
Citation: Manolis, G.D.; Dadoulis, G.I.

Passive Control in a Continuous Beam

under a Traveling Heavy Mass:

Dynamic Response and Experimental

Verification. Sensors 2024, 24, 573.

https://doi.org/10.3390/s24020573

Academic Editor: Jiawei Xiang

Received: 26 December 2023

Revised: 15 January 2024

Accepted: 15 January 2024

Published: 16 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Passive Control in a Continuous Beam under a Traveling Heavy
Mass: Dynamic Response and Experimental Verification
George D. Manolis * and Georgios I. Dadoulis

Laboratory for Experimental Strength of Materials and Structures, School of Civil Engineering, Aristotle
University of Thessaloniki, GR-54124 Thessaloniki, Greece; dadoulis@civil.auth.gr
* Correspondence: gdm@civil.auth.gr; Tel.: +30-23-1099-5663

Abstract: The motion of a heavy mass on a bridge span causes vibrations whose magnitude and
frequency content depend on the mechanical properties of the structural system, including the
magnitude of that mass and its speed of traverse. In order to limit vibrations that could potentially
cause damage, a simple passive device configuration, namely the tuned mass damper (TMD), is
introduced and its effect on the beam vibrations analyzed. Specifically, a TMD in the form of a
single-degree-of-freedom (SDOF) unit comprising a mass and a spring is placed on the span to
act as a secondary system for absorbing vibrations from the primary system, i.e., the bridge itself.
A Lagrangian energy balance formulation is used to derive the governing equations of motion,
followed by an analytical solution using the Laplace transform to investigate the transmission of
vibratory energy between primary and secondary systems. Results are given in terms of time histories,
Fourier spectra and spectrograms, where the influence of the TMD in reducing vibratory energy is
demonstrated. The TMD is placed in the region where the beam’s transverse motion is at a maximum,
while its mechanical properties are sub-optimal, in the sense that there is no separate damper present
and minimal damping is provided by the spring element itself. In parallel with the analysis, a series
of experiments involving a simply supported model steel bridge span traversed by a heavy mass
are conducted to first gauge the analytical solution and then to confirm the validity of the proposed
passive scheme.

Keywords: bridges; travelling mass; vibrations; passive control; tuned mass damper; secondary
systems; experimental verification

1. Introduction

Tuned mass damper (TMD) technology has its origins in the early 1900s [1] and is
characterized by mechanical simplicity, cost effectiveness and reliability. The two basic
fields of application are civil engineering for motion control (bridges, towers, tall buildings)
and mechanical engineering for vibration suppression in turbines and various types of
machines. Early studies in optimized TMD design for harmonic motions can be traced
to [2] and random excitations to [3]. In principle, TMDs can completely absorb vibrations
at the selected tuned frequency, while material damping in the primary structure to which
they are attached also plays a significant role in this respect, as it increases the frequency
bandwidth of the response in the vicinity of the tuned frequency [4].

Standard TMD design [5] is basically an SDOF dynamic system comprising a spring
and a damper connected to a small mass. As such, it is viewed as a secondary system
attached to a primary system, i.e., to the structure itself. In terms of analysis, the latter
may be represented as either a multi-degree-of-freedom (MDOF) system or as a continuous
system. In either case, TMDs operate very close to the dominant mode of vibration of the
primary structure, resulting in a substantial reduction in its dynamic responses. However,
this vibration minimization is also dependent on the frequency content of the external
loads, which implies that optimization is required in order for the TMD to operate in the
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most sensitive frequency band. Alternatively, nonlinear TMDs may be designed [6] which
exhibit a variable (i.e., load dependent) natural frequency. A classification [7] of basic TMD
technology distinguishes between (i) composite TMD design, (ii) distributed TMD design,
(iii) MDOF TMD design and (iv) impact dampers in conjunction with a TMD. In terms of
more recent applications, we mention a numerical investigation of the performance of a
TMD in controlling the torsional vortex phenomenon for an aerodynamically streamlined
twin-box girder suspension bridge [8]. The TMD parameters were gauged in terms of
controlling the torsional response of the suspension bridge, and an effective range was
reached and compared with the output provided by a genetic algorithm. Among recent
work on the use of TMDs for vibration suppression, we mention [9], which examined
a suspension bridge under the combined effect of wind and traffic [10], which used the
theory of generalized functions to formulate and solve the equations of motion for a
viscoelastic Bernoulli–Euler beam with rotational joints and multiple supports under a
moving force [11], on the installation of two TMDs in a footbridge for pedestrian use,
and [12], which examined the coupled bridge-moving vehicle system with the possibility
of using the latter component as a TMD.

As previously mentioned, for a discrete primary structure representation, the design
philosophy is based on the dominant mode as derived from a finite element analysis. When
considering a continuous mass distribution (i.e., a waveguide) model for the primary
structure with an attached TMD, a number of modeling issues arise. In this case, the
governing differential equations of motion are obtained using either the Lagrangian or
extended Hamilton’s principle [13]. It is then possible to proceed with an eigenvalue
analysis to separate the modes of the combined system and tune the TMD accordingly.
As far as TMD placement is concerned, most research articles focus on either cantilever
beams or on beams with symmetric boundaries and geometric conditions. Thus, TMDs
are placed at the top of the former category of structures and in the central span of the
latter category, since this is where the dominant first vibration mode will yield maximum
values for the kinematic variables. Although the basic design concept behind a TMD
system is quite simple, its damping and stiffness parameter values are often determined
through optimization [14] by defining a suitable objective function with appropriate design
constraints. For random loads, the variance in response can be selected as the objective
function, while for stationary random loads, the power spectral density (PSD) function
of the structural response can be used [15]. Among the various solution strategies, we
mention gradient-based optimization and global optimization.

