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Abstract: This paper presents a model for generating expressive robot motions based on human
expressive movements. The proposed data-driven approach combines variational autoencoders and
a generative adversarial network framework to extract the essential features of human expressive
motion and generate expressive robot motion accordingly. The primary objective was to transfer
the underlying expressive features from human to robot motion. The input to the model consists of
the robot task defined by the robot’s linear velocities and angular velocities and the expressive data
defined by the movement of a human body part, represented by the acceleration and angular velocity.
The experimental results show that the model can effectively recognize and transfer expressive cues
to the robot, producing new movements that incorporate the expressive qualities derived from the
human input. Furthermore, the generated motions exhibited variability with different human inputs,
highlighting the ability of the model to produce diverse outputs.
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1. Introduction

Bartra [1] asserts that symbolic elements, including speech, social interactions, music,
art, and movement shape human consciousness. This theory extends to interactions with so-
ciety and other living beings [2], suggesting that robotic agents, as potential expressive and
receptive collaborators [3], should also be integrated into this symbolic framework. How-
ever, current human–robot interactions, whether via generated voices, movement, or visual
cues [4–9], are often anthropomorphized [10], leading to challenges due to unsolved prob-
lems in natural language processing [11,12] and the need for the users’ familiarization
with system-specific visual cues [13]. Moreover, these systems still struggle with context
understanding, adaptability, and forethought [14,15]. The ideal generalized agent capable
of formulating contextually appropriate responses remains unrealized [16]. Nonetheless,
the prospect of body movement could enhance these interactions.

In the dance community, body movement is acknowledged for its linguistic proper-
ties [17], from minor gestures [18] to significant expressive movements conveying intent
or state of mind [19]. This expressiveness can be employed in robots to create meaningful
and reliable motion [20–22], leveraging elements such as legibility [23], language knowl-
edge [24], and robust descriptors [25,26]. By so doing, robots can create bonds, enhance
the rapport between users and robots, persuade, and facilitate collaborative tasks [27–29].
Currently, however, the selection of these expressive qualities often relies on user preference
or expert design [20,30], limiting motion variability and affecting the human perception of
the robot’s expression [31].
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In [32], the authors demonstrated the need for an explainable interaction between
embodied agents and humans; furthermore, it was suggested that expressivity could hold
the necessary terms for the robot to communicate its internal state effectively. Ref. [33]
points out that this representation will be required for the realization of sounds and com-
plex interactions with humans. Movement then could be the medium to realize such a
system (this is further visualized in the following dance video from Boston Dynamics:
https://www.youtube.com/watch?v=fn3KWM1kuAw, accessed on 20 November 2023).
As discussed in [34], modeling these human factors can be accomplished using machine-
learning techniques. However, direct human expressivity is often set aside in the literature,
favoring definitions that could effectively be used as design guidelines for specific embod-
ied agents or interactive technologies [35]. This leads to the question of whether or not it
is then possible to rely on human expressivity and expressive movement to communicate
this sense effectively. Moreover, can the robot recognize this intent and replicate the same
expressive behavior to the user? The robot should communicate its internal state and do it
in a manner understandable to humans. This work aims to answer these questions, explor-
ing human expressivity transmission to any robot morphology. In doing so, the approach
will be generalizable to any robot and make it possible to ascertain whether the expres-
sive behavior contains the necessary qualities. By addressing this challenge, it is possible
to enhance the human–robot interaction and open scenarios where human users could
effectively modify and understand robot behavior by demonstrating their expressive intent.

Despite the availability of expressive movement descriptors, a systematic and general-
ized approach for generating expressive movements across various robotics embodiments
and applications is required. A method that does not hinge on expert design or pre-selected
qualities would increase the adaptability and versatility of robots, thereby enhancing
user experience.

2. Related Works
2.1. Expressive Qualifiers

Expressive body movements are defined by low- and high-level descriptors [36].
Low-level descriptors focus on kinematics or dynamic quantities such as velocity and
acceleration, whereas high-level descriptors use low-level features to describe their per-
ceptual or semantic evaluation optimally. Notable high-level systems include Pelachaud’s
qualifiers [37], Wallbot’s descriptors [38], and the Laban Movement Analysis (LMA) sys-
tem, which is commonly used for dance performance evaluation [39]. The LMA system
explores the interaction between effort, space, body, and shape, serving as a link between
movement and language [40]. It focuses on how the body moves (body and space), its
form during motion (shape), and the qualitative aspects of dynamics, energy, and expres-
siveness (effort). Because it quantifies expressive intent, the Effort component of LMA has
been widely used in animation and robotics [41], and is utilized in this work to describe
movement expressiveness.

