593 0.571 0.578 0.753

Proposed Model CAFTrans 0.6461 0.6514 0.6584 0.6525 0.8913

From Table 4, Demirkıran et al. [43] tested multiple pre-trained models, including
BERT, CA-NINE-S, and their proposed Random Transformer Forest (RTF) model, on the
mal-api-2019 dataset. Li et al. [44] utilized RNNs and transformer structures to classify
malware by learning interactive features in API call sequences. Catak et al. [45] evaluated
the effectiveness of different LSTM network structures by using individual API numbering
as model inputs on the mal-api-2019 dataset. Avci et al. [46] assessed and benchmarked
LSTM-based malware detection methods on specific LSTM architectures, showing that
different LSTM approaches and architectures applied to the malware detection problem.
Cannarile et al. [47] explored the ability of various tree-based methods and recurrent neural
networks to capture patterns in API relationships.

Compared to other researchers’ studies, our proposed model exhibits a lower false
positive rate, achieving a precision value of 0.65140, surpassing the results of Cannarile
et al. by 5%. Additionally, it demonstrated a lower false negative rate, achieving a recall
value of 0.65842, outperforming the results of Cannarile et al. by 8%. The model’s high
recall rate indicates that we effectively reduced false negatives during detection, better
identified correct labels for test samples, and minimized the number of false negatives
(missed true positives), which is crucial in malware detection. Compared to all baseline
algorithms, our proposed model demonstrates superior overall performance with an F1
score of 0.65252, outperforming the best result achieved by Demirkıran et al. with 0.6149.

Figure 5 shows the confusion matrix of our proposed model for malware classification
on the test dataset. It shows that the model performs best in identifying malware types
as adware, downloaders, and viruses, with accuracy values of 80%, 72.35%, and 80.189%,
respectively. For other types of samples, the model achieves a precision rate of more than
50%, demonstrating its effectiveness in identifying various forms of malware. However,
the model performs poorly in identifying trojan samples, as they are more prone to misclas-
sification as backdoor software. One possible explanation for this observation is that the
creators of trojans may deliberately exploit system vulnerabilities to install backdoors and
gain system access privileges.

4.3.2. Ablation Studies

In this study, we propose three significant enhancements to our model architecture
to improve feature recognition. First, we incorporate a joint CNN+LSTM classifier, which
leverages this composite model in downstream tasks to enable feature learning at varying
distances. Second, we refine the TF-IDF call strategy to enhance its role within the model.
Finally, we introduce a 1D channel attention module to augment the embedding features.
To assess the impact of each improvement on feature recognition, we conducted ablation
experiments by systematically turning off specific modules and measuring their effect on
the model performance. Throughout the experiment, we integrated the transformer model
with the downstream CNN+LSTM classifier to create the primary base model MTran.

Sensors 2024, 24, 580 16 of 22

Sensors 2024, 24, x FOR PEER REVIEW 16 of 22

value of 0.65842, outperforming the results of Cannarile et al. by 8%. The model’s high
recall rate indicates that we effectively reduced false negatives during detection, better
identified correct labels for test samples, and minimized the number of false negatives
(missed true positives), which is crucial in malware detection. Compared to all baseline
algorithms, our proposed model demonstrates superior overall performance with an F1
score of 0.65252, outperforming the best result achieved by Demirk�ran et al. with 0.6149.

Figure 5 shows the confusion matrix of our proposed model for malware classifica-
tion on the test dataset. It shows that the model performs best in identifying malware
types as adware, downloaders, and viruses, with accuracy values of 80%, 72.35%, and
80.189%, respectively. For other types of samples, the model achieves a precision rate of
more than 50%, demonstrating its effectiveness in identifying various forms of malware.
However, the model performs poorly in identifying trojan samples, as they are more
prone to misclassification as backdoor software. One possible explanation for this obser-
vation is that the creators of trojans may deliberately exploit system vulnerabilities to in-
stall backdoors and gain system access privileges.

Figure 5. Confusion matrices obtained by CAFTrans on mal-api-2019 dataset.