In work published over the last thirty years, the focus has been on design objectives,
on the effect of the mass ratio between primary and secondary structures, on different
types of TMD designs and on the introduction of semi-active control mechanisms [7].
Recent developments in TMD technology have focused on refining TMD design beyond
the simple SDOF system such as (i) the attachment of a secondary beam structure; (ii) ball
damper or pendulum types of dampers; (iii) semi-active/active TMD systems; (iv) tuned
liquid column dampers; (v) variable orifice hydraulic actuators; (vi) active variable stiffness
dampers; (vii) electrorheological/magnetorheological fluid dampers; and (ix) magnetorhe-
ological elastomer–tuned vibration absorbers. Also, recently, a 2DOF nonlinear energy
sink was proposed to suppress the vibration of a simply supported beam subjected to
large-amplitude excitation in the vicinity of its fundamental frequency [6]. More specifi-
cally, the governing equation of the combined Bernoulli–Euler beam plus the nonlinear
energy sink system was treated by Galerkin’s method, with the beam displacement written
in terms of the generalized coordinates and the eigenfunctions of the stand-alone beam.
The dimensionless equation of motion, after applying normality conditions along with the
Euler–Lagrange equation, was solved by the complexification-averaging method, which
is an approximate analytical solution for a two eigenmode expansion. This solution was
compared with a numerical solution of the governing ordinary differential equations of
motion using a Runge–Kutta method solver. In terms of results, it was found that at low
excitation amplitudes, the SDOF nonlinear energy sink was more effective than 2DOF
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configuration in terms of resonant peak suppression and energy dissipation, while the
reverse held true as the excitation amplitude increased. Finally, at high values of the non-
linear energy sink parameters, excitations make the system chaotic, but added damping
reduces the unstable band and provides a stable response. Recent work along these lines is
presented in [16], suggesting the possibility of placing electromagnetic energy harvesters
in a multi-story building under random vibrations as a means for converting vibratory
energy into electric current and in [17], proposing energy-regenerative TMDs placed in
structures for power harvesting that could be used for running sensors for structural health
monitoring purposes.

Regarding the vibration control of structures under the influence of moving loads, [18]
recently investigated the tuned mass inerter system (TMIS) as an alternative lightweight
passive control device, which contains a suspended mass, a parallel-connected tuned
spring and an inerter-based subsystem. The study focused on optimizing the TMIS for the
vibration suppression of multi-span beams under moving load series using the Bubnov–
Galerkin integration method. This was carried out in conjunction with modal superposition
using a few pre-specified modes of the combined beam-TMIS system under a moving
load series. Thus, a design strategy was proposed to achieve a targeted performance
by decreasing the moving-load-induced resonant response. The optimization algorithm
used the tuned mass ratio as the objective function, plus the dynamic response amplitude
under different speed parameters as constraint conditions for a coupled single-span, simply
supported beam with the attached TMIS. In sum, the design TMIS was tuned to the
dominant mode of the primary structure in order to be effective.

The purpose of the present work is to investigate the dynamic response of a combined
structural system comprising an SDOF oscillator placed near the center of a simply sup-
ported beam to act as a TMD for controlling vibrations, due to the passage of a heavy point
mass. The key considerations in this SDOF design are (i) a mass that is at least an order
of magnitude less than that of the beam and (ii) a natural frequency that is tuned close to
the dominant frequency of the supporting system. Despite the fact TMDs have been in use
for many decades now in buildings, bridges, pylons, etc., for minimizing the response of
these structures to dynamic loads such as ground motions and wind-induced pressure, the
control of a continuous dynamic system subjected to a heavy moving mass has not been
thoroughly examined. The reason is that a heavy moving mass modifies the dynamic prop-
erties of a beam (primary system) during its passage, thus resulting in a time-dependent
eigenvalue problem. Additional complications arise when an SDOF (secondary system)
is attached to a beam for absorbing vibratory motion. The mathematical description of
this coupled system is best handled by using energy considerations, while a solution is
achieved by introducing generalized coordinates and using the Laplace transform with
respect to time. Numerical results confirm vibratory energy absorption from the primary to
the secondary system, despite the fact that the latter system lacks a dedicated damper and
material damping is provided by the spring element only. Furthermore, these results are
validated against experimental evidence using a simply supported model beam with hooks
at the center span where the SDOF mechanism is attached. This way, it was possible to
measure the beam’s response in the absence and then in the presence of the TMD, as its span
was traversed by a heavy sliding mass. Given the fact that this simple, sub-optimal TMD
helped to minimize the magnitude of vibrations exhibited by their supporting structure,
a future goal for this research effort is to incorporate passive control within a structural
health monitoring (SHM) environment so as to devise better ways to extend the useful
service life of various categories of civil engineering infrastructure.

2. Optimum TMD Design

The performance of TMDs relies on a tuning process [4], in which their material pa-
rameters are optimized for one or several objectives. For this purpose, several formulations
and numerical optimization methods have been developed. However, a given closed-form
formulation may not be suitable for reaching a desired objective, as numerical optimization
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methods must be applied for different systems. For this reason, optimum TMD parameters
such as fundamental period and damping ratio can also be estimated by using machine
learning techniques [19]. Optimum expressions for the frequency fopt and damping ratio
ξopt for TMD design were proposed in [13] for harmonic motions and on the assumption
that the primary structure is modeled as an SDOF system, followed by results derived
in [14] for random vibrations. Furthermore, Ref. [20] examined optimum parameters of
TMD, as gauged by their effectiveness in reducing accelerations and displacements caused
by different earthquake excitations, on both SDOF and MDOF structures containing various
numbers of TMD. Finally, Ref. [21] used an optimization method labeled ‘particle swarm’
to derive a set of TMD optimal values. All these results are reproduced in Table 1 and
were further evaluated in [19], which also presented three new simplified equations for
the optimal TMD frequency and damping ratio that were developed by using curve fitting
of artificial neural network model results. In this last publication, the performance of the
optimum TMD used in ten-story and forty-story frames was numerically evaluated by time
history analyses for a set of twenty-two recorded seismic motions.

Table 1. TMD frequency fopt and damping ratios ξopt for optimal design.