Movements are often associated with emotions, and numerous psychological descrip-
tors have been used to categorize body movement [42]. Scales like Pleasure–Arousal–
Dominance (PAD) and Valence–Arousal–Dominance(VAD) have been used in animation
and robotics [24,43,44]. However, manual selection can introduce bias [45]. While motion
and behavioral qualifiers can improve user engagement with animated counterparts [46,47],
no unified system effectively combines effective and expressive qualities.

2.2. Feature Learning

The idea of feature extraction and exploitation has seen widespread use and advance-
ment in classifying time series across diverse domains [48–50]. These techniques have also
been applied in image processing and natural language processing to extract meaning
and establish feature connections [51,52]. Such methods have been repurposed for cross-
domain applications, like the co-attention mechanism that combines image and sentence
representations as feature vectors to decipher their relationships [53]. These mechanisms

https://www.youtube.com/watch?v=fn3KWM1kuAw
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can analyze and combine latent encodings to create new style variations, as seen in mu-
sic performances [54]. The results demonstrate that these networks can reveal a task’s
underlying qualities, context, meaning, and style.

When applied to motion, the formation and generation of movement can be conducted
directly in the feature or latent space, where the representation contains information about
the task and any anomalies or variations [55]. Studies have shown that multi-modal signals
can be similarly represented by leveraging these sub-spaces [56]. The resultant latent
manifolds and topologies can be manipulated to generalize to new examples [57].

2.3. Style Transfer and Expressive Movement Generation

Previous research focused on style transfer using pose generation systems, aiming to
generate human-like poses from human input, albeit with limitations in creating highly
varied and realistic poses [58–60]. To address this, Generative Adversarial Networks (GAN),
attention mechanisms, and transformers have been introduced, which, while improving
pose generation performance, are usually confined to specific morphologies, compromising
their generalizability [61–63].

Research suggests that a robot’s movement features can be adaptable, with human
input specifying the guiding features of the robot’s motion, serving as a foundation for a
divide-and-conquer strategy to learn user-preferred paths [64]. A system built on these fea-
tures assists the robot’s pose generation system, showing that human motion can influence
the basis functions to align with the user’s task preferences.

Although it has been shown that expressive characteristics can be derived from human
movement and integrated into a robot arm’s control loop, the generated motions often lack
legibility and variability [65]. In addition, much of the essence of higher-order expressive
descriptors and affective qualities is lost or unmeasured. Although re-targeting can be
used to generate expressive motion, it often faces cross-morphology implementation is-
sues [66–68]. Burton emphasized that “imitation does not penetrate the hidden recesses of
inner human effort” [40]. However, modulating motion through expert descriptors and ex-
ploiting kinematic redundancy can feasibly portray emotional characterizations, provided
the motion is within the robot’s limits and the interaction context is suitable [69]. Therefore,
effective expressive generation should consider both the user’s expressive intents and the
task or capabilities of the robot.

3. Contribution

We propose a novel method for extracting expressive qualities from human move-
ments and transferring them to different robotic structures regardless of their form. This
approach, which uses a blend of supervised and unsupervised learning tasks, enables ro-
bust feature extraction and reliable transfer of expressiveness without depending on expert
descriptors. It automatically identifies the essential elements of motion and integrates them
into the robot’s movement. This method generates the robot’s trajectory; in this regard, it is
controller-independent. The generated motion can be used with any control methodology,
and the generated expressive motion can be integrated as an addition to any task-specific
constraints that might be required. These constraints may include legibility, predictability,
or any other qualities that might be required according to each robot task. The overarching
goal of our approach is to generate an expressive robot movement that can understand
and integrate the expressive qualities of human movement inputs, since any embodied
behavior can help transmit these essential cues [33].

Our method can understand the expressive qualities of human movement and exploit
them to generate a new movement for the robot. Unlike previous approaches where direct
manipulation of the robot’s trajectory, control, and motion qualities, e.g., acceleration,
velocity, and position, are the essence of the expressive definition [33,41,70–72], our method
extracts the underlying qualities from the human, and then integrates them into the robot
task, generating a new movement for the robot. This allows for a direct interaction between
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user and robot, and removes the need for expert design morphology-dependent constraints
and the constant reprogramming seen in previous methods.

The method was tested on various robot simulations and real-world robots, includ-
ing a double pendulum, mobile base, and 5 and 7 degrees of freedom (DoF) robot arms.
The results showed that the generated movements mirrored human expressive feature distri-
butions, indicating a successful expressive behavior transfer. Real-world robot experiments
were verified by two Laban experts, confirming the presence of human expressiveness in
the robot motions. Specifically, the expressive qualities of the double pendulum aligned
with human input, and the 5DoF robot arm and mobile base showed evident changes in
the Laban effort qualities.