4.3.2. Ablation Studies
In this study, we propose three significant enhancements to our model architecture

to improve feature recognition. First, we incorporate a joint CNN+LSTM classifier, which
leverages this composite model in downstream tasks to enable feature learning at varying
distances. Second, we refine the TF-IDF call strategy to enhance its role within the model.
Finally, we introduce a 1D channel attention module to augment the embedding features.
To assess the impact of each improvement on feature recognition, we conducted ablation
experiments by systematically turning off specific modules and measuring their effect on
the model performance. Throughout the experiment, we integrated the transformer model
with the downstream CNN+LSTM classifier to create the primary base model MTran.

As illustrated in Table 5, we conducted experiments on the mal-api-2019 dataset by
selectively deactivating specific modules and evaluating performance metrics, including
ACC, Precision, Recall, F1-score, and AUC (macro). As modules were added, the model’s
performance consistently improved, as evidenced by the incremental expansion of the

Figure 5. Confusion matrices obtained by CAFTrans on mal-api-2019 dataset.

As illustrated in Table 5, we conducted experiments on the mal-api-2019 dataset by
selectively deactivating specific modules and evaluating performance metrics, including
ACC, Precision, Recall, F1-score, and AUC (macro). As modules were added, the model’s
performance consistently improved, as evidenced by the incremental expansion of the
ROC curve area. Figure 6 shows that the original transformer model achieved an ROC
area of 0.88383, while our proposed enhanced model achieved an impressive ROC area of
0.89125, indicating a notable gain of 0.742%. Additionally, the ACC increased from 62.299%
to 64.611%, representing a significant improvement of 2.3%. The ROC plot demonstrates
that including any intrinsic feature extraction module in our proposed model leads to a
performance enhancement, resulting in an increased AUC score. This observation indicates
that each designed intrinsic feature extraction module effectively contributes to malware
detection, enabling the model to adapt to intricate detection scenarios. Consequently, our
work is substantiated in terms of its valuable contribution to the model’s classification
performance, resulting in improved prediction accuracy and robustness.

Table 5. The ablation experimental results.

Method ACC Precision Recall F1-Score AUC

Transformer-base 0.6230 0.6261 0.6332 0.6240 0.8838
MTran 0.6314 0.6321 0.6440 0.6355 0.8847

MTran+TF-IDF 0.6335 0.6455 0.6430 0.6426 0.8857
MTran+1D CAM 0.6321 0.6342 0.6372 0.6417 0.8890

CAFTrans 0.6461 0.6514 0.6584 0.6525 0.8913

Next, we tested the impact of the TF-IDF module and the 1D channel attention module
on the performance of the transformer model in malware identification. Enabling the TF-
IDF module alone yielded an F1-score of 0.64259, while enabling the 1D channel attention
module alone yielded an F1-score of 0.64167. Both individually led to a slight performance
improvement compared to the scenario without these modules. More importantly, how-
ever, when both modules were enabled, the F1-score increased from 0.62397 to 0.65252,
showing a significant improvement of 3%. These results indicate that combining TF-IDF

Sensors 2024, 24, 580 17 of 22

and 1D channel attention modules significantly enhances the model’s ability to learn API
semantic relations.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 22

ROC curve area. Figure 6 shows that the original transformer model achieved an ROC
area of 0.88383, while our proposed enhanced model achieved an impressive ROC area of
0.89125, indicating a notable gain of 0.742%. Additionally, the ACC increased from
62.299% to 64.611%, representing a significant improvement of 2.3%. The ROC plot
demonstrates that including any intrinsic feature extraction module in our proposed
model leads to a performance enhancement, resulting in an increased AUC score. This
observation indicates that each designed intrinsic feature extraction module effectively
contributes to malware detection, enabling the model to adapt to intricate detection sce-
narios. Consequently, our work is substantiated in terms of its valuable contribution to
the model’s classification performance, resulting in improved prediction accuracy and ro-
bustness.

Table 5. The ablation experimental results.