Method fopt=ω/ω1 ξopt=c/2mω

Den Hartog (1947) [13] 1/(1 + µ)
√

3µ/8(1 + µ)
Warburton (1982) [14]

√
1 − µ/2/(1 + µ)

√
µ(1 − µ/4)/4(1 + µ)(1 − µ/ 2)

Sadek et al. (1997) [20]
[
1 − ξ1

√
µ/(1 + µ)

]
/(1 + µ) ξ1/(1 + µ) +

√
µ/(1 + µ)

Leung and Zhang
(2009) [21]

√
1 − µ/2/(1 + µ)

+
(
20.23

√
µ − 37.94µ − 4.945

)√
µξ1

+
(
25.00

√
µ − 4.829

)√
µξ2

1

√
µ(1 − µ/ 4)/4(1 + µ)(1 − µ/2)− 5.302ξ2

1µ

In essence, sufficiently realistic results cannot be obtained through classical calculations
of the most suitable TMD parameters, since many problem variables are at work: (i) the
type and number of TMD(s) used, (ii) the type of primary structure to which the TMD(s)
are attached, (iii) the type and number of excitation(s), and (iv) optimization criteria, which
can either address kinematic response minimization or the minimization of energies in
the combined structural system. For more accurate results, metaheuristic methods have
been employed for the optimization of various types of TMDs that have been developed,
and this includes techniques such as ‘colony optimization’, ‘particle swarm’ optimization,
‘harmony search’ algorithms, genetic algorithms, gravitational algorithms, etc.; see [19] for
a review. Information regarding optimum TMD design can be found in Table 1, where µ
is the mass ratio between the TMD and the primary SDOF structure, which has a natural
frequency ω1 and material damping ratio ξ1, while the optimized frequency, mass and
damping coefficient of the TMD are ω, m and c, respectively. Ref. [22] discusses the problem
of balancing the reduction in the structural response with the amplitude of the TMD stroke,
an issue that invariably leads to semi-active TMD design.

3. Coupled Primary–Secondary System with a Moving Heavy Mass

As shown in Figure 1, a point mass M traverses a simply supported Bernoulli–Euler
beam of length L with speed v, to which an SDOF system acting as a TMD is attached at
location x = L1. As usual, EI, A, ρ are the flexural rigidity, the cross-section area and the
mass density of the beam, while m, k, c are the lumped mass, spring constant and damping
coefficient of the attached TMD. Furthermore, w(x, t) is the transverse displacement of the
beam and u(t) is the displacement of the mass of the TMD.
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Figure 1. Simply supported Bernoulli–Euler beam with an attached SDOF system acting as the TMD 
and a moving point mass traversing the beam’s length. 
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defined for the beam, the TMD and the moving mass; see Appendix A: 𝑟஻ = ൫0,0, 𝛷௜(𝑥)𝑞௜(𝑡)൯, 𝑟 = ൫0,0, 𝛷௜(𝐿ଵ)𝑞௜(𝑡) + 𝑢௥(𝑡)൯, 𝑟ெ = ቀ𝑣𝑡, 0, 𝛷௜(𝑣𝑡)𝑞௜(𝑡) + 𝑟൫𝑥(𝑡)൯ቁ (1)

where 𝑢௥(𝑡) = 𝑢(𝑡) − 𝑤(𝐿ଵ, 𝑡) is the relative displacement of the TMD with respect to the 
beam’s elastic curve, while 𝑟൫𝑥(𝑡)൯  is the roughness of the upper flange of the beam 
across which the point mass moves. 

3.1. Potential Energy of the Coupled Structural System 
The TMD is an SDOF system, and its potential energy about the static equilibrium 
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Figure 1. Simply supported Bernoulli–Euler beam with an attached SDOF system acting as the TMD
and a moving point mass traversing the beam’s length.

In order to identify the generalized coordinates of the coupled system, all displacements
must be written with respect to the equilibrium position of both the beam and TMD; see
Figure 1. By using the first two generalized coordinates qi, we have w(x, t) = ϕi(x)qi(t),
i = 1, 2, where ϕi are the eigenfunctions. The following position vectors are defined for the
beam, the TMD and the moving mass; see Appendix A:

→
r B = (0, 0, ϕi(x)qi(t)),

→
r T = (0, 0, ϕi(L1)qi(t) + ur(t)),

→
r M = (vt, 0, ϕi(vt)qi(t) + r(x(t))) (1)

where ur(t) = u(t)− w(L1, t) is the relative displacement of the TMD with respect to the
beam’s elastic curve, while r(x(t)) is the roughness of the upper flange of the beam across
which the point mass moves.

3.1. Potential Energy of the Coupled Structural System

The TMD is an SDOF system, and its potential energy about the static equilibrium
position is simply UT = (1/2)ku2

r . Regarding the Bernoulli–Euler beam and considering
flexural behavior, the potential energy is

UB =
1
2

∫
Ω

σxxεxx dΩ =
1
2

EI
∫ L

0
(w′′ )2 dx =

1
2

EI
∫ L

0

(
ϕ
′′
i (x)qi(t)

)2 dx =
1
2

k∗ijqiqj (2)

where k*
ij = EI

∫ x=L
x=0 ϕ

′′
i (x)ϕ′′

j (x)dx is the generalized stiffness of the beam and primes (′)
indicate spatial derivatives. Given the orthogonality of the eigenfunctions and the fact
that the second spatial derivative of an eigenfunction is ϕ

′′
i (x) = −κ2

i ϕi(x), where κi is the
wave number, we have k*

ij = EIκ2
i κ2

j
∫ x=L

x=0 ϕi(x)ϕj(x)dx = ω2
i δij, so that finally, the potential

energy of the beam is simply UB = (1/2)ω2
i q2

i , with ωi being the eigenfrequencies.

3.2. Potential Energy of the Moving Mass

The potential energy of the point mass M as it moves along the top surface of the beam
depends on the initial (in) and final ( f i) transverse displacement as UM = Uin − U f i =
0 − Mg{ϕi(vt)qi(t) + r(x, t)}, with g being the acceleration of gravity.

Adding all three components gives the total potential energy of the structural system
as follows:

U(q) = (1/2)ku2
r + (1/2)k∗ijqiqj − Mg{ϕi(vt)qi(t) + r(x(t))} (3)

which depends on the kinematic vector q = (qi, ur), i = 1, 2.
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3.3. Kinetic Energy of the Coupled Structural System

The total time derivative of a material point with position vector
→
r (t, qi, u), i = 1, 2, is

the velocity, i.e.,
→
ν = d

→
r /dt = ∂

→
r /∂t + (∂

→
r /∂qi)

.
qi + (∂

→
r /∂ur)

.
ur (4)

where the overdot (.) indicates a time derivative. Taking into account the position vectors
defined in Equation (1), the velocity of any point on the beam is

→
ν B =

(
0, 0, ϕi(x)

.
qi(t)

)
,

that of the TMD is
→
ν T =

(
0, 0, ϕi(L1)

.
qi(t) +

.
ur(t)