4. Materials and Methods
4.1. Method Overview

This study aimed to integrate human expressive qualities into robot motion using
neural networks for feature extraction. The extracted features independently represent the
human expressive movement and robot task. Manipulating these features allows for the
creation of new robot movements with both expressive features and task-specific elements.
The overall architecture of the approach is shown in Figure 1.

Figure 1. Overview of the proposed framework. Light blue highlights the components related to the
robot’s task, xR. Pink represents everything connected to human movement, xH. Additionally to
xH, there is another input from the human: the neutral movement, which is defined as xNH. Two
blocks are shown in dotted lines: one was used during the training (blue) and the other during the
inference stage (turquoise). The blocks that compose the framework’s generator are feature extraction
(dark blue) and feature combination (red). The latent space, i.e., the Variational Autoencoder (VAE)
encoder output, of the neutral motion is represented by zNH. Simultaneously, we represent the
human expressive movement latent representation as zH, and zHS corresponds to the latent features
obtained by subtracting the neutral latent representation from the expressive latent representation. zR

represents the latent space of the robot task, and x̂R is the output of the generator. The new expressive
robot motion has an expressive latent space denoted by ˆzHS, which was obtained by passing x̂R

through the human’s VAE encoder. Additionally, the parameter λ acts as an expressive gain, which
can be tuned to increase or decrease the expressive content from the generated motion as required.

The method is divided into two parts: feature extraction and combination. Feature
extraction condenses movement information into latent spaces using two Variational
Autoencoders (VAE) [73]: one for robot tasks, represented as the linear velocities and
angular velocities of an end-effector or body part of the robot, and the other for human
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expressive motion, derived from the acceleration and angular velocity, which were used
due to the descriptive qualities of these movements [74]. The linear velocities and angular
velocities of the robot provide a base representation of a robot task without requiring
specific morphological knowledge. For humans, acceleration and angular velocity were
chosen for their movement description.

Feature combination seeks to create a new representation of the human and robot
motion features. These features are combined using independent self-attention mecha-
nisms [51] to determine the significance of the input parts. Their outputs are additively
merged (as in [54]) and processed using another self-attention layer. The decoder then
reconstructs the motion as the final output of the generator.

4.2. Laban Effort Qualities

Throughout this work, we use the Laban Effort analysis as our base for describing and
qualifying expressivity, which is why it is necessary to understand it before applying it in
our method.‘Effort’ analysis was developed by Rudolf Laban, who investigated the dynamic
structure of movement, and the expressive quality of dance [75]. The Effort includes four
factors: Time, Space, Weight, and Flow. Each factor has different intensities represented
in polarity; ‘sudden vs. sustain’ in Time, ‘direct vs. indirect’ in Space, ‘strong vs. light’
in Weight, and ‘bound and free’ in Flow. According to [75], each factor is described as
follows: The Time factor is not about analyzing whether the movement is fast or slow.
‘Sudden’ in Time refers to the movement that indicates a willingness to accelerate and
to condense, movement in a hurry or a reaction of surprise, while ‘sustain’ indicates a
willingness to extend the time. ‘Direct’ in the Space factor precisely addresses unidirectional
orientation or focus in one direction, while ‘indirect’ indicates movement in multiple
directions. ‘Strong’ in Weight means that the movement goes or resists gravity, while
‘light’ refers to constant movement adjusting to gravity or diminishing the gravity effect.
Flow refers to the precision and control of movement. ‘Bound’ in Flow means that the
movement is controlled, conscientious, and retrained, while ‘free’ refers to the movement
being exuberant and difficult to interrupt. These qualities can be described numerically
following the descriptions proposed in [36,76]. Furthermore, this methodology has been
applied to construct, evaluate, and design expressive and legible motions in robots with
diverse morphologies [25,33,41,70].

4.3. Feature Extraction for Movement Representation in Sub-Spaces

Latent data representation is crucial for the generator. To this end, independent VAEs
extract essential features from the input and reconstruct the input x as x̂ = f (x). These
VAEs encode high-dimensional data into a lower-dimensional space and then decode them
back. Then, they are trained to maximize the evidence lower bound (ELBO). This maxi-
mization helps capture the intrinsic structure of the data, assuming a normal underlying
latent distribution.