Method ACC Precision Recall F1-Score AUC
Transformer-base 0.6230 0.6261 0.6332 0.6240 0.8838

MTran 0.6314 0.6321 0.6440 0.6355 0.8847
MTran+TF-IDF 0.6335 0.6455 0.6430 0.6426 0.8857

MTran+1D CAM 0.6321 0.6342 0.6372 0.6417 0.8890
CAFTrans 0.6461 0.6514 0.6584 0.6525 0.8913

Figure 6. Comparison of ROC curves of each module of CAFTrans.

Next, we tested the impact of the TF-IDF module and the 1D channel attention mod-
ule on the performance of the transformer model in malware identification. Enabling the
TF-IDF module alone yielded an F1-score of 0.64259, while enabling the 1D channel atten-
tion module alone yielded an F1-score of 0.64167. Both individually led to a slight perfor-
mance improvement compared to the scenario without these modules. More importantly,
however, when both modules were enabled, the F1-score increased from 0.62397 to
0.65252, showing a significant improvement of 3%. These results indicate that combining

Figure 6. Comparison of ROC curves of each module of CAFTrans.

The downstream classifier proposed in the study, which combines a multiscale con-
volutional network with an LSTM, significantly improves the detection performance of
the model. In the experiments, we compared the accuracy, F1 score, and AUC score of
the original transformer model with our proposed transformer model, incorporating the
downstream classifier, using the mal-api-2019 dataset. The results demonstrate that the
accuracy, F1 score, and AUC score of the original transformer model were 0.62299, 0.62397,
and 0.88383, respectively. In contrast, the transformer model with the added downstream
classifier showed performance improvements, achieving an accuracy of 0.63139, an F1 score
of 0.63552, and an AUC score of 0.88456.

By combining these techniques, our research enables flexible learning of information
within sequences and captures long-term dependencies in API sequence analysis tasks. The
proposed feature-capturing module significantly enhances the performance of transformer
models, particularly in handling complex API semantic relationships. These results provide
valuable guidance for API sequence classification tasks.

4.3.3. Data Cluster Analysis

To demonstrate the model’s classification performance more clearly, we employed
T-SNE plots [48] for data visualization to better understand and illustrate the relationships
between samples. First, we used the PAC algorithm to map the 3D features of samples in the
original feature space to a 2D space. Subsequently, we compared the original transformer
model with the proposed model in this study. We presented T-SNE plots for the testing
samples of malware detection and classification tasks (Figure 7a,b).

Sensors 2024, 24, 580 18 of 22

Sensors 2024, 24, x FOR PEER REVIEW 18 of 22

TF-IDF and 1D channel attention modules significantly enhances the model’s ability to
learn API semantic relations.

The downstream classifier proposed in the study, which combines a multiscale con-
volutional network with an LSTM, significantly improves the detection performance of
the model. In the experiments, we compared the accuracy, F1 score, and AUC score of the
original transformer model with our proposed transformer model, incorporating the
downstream classifier, using the mal-api-2019 dataset. The results demonstrate that the
accuracy, F1 score, and AUC score of the original transformer model were 0.62299,
0.62397, and 0.88383, respectively. In contrast, the transformer model with the added
downstream classifier showed performance improvements, achieving an accuracy of
0.63139, an F1 score of 0.63552, and an AUC score of 0.88456.

By combining these techniques, our research enables flexible learning of information
within sequences and captures long-term dependencies in API sequence analysis tasks.
The proposed feature-capturing module significantly enhances the performance of trans-
former models, particularly in handling complex API semantic relationships. These re-
sults provide valuable guidance for API sequence classification tasks.

4.3.3. Data Cluster Analysis
To demonstrate the model’s classification performance more clearly, we employed T-

SNE plots [48] for data visualization to better understand and illustrate the relationships
between samples. First, we used the PAC algorithm to map the 3D features of samples in
the original feature space to a 2D space. Subsequently, we compared the original trans-
former model with the proposed model in this study. We presented T-SNE plots for the
testing samples of malware detection and classification tasks (Figure 7a,b).