)
and that of the moving mass is

→
ν M =

(
v, 0, ϕ′

i (vt)vqi(t) + ϕi(vt)
.
qi(t) + r′(x(t))v

)
. Note that in deriving the velocities,

use was made of the partial derivative ∂
→
r /∂t. The kinetic energy of a mechanical system

is given by the generic formula T = (1/2)mν2, where

ν2 =
→
ν
→
ν =

(
∂
→
r

∂t

)2

+ 2
∂
→
r

∂t

(
∂
→
r

∂qi

.
qi +

∂
→
r

∂ur

.
ur

)
+

(
∂
→
r

∂qi

.
qi +

∂
→
r

∂ur

.
ur

)2

(5)

Therefore, summing the kinetic energy of the constituent parts gives the total kinetic
energy as

T = (1/2)m∗
ij

.
qi

.
qj + (1/2)ρAL

(
ϕi(L1)

.
qi(t) +

.
ur(t)

)2
+

(1/2)Mv2 + (1/2)M
(
ϕ′

i(vt) v qi(t) + ϕi(vt)
.
qi(t) + r′(x(t)) v

)2 (6)

In the above, the generalized mass is defined as m*
ij = ρA

∫ x=L
x=0 ϕi(x)ϕj(x)dx, which

is simply equal to m*
ij = δij (the Kronecker delta) when taking into account the orthogo-

nality property of the eigenfunctions.

4. Equations of Motion of the Combined Structural System

By substituting the energy terms in Lagrange’s equation, see Equation (A4) in Appendix A,
and keeping in mind that the dependent variables of the problem are q = (q1, q2, ur), we
recover the standard form of the equations of motion where the inertia, damping and restoring
forces in the structural system balance the externally applied loads F as follows:

M(t)
..
q(t) + C(t)

.
q(t) + K(t)q(t) = F(t) (7)

Note that the mass M, damping C and stiffness K matrices are all time-dependent, as
is the forcing function F, and are listed below:

M(t) =

m∗
11 m∗

12 0
m∗

21 m∗
22 0

0 0 1

+

Mϕ1(vt)ϕ1(vt) Mϕ1(vt)ϕ2(vt) 0
Mϕ2(vt)ϕ1(vt) Mϕ2(vt)ϕ2(vt) 0

0 0 0


+

mϕ1(L1)ϕ1(L1) mϕ1(L1)ϕ2(L1) mϕ1(L1)
mϕ2(L1)ϕ1(L1) mϕ2(L1)ϕ2(L1) mϕ2(L1)

ϕ1(L1) ϕ2(L1) 0


C(t) =

c∗11 c∗12 0
c∗21 c∗22 0
0 0 2ωξ

+

2Mvϕ1(vt)ϕ′
1(vt) 2Mvϕ1(vt)ϕ′

2(vt) 0
2Mvϕ2(vt)ϕ′

1(vt) 2Mvϕ2(vt)ϕ′
2(vt) 0

0 0 0


K(t) =

k∗11 k∗12 0
k∗21 k∗22 0
0 0 ω2

+

Mv2ϕ1(vt)ϕ′′
1 (vt) Mv2ϕ1(vt)ϕ′′

2 (vt) 0
Mv2ϕ2(vt)ϕ′′

1 (vt) Mv2ϕ2(vt)ϕ′′
2 (vt) 0

0 0 0


F(t) =


(

Mg − Mv2 r′′ (x(t))
)
ϕ1(vt)(

Mg − Mv2 r′′ (x(t))
)
ϕ2(vt)

0



(8)

We know that the generalized masses, stiffnesses and dampers, respectively, are m*
ij = δij,

k*
ij = ω2

i δij and c*
ij = 2ωiξiρAδij, with ωi being the eigenfrequencies of the beam in the absence
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of both TMD and moving mass, while ξi are the damping coefficients associated with the first
two eigenmodes. Obviously, it is quite simple to add to the above equation more TMD systems.

Free Vibrations

As the point mass moves across the span of the bridge, it is possible to define a critical
velocity as vcr = (π/L)

√
EI/(ρA), past which the maximum transvers displacement will

occur in the free vibration regime. For the simply supported beam, vcr = ω1, meaning
that it coincides with the first eigenfrequency. However, if the moving mass is heavy as
compared to the weight of the beam, the eigenvalue problem becomes time-dependent
during the passage of the mass, which implies that all eigenfrequencies ωi, i = 1, 2, . . . are
no longer constant but time-dependent. Thus, it becomes important to focus on the free
vibrations of the combined beam-TMD structural system. Thus, F = 0 in the equation of
motion, Equation (8), leaving the following terms:

M(t) =

m∗
11 m∗

12 0
m∗

21 m∗
22 0

0 0 1

+

mϕ1(L1)ϕ1(L1) mϕ1(L1)ϕ2(L1) mϕ1(L1)
mϕ2(L1)ϕ1(L1) mϕ2(L1)ϕ2(L1) mϕ2(L1)

ϕ1(L1) ϕ2(L1) 0


C(t) =

c∗11 c∗12 0
c∗21 c∗22 0
0 0 2ωξ


K(t) =

k∗11 k∗12 0
k∗21 k∗22 0
0 0 ω2


F(t) =


(

Mg − Mv2r′′ (x(t))
)
ϕ1(vt)(

Mg − Mv2r′′ (x(t))
)
ϕ2(vt)

0



(9)

The initial conditions are the vibrations imparted on the beam at the instant the moving
load leaves the span of the beam.

5. Solution Strategy Using the Laplace Transform

Since the matrices in the equation of motion are time-dependent, we will employ the
Laplace transform defined for a function of time f (t) as follows [23]:

L{ f (t)} = F(s) =
∫ ∞

0
f (t)exp(−st)dt, L−1{F(s)} =

∫ c+i∞

c−i∞
F(s)exp(st)ds (10)

Note that t s is the Laplace transform parameter and the inversion integral is defined
over the complex plane. The solution strategy is to discretize the time axis as tn = n∆t,
n = 1, 2, 3, . . . , N and transform the matrix equation of motion, Equation (8), in the Laplace
domain sequentially for every time step increment n∆t. Once the problem has been solved,
it is followed by the inverse Laplace transform based on Talbot’s algorithm [24] for returning
values back to the time domain. It is assumed that the time step ∆t is small enough for the
system matrices and external force in Equation (8) to remain constant over a time interval.
Furthermore, the total time of interest for the beam’s motion is tb = L/v = N∆t. The result
is a system of 3 × 3 matrix algebraic equations which are Laplace-transformed, which
makes them parametric in the Laplace transform variable s:(

M(n∆t)s2 + C(n∆t)s + K(n∆t)
)
Q(s) =

s (M(n∆t)q(0)) +
(
M(n∆t)