Each feature vector z construction involves a sequence of convolutional and Long
Short-Term Memory (LSTM) layers. Different kernel sizes are used in each convolution
to obtain the variations present in the data, with the first kernel capturing long-term
dependencies and the subsequent kernels shorter dependencies. LSTMs encode the final
feature sequence, resulting in a lower-dimensional latent space. This general structure is
utilized in both VAEs for robot and human movement.

The human-motion VAE was designed to capture expressive human movement quali-
ties, setting it apart from the robot VAE. It uses encoder features (zH) to predict the Laban
Effort qualities such as Flow, Space, Weight, and Time, which were numerically quantified
as in [76]. The predictions were used in a regression task via a fully connected feed-forward
neural network. Secondary tasks in optimization, as seen in [77], provided stability, reg-
ularization, and ensure feature alignment with expressiveness extraction. The final loss
function is defined as follows:
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L = Eqϕ(zH |xH)[log pθ(xH|zH)]− DKL(qϕ(zH|xH)||p(zH)) + β
N

∑
i=1

(xHLQi − x̂HLQi)
2 (1)

ELBO loss maximization involves the regular variational loss with xH as the human
movement input and zH as its latent representation. The term DKL represents the Kullback–
Leibler (KL) divergence between the estimated latent distribution and the latent prior, β is a
scalar to regularize the effect of the Mean Squared Error (MSE) term coming from the Laban
qualities, qϕ represents the encoder of the VAE (approximate posterior) with its parameters,
while pθ is the decoder, and p(zH) is the latent space prior distribution. The primary goal
of the first term is to reconstruct the data, whereas the KL divergence compels the model to
remain in proximity to a predetermined prior. The Laban qualities loss offers regularization
and forces the model to learn the most relevant features of the latent space that relate to the
expressive components of the movement. This last term of the loss compares, through the
MSE, the human movement Laban qualities (xHLQ) to the network’s output (x̂HLQ) for N
samples. The robot VAE uses the same loss definition but without the Laban qualities term.

4.4. Adversarial Generation Implementation

In this work, we propose using an adversarial scheme to generate expressive robot
motions that considers the expressive inputs from the human movement. It is shown that
through this method, it is possible to learn speech and movement user-specific styles and
generate new animations that reflect these features [58]. Improving upon the previous work,
we aimed to expand this methodology to generate expressive robot motions that reflect user-
specific expressive qualities. The adversarial method focuses on the interaction between
the discriminator and generator networks. The general loss of the GAN methodology can
be formulated as follows:

min
G

max
D

Ex[log D(x)] +Ez[1 − log D(G(z))] (2)

Our approach partitions the job of sub-space representation and generation into
two different parts. The latent representation is obtained through the VAEs, while the
generation is learned through the GAN methodology. To this end, the robots’ and humans’
VAE encoders are trained separately from the general GAN framework. These VAEs are
trained following the definition presented in Section 4.3. When the training for these
two models is complete, they are coupled with the block from feature combination (see
Figure 1). At this stage, VAE models remain static, allowing the GAN training to take place,
focusing on the generation using pre-trained input representations, and ensuring stability
by splitting tasks into extraction and generation. At inference time, the complete model,
composed of feature extraction and feature combination (see Figure 1) is used to generate
the new robot motion.

The goal of the GAN method is to minimize the generator loss while increasing the
discriminator’s ability to distinguish between the real data and the generator’s output.
The task of the discriminator is to identify the presence of the expressive qualities in the
generated output; its loss function is defined in Equation (3). Here, fHVAE refers to the
human VAE encoder, fRVAE refers to the robot encoder, and G and D refer to the generator
and discriminator, respectively. The generator, G, will be composed of the feature extraction
and feature combination blocks; refer to Figure 1. xH is the input with expressive content
from the human movement, xNH is the neutral human motion, and xR is the robot input.
zH is then derived through zH = fHVAE(xH), zNH is derived through zNH = fHVAE(xNH),
and zR is derived through zR = fRVAE(xR). The objective of the generator is to produce
expressive robot motions. The generator loss function is framed in Equation (4), improving
the formulation presented in [58]. This generator loss will preserve the robot’s task while
enforcing expressive output diversification. The terms α, γ, ζ, and ρ denote regularization
scalars that will balance the effect of each loss term; during training, the values used were
2, 100, 10, and 15, respectively.
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LD = EzH [log D(zH)] +ExH ,xNH ,xR [1 − log D( fHVAE(G(xH, xNH, xR)))] (3)

LG = α · LMSE + γ · Lstyle + ζ · LKD + ρ · −E xH , xNH , xR[log D( fHVAE(G(xH, xNH, xR)))] (4)