(a) (b)

Figure 7. Comparison of clustering results. (a) T-SNE projection of the original transformer cluster-
ing effect; (b) T-SNE projection of the CAFTrans clustering effect.

By comparing the two plots, we observed that the samples in our proposed model
tended to cluster more clearly and densely. In contrast, the samples in the T-SNE plot of
the original transformer model were more scattered and showed higher overlap among
samples with different labels. This indicates that the original transformer model struggles
to effectively distinguish these samples, whereas our method can better capture crucial
features within the malware API sequence and more effectively identify different types of
malware.

Figure 7. Comparison of clustering results. (a) T-SNE projection of the original transformer clustering
effect; (b) T-SNE projection of the CAFTrans clustering effect.

By comparing the two plots, we observed that the samples in our proposed model
tended to cluster more clearly and densely. In contrast, the samples in the T-SNE plot of
the original transformer model were more scattered and showed higher overlap among
samples with different labels. This indicates that the original transformer model struggles
to effectively distinguish these samples, whereas our method can better capture crucial
features within the malware API sequence and more effectively identify different types
of malware.

4.3.4. Unknown Sample Attack Detection

As the expertise of malware developers continues to advance, a decisive factor in
determining the effectiveness of a model is its ability to detect unknown samples. Our
study tested the model’s efficacy in detecting unknown sample attacks and compared it
with an LSTM model, obtaining satisfactory results.

We uniformly extracted 5% of unknown samples from various malware categories
in mal-api-2019, with 80% as the training set and 15% as the validation set. We evaluated
the training performance of the model over 100 epochs and compared its performance
on the combined dataset of unknown samples and the validation set (20% of the dataset),
simulating real-world scenarios of facing unknown sample attacks. During training, we
reduced the number of training samples, leading to a decrease in identification accuracy.
However, this decrease is deemed negligible. In this section, our primary focus is on the
disparity in detection performance.

By carrying out performance comparisons on the combined dataset (unknown sam-
ples) and validation set (original samples), we can simulate scenarios of facing unknown
sample attacks in the real world. This is crucial as the expertise of malware developers
continues to advance, making the model’s capability to detect unknown samples increas-
ingly pivotal [28]. The comparative results, as shown in Table 6, reveal that our model
experienced a minor decrease of 0.28% in accuracy and 0.16% in F1 score when tested on
unknown samples. In contrast, the LSTM model exhibited a more substantial decline, with
a 9.99% decrease in accuracy and a 10.51% decrease in F1 score. These findings indicate
that our model demonstrates superior robustness in the face of attacks involving unknown
samples in scientific research.

Sensors 2024, 24, 580 19 of 22

Table 6. Detection performance of unknown samples and original samples.

Method Data ACC Precision Recall F1-Score AUC

LSTM
Original samples 0.5098 0.5543 0.5543 0.5220 0.8360

Unknown Samples 0.4099 0.4609 0.4055 0.4169 0.7769

Proposed Model Original samples 0.6424 0.6453 0.6536 0.6464 0.8961
Unknown Samples 0.6396 0.6436 0.6484 0.6448 0.8927

Our experimental findings reveal the model’s resilience to unknown samples within
the same family type. Malware from the same family typically shares standard features.
From our experiments, this model can effectively extract semantic features from the API
sequences of the same family of malware, which is crucial for distinguishing between
different types of malware. However, this study did not undertake the task of detecting
unknown categories of malware. Typically, this requires the collection of new samples for
training. Nevertheless, these anonymous malware categories often demonstrate a high
similarity in API calls to existing samples, leading us to believe that our model can also
handle unknown malware categories.

For entirely new unknown categories of malware, the API sequences they need to
execute often exhibit high similarity in specific segments to existing samples. This is
because, even though they are new samples, their operational behavior on the system may
follow patterns. By leveraging the API semantic relationships extracted by our model, this
model can also confront entirely new unknown categories of malware samples.