.
q(0) + C(n∆t)q(0) + F(n∆t)/s

) (11)

We know that the vector of the unknown Laplace transformed kinematic variables is
QT(s) =

⌊
Q1(s) Q2(s) Ur(s)

⌋
, while the initial conditions for the generalized displace-

ments and velocities are qT(0) =
⌊
q1(0) q2(0) ur(0)

⌋
and

.
qT

(0) =
⌊ .
q1(0)

.
q2(0)

.
ur(0)

⌋
,

respectively, and are the final conditions from the immediately previous time interval
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ti−1 = (n − 1)∆t. Also, superscript T stands for the transpose operator. Following the
solution of Equation (11) for Q(s), the inverse Laplace transformation is applied numerically
(see Appendix B) to recover the vector of the kinematic variables in the time domain as q(∆t).
Finally, the procedure is repeated until the entire time axis has been swept. Note that all
computations were carried out in the Python [25] software environment.

6. Numerical Implementation

The methodology developed above is applied to the case of a simply supported HEB
100 steel beam under heavy point mass sliding with constant velocity v over the span length
L. Since this analytical model corresponds to an actual experimental setup [26], all values
reported in Table 2 were also measured in the laboratory for consistency. In what follows,
the dynamic response of the beam with the sliding mass was first computed both in the
absence and then in the presence of a TMD, which is a simple SDOF system comprising
a mass and a spring. Finally, the roughness function r(x) describing the passage of the
moving mass over the beams top flange was measured by a quasi-static passage of the mass
and is a nearly white noise random function of space with a small amplitude, common in
all analyses.

Table 2. Combined primary–secondary system mechanical properties.

The Bernoulli–Euler Beam

ρ(
tn/m3) A(

m2) E
(GPa)

I(
m4) ξ1 ξ2

ρAL
(tn)

L
(m)

7.65 26·10−4 198.5 450·10−8 0.0021 0.0084 0.116 5.83

The moving mass reference properties and the TMD properties

M
(tn)

v
(m/s)

TMD location L1(m)
TMD mass m

(tn)
TMD stiffness k(kN/m)

TMD damping
ξ

0.027 0.33 2.70 0.0278 122.0 0.0075

Analytical Investigation

As will be discussed in conjunction with the experimental measurements, the presence
of the TMD was investigated by computing the acceleration response of the structural
system to the moving mass at three stations, namely at x= L1 = L/2 − 0.212 m = 2.70 m
and at x = 3L/4 = 4.37 m on the span measured from the right end, and again at
x = 2.70 m but on the TMD itself. The computations yielded both time histories and
frequency spectra for the accelerations, which will be shown in the next section along with
the experimental measurements.

It should be noted that the TMD is an SDOF system that was manufactured in the
laboratory and consisted of a metallic spring supporting two metallic discs. The mass
ratio between the SDOF system (secondary system) and the beam (primary system) was
µ = m/ρAL = 0.0278/0.116 = 0.24. Next, the metallic spring had a stiffness k such
that the frequency ratio between the TMD and the beam dominant frequencies was
ω1/ω = 9.80/10.54 = 0.93. This value is close enough to unity, which is the key pa-
rameter in designing a TMD [4]. Note that damping in the TMD is provided by viscous
damping inherent in the metallic spring. This was evaluated by striking the TMD with an
impact hammer that induced a free vibration regime, followed by use of the logarithmic
decrement method to measure the viscous damping ratio ξ; see Figure 2.
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Table 3 compares the optimal TMD mechanical parameter values suggested by [13]
versus those actually used here, where it is observed that in our case, damping is minimal,
leading to a sub-optimal TMD design. The benefit is that it is not necessary to manufacture
and attach a damper to the original SDOF system, i.e., a simple and economic design is used.

Table 3. Optimal versus sub-optimal TMD mechanical properties for a fixed TMD mass m = 27.8 kg.

Den Hartog (1947) [13] Optimal TMD Model The TMD Used Here

fopt(Hz) ξopt kopt ( kN/m) f (Hz) ξ k ( kN/m)

7.90 0.2692 68.53 10.54 0.0075 122.0

7. Experimental Investigation
7.1. Description of the Experiment

The experimental setup is shown in Figure 3, where a 5.83m, HEB 100 steel beam
segment was simply supported by two tripods, with 1 m approaches to the left and
right of the supports. The moving mass could reach up to 50 kg and slid across the
upper beam flange with a maximum speed of up to 50 cm/s through a cable pulled by
an electric motor–gear box configuration. The TMD was a spring-mass setup hanging
vertically at the point of contact with the lower flange 2.70 m from the right support. It was
constrained by four guides with ball bearings to move in the vertical direction only, thus
avoiding any lateral motion. The instrumentation [27] comprised three wireless sensors
(i.e., accelerometers measuring motion in the three principal directions) placed at stations
x = L1 = 2.70 m, x = 3L/4 = 4.37 m, as measured from the right support, with the third
placed directly on the TMD. The sensors transmitted signals to a nearby base receiver,
which in turn was connected to a laptop computer with built-in software for real-time
processing of the incoming signals in both time and frequency domains; see Table 4 for
details. These signals corresponded to the transverse accelerations of the beam at the two
aforementioned stations plus the vertical motion of the TMD mass.

Table 4. Wireless sensor network specifications.

Wireless Triaxial Accelerometer Node
G-Link-200

Wireless Sensor Data Aggregator
WSDA-2000

Measurement range ±8 g Radio frequency
transceiver carrier

License-free
2.405 to 2.480 GHz
with 16 channels

Noise density 25 mg/
√

Hz
Resolution 20 bit

Sampling ratio 128 Hz
Forced vibration
regime tb = L/v 17.67 s

Free vibration regime t f 1.5 s



Sensors 2024, 24, 573 10 of 19

Sensors 2024, 24, 573 10 of 20 
 

 

Table 4. Wireless sensor network specifications. 

Wireless Triaxial Accelerometer Node 
G-Link-200 

Wireless Sensor Data Aggregator 
WSDA-2000 

Measurement range ±8 g Radio frequency 
transceiver carrier 

License-free  
2.405 to 2.480 GHz  
with 16 channels 

Noise density 25 mg √Hz⁄   
Resolution 20 bit  

Sampling ratio 128 Hz  
Forced vibration 
regime 𝑡௕ = 𝐿 𝑣⁄  

17.67 s  

Free vibration regime 𝑡௙ 1.5 s  
 

(a) 

 
(b) 

 
(c) 

Figure 3. Experimental setup showing the (a) simply supported beam; (b) the moving mass with 
the electric motor driving it through a wire, plus the base station at the right end; and (c) the TMD 
with the four metallic guides to ensure vertical motion only. 