The MSE loss, defined in Equation (5), compares the original robot input, xR, to the
generated output, x̂R, ensuring the integrity of the primary task. To preserve the expressive-
ness and encourage input variability, a diversity regularization technique was applied [78],
as shown by the style loss in Equation (6). This method amplifies the differences in human
expressive representations. Each iteration employs two distinct expressive human samples:
zH1 and zH2 . Both zH1 and xNH1 are the latent representation through fHVAE of the inputs
xH and zNH, while zH2 and xNH2 are the latent representations through fHVAE of two ran-
dom samples of the human expressive and neutral motions. These random inputs should
still belong to the same user as the one who realizes zH1 and xNH1 .

The Huber loss definition, Lδ, can be seen in Equation (7). This loss function compares
two inputs, y and ŷ. It follows a quadratic behavior for smaller input differences, and a
linear trend for larger deviations, where δ is a threshold value to define the behavior of the
loss; this parameter is used as 1.0. The KL divergence, referenced in Equation (8), is used
between the latent distribution of human expressivity, P(zH), and the generated robot’s
motion latent representation, Q(ẑH), where ẑH is derived through ẑH = fHVAE(x̂R). As the
VAE components remain unchanged during training, this KL term helps optimize the atten-
tion mechanisms and generation block to align with the two latent expressive distributions.

The discriminator network, D, evaluates the generator’s output, G(xH, xNH, xR), for its
expressivity compared to the human expressive motion input. The objective is to fool the
discriminator through the generator output. The closer the generated robot motion expres-
sive qualities are to the human’s input, the more likely the discriminator will predict these
two inputs to be equally valid. To represent both the robot’s generated motion and the human
expressive in a common space that the discriminator can use to evaluate their expressive
intent, it was decided to make use of the human VAE encoder (see Figure 1), fHVAE. While
this encoder was not optimized for robot motions, it was capable of recognizing the expressive
qualities present in the motion. The result latent spaces, zH, for the human expressive input
and fHVAE(G(xH, xNH, xR)) for the generated motions, provide the inputs to the discriminator,
guiding the optimization of the objective function presented in (3).

LMSE =
N

∑
i=1

(xRi − x̂Ri)
2 (5)

Lstyle = −E
[

Lδ(G(xR, xNH1 , xH1), G(xR, xNH2 , xH2))

||zH1 − zH2 ||

]
(6)

Lδ =

{ 1
2 (y − ŷ)2 i f |(y − ŷ)| < δ

δ((y − ŷ)− 1
2 δ) otherwise

(7)

LKD = P(zH)||Q(ẑH) (8)

4.5. Neural Network Architecture Specifications

Human and robot motion data were restructured into 60-sample windows. As input
for the architecture shown in Figure 1, each VAE encoder accepts a 60 × 6 time series signal.
All inputs are processed to fit this input shape. The initial layer used nine 7 × 7 filters with
rectification and batch normalization. The subsequent layer utilized 12 5 × 5 filters, also
with rectification and normalization. Three LSTM layers of 25 units each were applied,
followed by two fully connected linear output layers. The decoder is mirror-like to the
encoder, with the convolutions replaced by deconvolutions and an additional linear output
layer. Attention mechanisms utilize multi-head attention with six heads and an embedded



Sensors 2024, 24, 569 8 of 19

dimension of 30. The twist decoding block is similar to the VAE decoder. The discriminator
features three successive fully connected layers with sizes of 500, 500, and 1.

4.6. Training Procedure

Two datasets were employed in this study: an expressive human motion dataset and a
robot motion dataset. The human dataset from [79] focuses on the walking patterns of four
emotions. This dataset is made out of walking motions of four different emotions (neutral,
angry, happy, and sad) for four participants. Each participant has their own neutral motion
representation and emotive motion. Only the acceleration and angular velocity of the wrists
were used. The robot dataset combines trajectories from two established datasets [80,81]
and a custom dataset using a 7DoF robot arm for tasks such as pick-and-place. The human
dataset contains 2900 samples, and the robot dataset contains 11,600 samples, with each
sample being a 60 × 6 signal.

The human dataset provided expressive motions, whereas the robot dataset con-
tributed diverse robot task examples. The model’s goal was to merge human expressive-
ness with robot tasks. The generator took three inputs (see Figure 1): one robot and two
human inputs. Any human motion included a neutral state and an expressive motion.
The neutral feature representation was subtracted from the current expressive motion latent
representation to distinguish the expressivity. The neutral and expressive motion for the
human was a one-to-one correspondence given to each user, meaning that at training and
inference, both motions were related to the same user. The robot’s motion was randomly
selected regarding the human since any robot’s movement could be modified according
to the human’s expressive input. This random pairing was enforced during the GAN
training by selecting a human expressive and neutral motion corresponding to the user
and a random robot movement. The robot motions, the human neutral, and expressive
movements were utilized both at the training and inference stages.