5. Limitations and Future Work
5.1. Additional API Parameter

In this study, we have only used the dataset containing API names and have not
incorporated other information, such as parameters and execution time intervals. However,
recent research has revealed the importance of these additional details in uncovering crucial
malware features [20,49]. Still, extracting this information using virtual machines and
sandboxes is a time-consuming process. Therefore, in the future, we plan to integrate API
parameters and related knowledge from the security domain to design a more specialized
and comprehensive API sequence detection model. Considering such information, the
model will be better equipped to analyze malware and provide a more comprehensive
security assessment accurately. This approach will lead to improved detection capabilities
and a more thorough evaluation of security aspects.

5.2. Concept Drift Problem

Concept drift refers to the problem of changing underlying relationships in the data.
Concept drift poses a significant challenge in the context of malware detection tasks. As the
techniques used by malware authors continually advance, new types of malware become
increasingly challenging to detect, leading to a decline in the prediction quality of malware
detectors and classifiers over time [50]. To address concept drift, we will integrate security
knowledge related to API calls and explore more efficient approaches that can continuously
detect new types of malware.

5.3. Malicious Paragraph Localization Issue

In our experiments, we used only the first 200 API calls as features to identify dif-
ferent API sequences quickly. However, since malware may lurk in a user’s system for
an extended period to avoid early detection, this could result in malicious behavioral
features appearing in the middle or at the end of the sequence. Therefore, the practice of
detecting only the initial API calls in this experiment may have some limitations in specific
scenarios. Using graph structures allows for a complete representation of all parts of the
API sequence, enabling the graph model to capture the complexity of malware behavior
more comprehensively. In subsequent experiments, we will test the effectiveness of graph

Sensors 2024, 24, 580 20 of 22

structures in the classification of malware API sequences, aiming to handle the intricate
and variable patterns of malware behavior.

6. Conclusions

In this study, we have proposed an innovative transformer architecture named CAF-
Trans to effectively learn the intrinsic features of diverse types of malware API sequences.
We have designed a novel transformer structure to achieve improved API embedding ef-
fects, leading to more accurate identification of various types of attacks. The API sequences
undergo two rounds of feature enhancement, including one-dimensional channel attention
reinforcement and TF-IDF API Frequency Enhancement, before inputting into the final
CNN-LSTM classifier for decision-making.

We have compared our model with various machine learning algorithms and other
researchers, and the results demonstrate the outstanding performance of our architecture in
malware detection tasks. On the mal-api-2019 dataset, we achieved an F1 score of 0.65252
and an AUC score of 0.89463. Furthermore, our architecture exhibits robustness and gener-
alization in detecting unknown samples, effectively learning the semantic information of
complex API sequences and characteristics of different types of attacks. We have confidence
in our proposed transformer model, believing that it can assist analysts in rapidly and
accurately identifying different malware families to counter evolving attack methods.

Author Contributions: Conceptualization, L.Q. and L.C.; methodology, L.C.; software, L.C.; valida-
tion, L.Q. and L.C.; formal analysis, L.C.; investigation, L.C.; data curation, L.C.; writing—original
draft preparation, L.C.; writing—review and editing, L.Q.; visualization, L.C.; supervision, L.Q.;
project administration, L.Q.; funding acquisition, L.Q. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (NO. 2022YFC3321101) and the National Natural Science Foundation of China (61571144).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We used the mal-api-2019 dataset in this research. The dataset is
available at https://github.com/ocatak/malware_api_class, accessed on 26 November 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. AV-TEST. AV-TEST Award 2022: Tested and Award-Winning Security. Available online: https://www.avtest.org/en/news/av-

test-award-2022-tested-andaward-winning-security/ (accessed on 2 March 2023).
2. Alawida, M.; Omolara, A.E.; Abiodun, O.I.; Al-Rajab, M. A deeper look into cybersecurity issues in the wake of COVID-19: A

survey. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 8176–8206. [CrossRef]
3. Pascal, M.; Mahmood, A.N.; Chowdhury, M.J.M. A study on malicious software behaviour analysis and detection techniques:

Taxonomy, current trends and challenges. Future Gener. Comput. Syst. 2022, 130, 1–18.
4. Or-Meir, O.; Nissim, N.; Elovici, Y.; Rokach, L. Dynamic malware analysis in the modern era—A state of the art survey. ACM

Comput. Surv. 2019, 52, 1–48. [CrossRef]
5. Zeidanloo, H.R.; Tabatabaei, S.F.; Amoli, P.V.; Tajpour, A. All about malwares (malicious codes). In Proceedings of the 2010

International Conference on Security & Management, SAM 2010, Las Vegas, NV, USA, 12–15 July 2010.
6. Schultz, M.G.; Eskin, E.; Zadok, F.; Stolfo, S.J. Data mining methods for detection of new malicious executables. In Proceedings of

the 2001 IEEE Symposium on Security and Privacy. S&P 2001, Oakland, CA, USA, 14–16 May 2000.
7. Christodorescu, M.; Jha, S.; Kruegel, C. Mining specifications of malicious behavior. In Proceedings of the 6th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Dubrovnik, Croatia, 3–7 September 2007.

8. Shafiq, M.Z.; Tabish, S.M.; Mirza, F.; Farooq, M. PE-miner: Mining structural information to detect malicious executables in real
time. In Recent Advances in Intrusion Detection; Springer: Berlin/Heidelberg, Germany, 2009.

9. Amer, E.; Zelinka, I. A dynamic Windows malware detection and prediction method based on contextual understanding of API
call sequence. Comput. Secur. 2020, 92, 101760. [CrossRef]

10. Kolosnjaji, B.; Zarras, A.; Webster, G.; Eckert, C. Deep learning for classification of malware system call sequences. In AI 2016:
Advances in Artificial Intelligence; Springer International Publishing: Cham, Switzerland, 2016.

https://github.com/ocatak/malware_api_class
https://www.avtest.org/en/news/av-test-award-2022-tested-andaward-winning-security/
https://www.avtest.org/en/news/av-test-award-2022-tested-andaward-winning-security/
https://doi.org/10.1016/j.jksuci.2022.08.003
https://doi.org/10.1145/3329786
https://doi.org/10.1016/j.cose.2020.101760

Sensors 2024, 24, 580 21 of 22

11. Zhang, J. Deepmal: A CNN-LSTM model for malware detection based on dynamic semantic behaviours. In Proceedings of the
2020 International Conference on Computer Information and Big Data Applications (CIBDA), Guiyang, China, 17–19 April 2020.

12. Yuan, C.; Cai, J.; Tian, D.; Ma, R.; Jia, X.; Liu, W. Towards time evolved malware identification using two-head neural network. J.
Inf. Secur. Appl. 2022, 65, 103098. [CrossRef]

13. Xu, Z.; Fang, X.; Yang, G. Malbert: A novel pre-training method for malware detection. Comput. Secur. 2021, 111, 102458.
[CrossRef]

14. Tian, R.; Islam, R.; Batten, L.; Versteeg, S. Differentiating malware from cleanware using behavioural analysis. In Proceedings of
the 2010 5th International Conference on Malicious and Unwanted Software, Nancy, France, 19–20 October 2010.

15. Kim, C.W. NtMalDetect: A machine learning approach to malware detection using native API system calls. arXiv 2018,
arXiv:1802.05412.

16. Dabas, N.; Ahlawat, P.; Sharma, P. An Effective Malware Detection Method Using Hybrid Feature Selection and Machine Learning
Algorithms. Arab. J. Sci. Eng. 2022, 48, 9749–9767. [CrossRef]

17. Zhang, Z.; Qi, P.; Wang, W. Dynamic malware analysis with feature engineering and feature learning. Proc. AAAI Conf. Artif.
Intell. 2020, 34, 1210–1217. [CrossRef]

18. Li, C.; Lv, Q.; Li, N.; Wang, Y.; Sun, D.; Qiao, Y. A novel deep framework for dynamic malware detection based on API sequence
intrinsic features. Comput. Secur. 2022, 116, 102686. [CrossRef]