7.2. Comparison between Analytical and Experimental Results 
The comparison study was carried out for a number of cases to establish agreement 

between the analytical and the experimental results. Firstly, Figure 4 plots numerically 
obtained accelerations in the left column and experimentally measured ones in the right 
column, both in the absence of the TMD. The scenario considered was the intermediate 
case of a mass 𝑀 = 27 kg sliding with a velocity of 𝑣 = 33 cm/s. Specifically, acceleration 
time histories are plotted horizontally, their power spectral densities are plotted vertically 

Figure 3. Experimental setup showing the (a) simply supported beam; (b) the moving mass with the
electric motor driving it through a wire, plus the base station at the right end; and (c) the TMD with
the four metallic guides to ensure vertical motion only.

7.2. Comparison between Analytical and Experimental Results

The comparison study was carried out for a number of cases to establish agreement
between the analytical and the experimental results. Firstly, Figure 4 plots numerically
obtained accelerations in the left column and experimentally measured ones in the right
column, both in the absence of the TMD. The scenario considered was the intermediate case
of a mass M = 27 kg sliding with a velocity of v = 33 cm/s. Specifically, acceleration time
histories are plotted horizontally, their power spectral densities are plotted vertically and
the central part depicts spectrograms [15], i.e., time–frequency plots of the accelerations. In
our case, spectrograms were derived from the Short Time Fourier Transform (SHFT), which
is a sequence of Fourier transforms of a windowed signal that provides the time-localized
frequency information for cases in which frequency components of a signal vary over time.
More specifically, a Hanning window with a 128 data-point width was used, while two
consecutive windows overlapped 120 data-points.

The time axis ran to 20 s, which covered the transit time of the mass plus a free
vibration regime of about 3 s. Note that power spectral density (PSD) function is an
energy measure of the Fourier transform F( f ) of time function f (t) and at a given fre-
quency point fi, defined as PSD( f i) = F( f i)F( f i)/N, where N is the number of sam-
pling points and the overbar (–) denotes the complex conjugate. The frequency axis went
up to 64 Hz, and the transient accelerations had a maximum amplitude of 0.03 m/s2,
with the same scale used for all graphs. Next, Figure 5 depicts the same information as
Figure 4, but in the presence of the TMD. The good agreement between numerical and
experimental results should be noted, especially when the uncertainties in the experiment
(e.g., the roughness of the upper flange of the beam, the initial acceleration of the sliding
mass, the transition from the guide to the span, etc.) are taken into account.
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Figure 4. Comparison between the (a) numerically obtained and (b) the experimentally mea-
sured acceleration time histories (m/s2), the PSD of the Fourier transforms ((m/s2)2/Hz ) and
the spectrograms (dB/Hz) in the absence of the TMD and for an intermediate moving mass case
of M = 27 kg, v = 33 cm/s. Note: Upper graphs are at location L1 = 2.70 m; bottom graphs are at
location 3L/4 = 4.37 m.

Comparing Figures 4 and 5, the acceleration amplitude is reduced by a small amount
across time when the TMD is attached to the beam close to center span at x = L1. The
power spectral density of the acceleration records shows a split of the first eigenfrequency
of 9.80 Hz into values of around 7 Hz and 14 Hz. Note that the splitting of a beam’s
fundamental frequency because of the presence of a TMD is a phenomenon well established
in the literature [4]. However, this is not true at higher frequencies, e.g., around 39 Hz,
where the second natural frequency of the beam lies, since this region is beyond the
influence of the TMD. All these observations are true for both numerical and experimental
results. Next, an energy metric of the time domain signal is simply the sum of the squares
of the accelerations at each time step, computed here at station L1 = 2.70 m as 8.15 in the
absence and as 7.94 in the presence of the TMD. This particular metric derived from the
experimental measurements clearly shows energy absorption by the TMD, which is further
confirmed at station L1 = 3L/4, where the respective metrics are equal to 7.34 and 5.80.

In addition, Figure 5 shows the computed transient acceleration recorded at the TMD,
plus its PSD when this record is transformed to the frequency domain. Obviously, the TMD
also absorbs vibratory energy, and its acceleration response is comparable in magnitude to that
of the beam. Note that what Figure 5 shows is total accelerations, i.e.,

..
u(t) =

..
ur(t)+

..
w(L/2, t).

As before, the PSD of the TMD clearly shows a peak in the low frequency band where both
the beam’s first natural frequency and the TMD frequency lie, i.e., at around f = 10 Hz. The
smaller peak at around 15 Hz is of minor consequence and represents the influence of the
primary structure (the beam) on the secondary one (the TMD). Similar results were obtained
for various sliding mass and traverse velocity combinations.

In addition, both Figures 4 and 5 plot spectrograms in the combined time–frequency
domains at two beam stations, i.e., at x = L1, x = 3L/4, due to the passage of the traveling
mass. The purpose is to compare computed and experimental results in the absence and
then the presence of the TMD, with a spectrogram given for the vertical acceleration
recorded on the TMD itself. In the first case, the trace of the first two eigenfrequencies of
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the beam is clearly discernable, meaning that their variation over time as the mass moves
across the beam is visible. In the latter case, the presence of the TMD still preserves this
characteristic, although it is not as clear as before. Furthermore, what these spectrograms
show is the split in the fundamental frequency of the combined primary–secondary system
over time when the TMD is present, a feature that is crucial in setting up machine learning
algorithms for identifying the presence of secondary systems.

Sensors 2024, 24, 573 12 of 20 
 

 

 
(a) (b) 

Figure 5. Comparison between the (a) numerically obtained and (b) the experimentally measured 
acceleration time histories (m/sଶ), the PSD of the Fourier transforms, ((m/sଶ)ଶ/Hz) and the spec-
trograms (dB/Hz) in the presence of the TMD and for an intermediate moving mass case of 𝑀 =27 kg, 𝑣 = 33 cm/s. Note: Upper graphs are at location 𝐿ଵ = 2.70 m; middle graphs are at location 3𝐿/4 = 4.37 m; bottom graphs are at the TMD location. Schemes follow the same formatting. 