Both GAN and VAE training used the AdamW [82] optimizer with a variable learning
rate decreasing by a factor of 10 whenever the learning stagnated. The initial learning rate
was set to 0.001. The GAN model underwent 100 epochs, whereas the VAEs underwent
200 epochs, with the GAN having a 15-epoch warm-up period before adding the diversity
regularization term (6). All the implementation was performed in Python using the Pytorch
library [83].

5. Results
5.1. Expressive and Affective Evaluation

Using an approach similar to that in [84], the method was assessed by comparing the
robot, human, and network output datasets using Laban Effort Qualities (LEQ). Kernel
Density Estimation (KDE) offers insights into the LEQ distribution, enabling distance and
similarity evaluations across datasets. The generated dataset integrated human data with
random robot inputs to explore the robot’s response to human expressiveness. A key
variable was the network’s gain, λ, which modulates human expressiveness. A high λ
enhances expressivity, whereas a low value prioritizes the robot task.

To the best of our knowledge, this is the first work to address expressive transmission
in general terms. Previous works [9,33,41,70–72] relied on expert descriptors or interactive
interfaces to enact expressive and emotive behavior. This is why our experimental setup
focuses on analyzing the effectiveness of transmitting human expressivity to the robot.
No current benchmark exists for effective expressive transmission. The current methods
that can be used are the numerical analysis of the generative capabilities of the method
to align to the LEQ and the use of Laban experts to asses the expressivity transmission.
Furthermore, they do not address the problem of dealing with multiple robot embodiments.

Figure 2A demonstrates that the KDE for the generated data fell between the human
and robot KDEs for the LEQ Space quality at λ values of 1, 50, and 100. This indicates a
shift in the robot’s mean distribution towards the human’s distribution, infusing human
expressivity into robot actions. An increase in λ brought the generated output KDE close
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to the human KDE. The Kolmogorov–Smirnov test confirmed this by assessing whether
samples from different KDEs originated from the same distribution. Under an alternate
hypothesis—samples being ‘greater’ for humans and ‘less’ for robots—a p-value under 0.05
supports the alternate across all KDEs. This indicates that human expressivity influenced
the robot dataset, nudging the generated KDE closer to the human mean.

Figure 2. Network output distribution and representation analysis. (A) Kernel density of the Space
Laban Effort quality for human (dark purple), robot (purple), and generated outputs at λ = 1 (light
blue), λ = 50 (orange), λ = 100 (mint green). Increasing λ makes the generated dataset more like
the human, retaining robot features. (B) t-SNE plots of human data and network outputs at varying
λ. Emotion labels: sad (blue), angry (green), and happy (yellow). With a rising λ, the sad emotion
clustering becomes clearer in the generated output.

The effect of varying λ values on KDE similarities was studied using the Jensen–
Shannon distance (JSD) [85]. Smaller JSD values indicate a higher similarity. Figure 3A
shows that increasing λ narrowed the distance between the KDEs of the generated and
human dataset LEQ qualities, particularly in Time and Space. The distance between the
Weight feature remained inconsistent, whereas the Flow distance plateaued after λ > 10.
In contrast, Figure 3B shows that the JSD between the robot and the generated KDEs
increased for Time and Space but reduces for Weight. The flow feature remained at 0.83,
emphasizing the trade-off between robot task behavior and human expressiveness with
varying λ values.

The λ expressive trade-off impact on robot tasks was evident when assessing the
alignment between the generated output and the input robot motion. Figure 3C depicts this
by using cosine similarity and mean square error (Figure 3D) across λ values from 0 to 200.
With increasing λ, the cosine similarity decreased, affecting the Y and Z linear velocities
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the least. The mean square error revealed task alterations, notably for λ between 1 and
50. The trend softened for λ > 100; expressiveness remained a priority over the robot’s
initial task.

Figure 3. Similarity analysis. (A) Jensen–Shannon distance of Laban Effort qualities between gener-
ated and human datasets. As λ increases, the Time and Space qualities converge. (B) Jensen–Shannon
distance for Laban Effort qualities between generated and robot datasets. Time and Space drift apart
with increasing λ, while Flow remains stable and Weight decreases. (C) Cosine similarity between
network output and robot motion; higher λ values diminish similarity. (D) The mean squared error
between the network output and robot motion; increasing λ amplifies discrepancies.