19. Amer, E.; Zelinka, I.; El-Sappagh, S. A multi-perspective malware detection approach through behavioral fusion of API call
sequence. Comput. Secur. 2021, 110, 102449. [CrossRef]

20. Li, C.; Cheng, Z.; Zhu, H.; Wang, L.; Lv, Q.; Wang, Y.; Li, N.; Sun, D. DMalNet: Dynamic malware analysis based on API feature
engineering and graph learning. Comput. Secur. 2022, 122, 102872. [CrossRef]

21. Chen, X.; Tong, Y.; Du, C.; Liu, Y.; Ding, Z.; Ran, Q.; Zhang, Y.; Cui, L.; Hao, Z. MalPro: Learning on process-aware behaviors for
malware detection. In Proceedings of the 2022 IEEE Symposium on Computers and Communications (ISCC), Rhodes, Greece, 30
June–3 July 2022.

22. Ling, X.; Wu, L.; Zhang, J.; Qu, Z.; Deng, W.; Chen, X.; Qian, Y.; Wu, C.; Ji, S.; Luo, T.; et al. Adversarial attacks against Windows
PE malware detection: A survey of the state-of-the-art. Comput. Secur. 2023, 128, 103134. [CrossRef]

23. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.
arXiv 2013, arXiv:1312.6199.

24. Gopinath, M.; Sethuraman, S.C. A comprehensive survey on deep learning based malware detection techniques. Comput. Sci. Rev.
2023, 47, 100529.

25. Gibert, D.; Fredrikson, M.; Mateu, C.; Planes, J.; Le, Q. Enhancing the insertion of NOP instructions to obfuscate malware via
deep reinforcement learning. Comput. Secur. 2022, 113, 102543. [CrossRef]

26. Park, D.; Khan, H.; Yener, B. Generation & evaluation of adversarial examples for malware obfuscation. In Proceedings of the 2019
18th IEEE International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019.

27. Hu, W.; Tan, Y. Black-box attacks against RNN based malware detection algorithms. arXiv 2017, arXiv:1705.08131.
28. Nia, M.A.; Bahrak, B.; Kargahi, M.; Fabian, B. Detecting new generations of threats using attribute-based attack graphs. IET Inf.

Secur. 2019, 13, 293–303. [CrossRef]
29. Li, C.; Zheng, J. API call-based malware classification using recurrent neural networks. J. Cyber Secur. Mobil. 2021, 10, 617–640.

[CrossRef]
30. Weijie, H.; Jingfeng, X.; Yong, W.; Lu, H.; Zixiao, K.; Limin, M. MalDAE: Detecting and explaining malware based on correlation

and fusion of static and dynamic characteristics. Comput. Secur. 2019, 83, 208–233.
31. Dabas, N.; Sharma, P. MalAnalyser: An effective and efficient Windows malware detection method based on API call sequences.

Expert Syst. Appl. 2023, 230, 120756.
32. Wang, P.; Tang, Z.; Wang, J. A novel few-shot malware classification approach for unknown family recognition with multi-

prototype modeling. Comput. Secur. 2021, 106, 102273. [CrossRef]
33. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,

arXiv:1301.3781.
34. Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention

mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [CrossRef]
35. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.
36. Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv:1408.5882.
37. Xu, J.; Sun, X.; Zhang, Z.; Zhao, G.; Lin, J. Understanding and improving layer normalization. In Advances in Neural Information

Processing Systems 32; Curran Associates, Inc.: Red Hook, NY, USA, 2019.
38. Jing, C.; Wu, Y.; Cui, C. Ensemble dynamic behavior detection method for adversarial malware. Future Gener. Comput. Syst. 2022,

130, 193–206. [CrossRef]
39. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
40. Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; Xu, B. Attention-based bidirectional long short-term memory networks for

relation classification. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), Berlin, Germany, 7–12 August 2016.