Comparing Figures 4 and 5, the acceleration amplitude is reduced by a small amount 
across time when the TMD is attached to the beam close to center span at 𝑥 = 𝐿ଵ. The 
power spectral density of the acceleration records shows a split of the first eigenfrequency 
of 9.80 Hz into values of around 7 Hz and 14 Hz. Note that the splitting of a beam’s fun-
damental frequency because of the presence of a TMD is a phenomenon well established 
in the literature [4]. However, this is not true at higher frequencies, e.g., around 39 Hz, 
where the second natural frequency of the beam lies, since this region is beyond the influ-
ence of the TMD. All these observations are true for both numerical and experimental 
results. Next, an energy metric of the time domain signal is simply the sum of the squares 
of the accelerations at each time step, computed here at station 𝐿ଵ = 2.70 m as 8.15 in 
the absence and as 7.94 in the presence of the TMD. This particular metric derived from 
the experimental measurements clearly shows energy absorption by the TMD, which is 

Figure 5. Comparison between the (a) numerically obtained and (b) the experimentally mea-
sured acceleration time histories (m/s2), the PSD of the Fourier transforms, ((m/s2)2/Hz) and
the spectrograms (dB/Hz) in the presence of the TMD and for an intermediate moving mass case
of M = 27 kg, v = 33 cm/s. Note: Upper graphs are at location L1 = 2.70 m; middle graphs are at
location 3L/4 = 4.37 m; bottom graphs are at the TMD location. Schemes follow the same formatting.

7.3. TMD Performance

Two basic sets of results are presented in Figure 6 to elucidate the role of the present
sub-optimal TMD in controlling the beam vibrations due to the passage of a heavy mass, as
compared to a fictitious optimal design [13] that would include a damper in addition to the
mass and spring design. Thus, Figure 6 plots the acceleration time histories and the PSDs
of their Fourier transform at the key TMD location x = L1 near the center of the span for
these two designs. Four cases are examined, namely the original mass value of M = 27 kg
traveling at two velocities, the reference value of v = 33 cm/s and a higher velocity of
v = 50 cm/s, plus a smaller mass of M = 18 kg traveling at both these velocities. At first,
we observe in the transient acceleration plots that the performance of the suboptimal TMD
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is not as effective as that of the optimal TMD, but this difference in performance is not
great, as there are time intervals where the former TMD performs just as well as the latter
one. However, the optimal TMD design becomes more effective towards the end of the
passage of the sliding mass when the free vibration regime sets in.
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for the sub-optimal TMD used in the experiments (black color) versus the optimum TMD as defined
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(b) M = 27 kg, v = 30 cm/s, (c) M = 18 kg, v = 50 cm/s and (d) M = 18 kg, v = 30 cm/s.

What is interesting to note in the PSD spectra is that in the case of the sub-optimal
TMD, the first (original) eigenfrequency has split in two, while for the case of the optimal
TMD (Den Hartog), it has completely disappeared. This implies that the beam’s response in
the presence of the optimal TMD is primarily synthesized from high-frequency components.
Next, the range of the sliding mass magnitude plays a lesser role as compared to its velocity.
More specifically, both TMD designs are more effective at the lower velocity of 30 cm/s
as compared to the higher velocity of 50 cm/s, irrespective of the sliding mass magnitude.
This holds true for both the magnitude of the transient accelerations as well as that of the
PSD spectra. The controlling factor here is that the faster traverse velocity produces higher-
frequency beam vibrations as compared to the lower velocity, while the TMDs are designed to
be effective around the first beam eigenfrequency region.

7.4. Energy Flow in the TMD

Finally, an important parameter to consider is the energy flow over time in the TMD,
which is quantified by the energy measure E(t) given in Figure 7. This energy is dependent
on the force FTMD(t) which develops at the point of attachment between TMD and the
supporting beam, as well as on the beam velocity as the heavy mass traverses the beam:

E(t) =
∫ t

0
FTMD(τ)

.
w(L1, τ)dτ (12)

This contact force in turn is evaluated from the equation of motion of the TMD
as follows:

m
..
ur + c

.
ur + kur = −m

..
w(L1, t) ⇒ FTMD(t) = c

.
ur(t) + kur(t) = −m

..
w(L1, t)− m

..
ur(t) (13)

What is important to observe in Figure 7, which contrasts the present suboptimal
TMD design with a fictitious optimal one, is that both designs absorb similar amounts of
energy as the traveling mass approaches the center of the span. After that, the optimal
TMD design becomes more effective by absorbing more vibratory energy, but this stops in
the free vibration regime past 17.6 s. By this point, however, vibrations at the center span
have started to decrease anyway. Note that the optimal TMD design shows a continuous
energy absorption, while our sub-optimal TMD, which has minimal damping, cannot do
so, and as a result, there is some flow of vibratory energy back to the beam. In terms
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of the sliding mass magnitude and velocity, we observe that the energy transfer in the
suboptimal TMD closely follows that observed in the optimal TMD at the higher velocity
of v = 50 cm/s, and less so at the lower velocity of v = 30 cm/s. This happens irrespective
of the sliding mass magnitude and again demonstrates that the sliding mass velocity is
a more critical parameter as compared to its mass. Finally, since the sub-optimal TMD
absorbs less vibratory energy, it will be less impaired over time when multiple masses have
traveled across the bridge’s span.
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8. Discussion and Conclusions

Tuned mass dampers were first introduced nearly one hundred years ago in structures
and have since been shown to be efficient, reliable and cost-effective systems for vibration
control. The design of TMDs in civil engineering addresses two basic categories of loads,
namely wind-induced pressures and seismically induced ground motions. However, a
large, tuned mass is often required in TMD design to adjust the combined structural system
dynamic characteristics and to reach pre-set performance targets, a process that might
lead to secondary transient effects in the structure. The use of TMDs and other, similar
SDOF or MDOF devices in mechanical engineering serves an additional function that has
to do with energy harvesting. Specifically, the kinetic energy absorbed by such secondary
systems during pronounced vibrations of beams and other structural elements to which
they are attached can theoretically be stored and used for commercial purposes. Often,
these structural elements are excited by external forces of high magnitude such as wind
pressure and as a result operate in the nonlinear range, exhibiting regions of instability.