To gain insights into the nuances of the affective human movements dataset, the di-
mensionality reduction algorithm TSNE [86] was employed. This dataset encompasses
walking motions representing four emotions: sad, happy, anger, and neutral. Neutral was
omitted from the analysis, as it was viewed as an extra input to the model. In the TSNE
plot of human data (Figure 2B), sad movements clustered distinctly, whereas angry and
happy emotions overlapped. This pattern persisted post-VAE training. It was hypothesized
that the generated linear velocities and angular velocities of the robot would display a
similar pattern when processed by the human VAE encoder, emphasizing affective qualities.
As shown in Figure 2B, varying λ values altered the TSNE representation. With λ = 1,
emotions blended, but increasing λ separated the sad cluster from the angry and happy
clusters, highlighting λ’s role in affective nuances. Consequently, the generated twist
output reflected the inherent characteristics of the raw affective human movement dataset
in latent space.

5.2. Simulation

The method’s adaptability was tested using a series of simulation experiments on
multiple robotic platforms, with a gain λ ranging from 1 to 100. The test platforms are
illustrated in Figure 4. The baseline trajectories were a continuous swing for the double
pendulum, a pick-and-place task for the 7DoF robot arm, and a spatial circle for the mobile
robot. Integrating the network output into movements led to discernible changes at varying
λ values. All robots were simulated in Mujoco [87] and Gazebo [88], using ROS 2 [89]
and the Python Robotics Toolbox [90] for controlling the robot and communicating with
the simulator.
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Figure 4. Effect of λ values in generated trajectories. Trajectories for λ = 1 (light blue), λ = 50
(orange), and λ = 100 (mint green) on different robots; base task in purple. (A) Double pendulum
shows no λ variation. (B) Robot arm modifies the task at λ = 1 and loses it as λ rises. (C) Mobile
base alters task at λ = 1 and deviates more with higher λ.

All trajectories designed for the robot reflect the usual tasks the robot might perform
in a real scenario. For example, the pick-and-place task for the 7DoF robot arm is a common
objective in industrial settings. However, the focus was not to prioritize the task itself, since
the objective is to transmit human expressivity to robots. The idea behind having this task
was to have a common scenario and understand how expressivity might be applied in
this case.

For the double pendulum (Figure 4A) at λ values of 1, 50, and 100, there was more
elbow joint activity, spanning a broader task space, yet the main swing remained. Interest-
ingly, this setup displayed minor variations owing to λ, with changes mostly in amplitude
and displacement.

In the case of the motion of the robot arm (Figure 4B), at λ = 1, its trajectory resembled
the initial motion but ended differently. At λ = 50 and λ = 100, the arm descended and
remained at distinct end positions.

The mobile base (Figure 4C) shared similarities with the robot arm. While the task
was consistent at λ = 1, it changed for higher values. The motions at λ values of 50
and 100 resembled each other, which is consistent with the JSD in Figure 3A, indicating a
minimal change for λ > 50.

Using higher λ values emphasized the expressive trade-off, aiding the evaluation of
the effects of all emotion labels from the human motion expressive dataset. This reveals
how the network output may represent affective qualities.

Figure 5 shows the outcomes for the three simulated robots—double pendulum,
robot arm, and mobile base—across emotions: anger, happiness, and sadness. The input
emotions were varied by changing the human input movement with the corresponding
emotion the actor performs. All trajectories used λ = 100, given the stabilization of the JSD
between human features and the generated output. Unlike the prior consistent behavior of
the double pendulum in Figure 4A, Figure 5A shows the emotional states that distinctly
impacted its movements. Although it maintained a swinging motion, their positions
and the covered task space differed notably, with evident separations in outputs across
emotions. This distinction persisted for the robot arm (Figure 5B).

For the robot arm, each emotional output resembled the others regarding task per-
formance. The pick-and-place task disappeared, and the end-effector remained at the
ground. However, the paths for reaching these endpoints differed. This motion, even at
λ = 100 with the latent space of Figure 2B, shows that emotions like sadness could still
be differentiated from happiness and anger, as long as the data points were not closely
situated in the latent space for all emotional states.