https://doi.org/10.1016/j.jisa.2021.103098
https://doi.org/10.1016/j.cose.2021.102458
https://doi.org/10.1007/s13369-022-07309-z
https://doi.org/10.1609/aaai.v34i01.5474
https://doi.org/10.1016/j.cose.2022.102686
https://doi.org/10.1016/j.cose.2021.102449
https://doi.org/10.1016/j.cose.2022.102872
https://doi.org/10.1016/j.cose.2023.103134
https://doi.org/10.1016/j.cose.2021.102543
https://doi.org/10.1049/iet-ifs.2018.5409
https://doi.org/10.13052/jcsm2245-1439.1036
https://doi.org/10.1016/j.cose.2021.102273
https://doi.org/10.1007/s41095-022-0271-y
https://doi.org/10.1016/j.future.2021.12.013
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276

Sensors 2024, 24, 580 22 of 22

41. Agrawal, R.; Stokes, J.W.; Marinescu, M.; Selvaraj, K. Neural sequential malware detection with parameters. In Proceedings of the
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018.

42. mal-api-2019. Available online: https://github.com/ocatak/malware_api_class (accessed on 26 November 2023).
43. Demirkıran, F.; Çayır, A.; Ünal, U.; Dağ, H. An ensemble of pre-trained transformer models for imbalanced multiclass malware

classification. Comput. Secur. 2022, 121, 102846. [CrossRef]
44. Li, C.; Chen, Z.; Zheng, J. An Efficient Transformer Encoder-Based Classification of Malware Using API Calls. In Proceed-

ings of the 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science &
Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys), Hainan, China, 18–20 December 2022.

45. Catak, F.O.; Yazı, A.F.; Elezaj, O.; Ahmed, J. Deep learning based Sequential model for malware analysis using Windows exe API
Calls. PeerJ Comput. Sci. 2020, 6, e285. [CrossRef]

46. Avci, C.; Tekinerdogan, B.; Catal, C. Analyzing the performance of long short-term memory architectures for malware detection
models. Concurr. Comput. Pract. Exp. 2023, 35, 1. [CrossRef]

47. Cannarile, A.; Carrera, F.; Galantucci, S.; Iannacone, A.; Pirlo, G. A study on malware detection and classification using the
analysis of API calls sequences through shallow learning and recurrent neural networks. In Proceedings of the ITASEC’22: Italian
Conference on Cybersecurity, Rome, Italy, 20–23 June 2022.

48. Wattenberg, M.; Viégas, F.; Johnson, I. How to use t-SNE effectively. Distill 2016, 1, e2. [CrossRef]
49. Finder, I.; Sheetrit, E.; Nissim, N. Time-interval temporal patterns can beat and explain the malware. Knowl. Based Syst. 2022, 241,

108266. [CrossRef]
50. Ceschin, F.; Pinage, F.; Castilho, M.; Menotti, D.; Oliveira, L.S.; Gregio, A. The need for speed: An analysis of Brazilian malware

classifiers. IEEE Secur. Priv. 2018, 16, 31–41. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/ocatak/malware_api_class
https://doi.org/10.1016/j.cose.2022.102846
https://doi.org/10.7717/peerj-cs.285
https://doi.org/10.1002/cpe.7581
https://doi.org/10.23915/distill.00002
https://doi.org/10.1016/j.knosys.2022.108266
https://doi.org/10.1109/MSEC.2018.2875369

	Introduction
	Related Work
	Frequency-Based Methods
	Sequence Association-Based Methods
	Graph-Based Methods
	Adversarial Attack Trouble

	Proposed Method
	Challenges
	System Framework
	API Sequence Pre-Processing Method
	API Feature Generation and Enhancement
	API Embedding Layers
	Encoding Layers
	One-Dimensional Channel Attention Module
	TF-IDF API Frequency Enhancement Module

	Downstream Classifier

	Experimental Evaluation
	Testing Dataset
	Experimental Setup
	Evaluation
	Baselines Comparative Evaluation
	Ablation Studies
	Data Cluster Analysis
	Unknown Sample Attack Detection

	Limitations and Future Work
	Additional API Parameter
	Concept Drift Problem
	Malicious Paragraph Localization Issue

	Conclusions
	References