The novelty in the present work, which focuses on vibration control in bridges, is
the combination of an analytical solution plus its experimental verification regarding the
flexural displacements induced in a bridge due to a heavy mass traveling across its span
when a sub-optimal TMD is attached to a fixed location. The purpose of this simple TMD
that comprises only a mass and a spring is to ameliorate the induced flexural vibrations with
the aim of prolonging the service life of the bridge. Note that the only damping available
in this suboptimal TMD is that provided by the spring element. Next, it is known that
heavy traveling masses modify the dynamic properties of the bridge during the traverse
time, thus resulting in a time-dependent eigenvalue problem. Furthermore, the dynamic
response of the bridge for the case described above depends on the speed of traverse and
on the mass ratio between the traveling mass and the bridge.
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In closing, determining the response of a TMD with pre-set mechanical properties
placed at fixed locations along the span is not a trivial problem to analyze, and the literature
does not give guidelines in the case of continuous dynamic systems supporting heavy
moving mass loads. Thus, the first step in this direction was to analyze the dynamic
response of a simply supported bridge deck modeled as a continuous mass distribution
system (i.e., a waveguide) with a TMD placed about the center of its span to counter the
effects of a heavy traveling mass. Furthermore, it was essential to conduct experiments
to verify that a simple, economical and easy to install TMD was capable of absorbing
vibrations. This was successfully demonstrated by the numerical analysis results, which in
turn were validated by the experimental measurements, all showing good agreement for
the structural configuration presented herein. Finally, there are a few more considerations
that must be addressed in the future such as (i) optimization studies on different TMD
configurations, (ii) application to multiple categories of dynamic loads such as wind
pressure and ground-induced motions, (iii) the use of multiple TMD configurations and
(iv) the consideration of multiple span bridges.
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Appendix A

In order to derive the equations of motion of a coupled primary–secondary system
comprising a simply supported beam with an attached TMD under the influence of a
traveling point mass, recourse is made to Lagrange’s equation [13]. Specifically, starting
with the virtual work for a structural element with mk point masses at position vectors
→
r k, acted upon by external forces

→
Pk plus support reactions

→
Rk as

→
F k =

→
Pk +

→
Rk, we

find that δW = ∑N
k=1 (

→
F k − mk

→..
r k)δ

→
r k = 0. Note that δ is the variation symbol and

overdots (·) indicate time derivatives. In the aforementioned statement, δ
→
r k is the first

variation of position vector
→
r k(qk), which is assumed to be a function of the generalized

coordinates qk(t), k = 1, 2, 3, . . . which are related to the physical coordinates through the
eigenfunctions of the dynamic system. The time interval of interest is [t0,t1], so that the
variation at the two end points is δ

→
r k(t0) = δ

→
r k(t1) = 0; see Figure A1. Following a Taylor

series expansion with respect to the relative position ∆
→
r k =

→
∼
r k −

→
r k between a virtual

position
→
∼
r k and the actual one, we recover δW = Qiδqi, where Qi are the generalized

forces corresponding to the generalized coordinates qi. Next, we define a scalar potential
function U(qi), such that Qi = −∂U/∂qi. Thus, virtual work comprises the conservative
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forces, the inertia forces including the kinetic energy T, plus any non-conservative forces
(subscript NC):

δW = −δU + δWNC + ∑N
k=1

(
− d

dt
(mk

→.
r k δ

→
r k)

)
+ δT = 0 (A1)
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If the above equation is integrated over the time interval [t0,t1], the work by the
individual point masses mk is zero and the result is

t1∫
t0

δWdt =
t1∫

t0

(−δU + δWNC + δT)dt = 0 (A2)

The work performed by the non-conservative forces can be further decomposed to that
performed by the external forces and that due to proportional damping as
δWNC = Qi δqi − ci

.
qi δqi, where ci is the damping coefficient corresponding to the i − th

generalized coordinate. Thus, the virtual work statement is

t1∫
t0

(
δT − δU + Qi δqi − ci

.
qi δqi

)
dt = 0 (A3)

Next, the kinetic energy term T
(
qi,

.
qi
)

is a function of the displacement and veloc-
ity generalized coordinates, while the potential energy is a function of the displacement
generalized coordinate, i.e., U(qi). Thus, the first variation of these two energy terms is
δT = ∂T

∂qi
δqi +

∂T
∂

.
qi

δ
.
qi and δU = ∂T

∂qi
δqi, respectively. Integrating over time and taking into ac-

count the end conditions for the generalized coordinates, i.e., δqi(t0) = δqi(t1) = 0, yields the
virtual work statement in the form of

∫ t1
t0

{
∂T
∂qi

δqi − d
dt

(
∂T
∂

.
qi

)
δqi − ∂U

∂qi
δqi + Qiδqi − ci

.
qiδqi

}
dt = 0. Since δqi ̸= 0 in the previous equation is a common factor for the time interval
(t0, t1), it cancels out, yielding the Lagrange equations as follows:

d
dt

(
∂T
∂

.
qi

)
− ∂T

∂qi
+

∂U
∂qi

+ ci
.
qi = 0 (A4)

Appendix B

The symbols used are the same as those appearing in the text. Furthermore, the
algorithm used is given in [24]; see the following web address: https://mpmath.org/,
accessed on 20 October 2023.

https://mpmath.org/
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Algorithm A1 Evaluation of the generalized coordiantes of the beam-TMD system

Function : TMD
Input : qi = 0,

.
qi = 0,

..
qi = 0, t = 0, tb = L/v, t f = 1.5, dt = 1/128

Output : Y, Time
1. y =

[
qi,

.
qi,

..
qi
]

2. Y.append(y)
3. Time.append(t)
4. while t < tb + t f :
5. t = t + dt
6. if t ≤ tb :
7. Moving_Mass = M
8. else
9. Moving_Mass = 0
10. y = iteration(M(vt), C(vt), K(vt), F(vt), y)
11. Y.append(y)
12. Time.append(t)
13. endwhile

Function : iteration
Input : M(vt), C(vt), K(vt), F(vt), y
Output : y

1. Qi(s) = LaplaceTransform(Cramer(M(vt), C(vt), K(vt), F(vt), y))
2. qi(dt) = InvertLaplace(Qi(s), dt, method= ′talbot′)
3.

.
qi(dt) = InvertLaplace(sQi(s)− qi(0), dt, method= ′talbot′)

4.
..
qi(dt) = InvertLaplace

(
s2Qi(s)− sqi(0)−

.
qi(0), dt, method= ′talbot′

)
5. y =

[
qi,

.
qi,

..
qi
]

6. return y
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