Regarding the mobile base (Figure 5C), sadness contrasted with happiness and anger,
utilizing more task space to the left. This result mirrors the anticipated latent patterns
shown in Figure 2B for λ = 100. Happiness and anger favored a semi-circular path,
encompassing a wider task space at the bottom of the surface; remaining intertwined.
The findings highlight the method’s ability to craft varied motions based on the affective
nuances of the data.
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Figure 5. Effect of emotion labels in generated trajectories. For each emotion: sad (blue), angry (green),
and happy (yellow), from the human dataset, movements were generated across morphologies,
with base tasks in purple. (A) Double pendulum: varied trajectories by emotion. (B) Robot arm:
similar paths, but different end positions. (C) Mobile base: distinct paths for each emotion, covering
more task space.

5.3. Real World Implementation

After the simulation, the method was tested in real-world scenarios using λ values
of 1 and 100, covering all the emotion labels from the human dataset. These extremes
were chosen based on prior analyses: λ = 1 retained most task characteristics, while
expressive effects plateaued after λ = 100. The goal was to evaluate expressive traits in
robot motions. Laban experts annotated the movements using the LEQ, comparing human
and robot motions to assess the difference and verify the human features influencing the
robot’s trajectory.

Two platforms—a mobile base and a 5DoF robot arm—were captured in video per-
forming tasks with human-influenced expressiveness. A total of 13 unique 30 s videos were
recorded for each, including the basic task and versions altered by two λ values and three
emotional states. Figure 6 shows the two experimental setups.

Figure 6. Experimental setup. Experimental setup for (A) the mobile base and (B) 5DoF robot arm.

The robot arm traced a square in the Y-Z plane, keeping its X-axis position, while
the mobile base drew a circle. These reference tasks helped us to highlight the effects
of expressiveness. Similar to the simulation stage, the tasks were based on common



Sensors 2024, 24, 569 13 of 19

objectives the robots might faced in the real world. However, the objective of this real-
world experiment was to verify the effective transmission of the human expressive qualities
to the robot embodiment, and observe whether expressive movements were generated in a
real world setting. The adherence to the task or its significance were not relevant for the
study with the Laban experts.

After obtaining the video recordings, two Laban experts reviewed them. They anno-
tated the robot’s movements according to the Laban Effort qualities: Time, Flow, Weight,
and Space. Each quality has opposing descriptors that can characterize a movement. Given
the movement length, the experts evaluated them as a choreography. The video was di-
vided into individual robot movements, each of which were assessed separately. The most
frequent descriptor for each quality represents the movement. The Laban Effort qualities
descriptors are: ‘Bound’/‘Free’ for Flow, ‘Direct’/‘Indirect’ for Space, ‘Sudden’/‘Sustained’
for Time, and ‘Strong’/‘Light’ for Weight. Although the Laban analysis follows set proto-
cols, it is subjective. The interplay between the qualities is explained in [75]. An example of
the videos analyzed by the Laban experts can be seen in Video S1. On it, the recordings
for the human, double pendulum, mobile base, and robot arm can be visualized for a
specific emotion.

The input human movements have qualities labeled as Free, Indirect, Sudden, and
Light, representing Flow, Space, Time, and Weight. This set an expressive benchmark for
the robot. Although emotional variations exist in human movements, these Laban qualities
remain consistent. The qualities change to Free, Direct, Sustained, and Light in the neutral
state. These qualities were derived from a Laban expert’s annotation of four videos of
human walking motions: one for each emotion and one for the neutral state. The experts
focused on the annotation of the arm movement.

An initial double pendulum simulation test confirmed the method’s effectiveness in
producing expressive attributes. Four distinct videos were created, each showcasing the
pendulum and annotated by Laban experts. These videos depict four different emotions
and a base task. Given the pendulum’s resemblance to a human arm, it was anticipated that
network-applied expressive qualities would align with human demonstrations. While the
base task, i.e., a simple swing, symbolized a neutral emotion, the post-annotation qualities
were Free, Direct, Sustained, and Light. Each emotion’s generated motion had qualities
labeled as Free, Indirect, Sudden, and Light, mirroring human demonstration attributes.
This consistency hints at the network’s proficiency in integrating expressive traits into
generated motions.

Upon verifying the double pendulum’s expressive uniformity, its impact on other
platforms was explored. The 5DoF robot arm’s motion had attributes labeled as Free, Direct,
Sudden, and Light. As emotions and λ values shifted, different traits emerged. At λ = 1,
the attributes were Free, Indirect, Sustained, and Light across all emotions and motion
variants. This mirrors descriptors related to human actions. However, with λ = 100 across
all emotions, the robot retained its Flow, Time, and Weight attributes—Free, Sustained,
and Light. Its Space descriptor shifted to Direct, aligning with the primary task. This
contradicted expectations, as a higher λ should make robot actions expressiveness more
human-like. For the three motions at λ = 100, Flow changed to Bound, except in the Angry
emotion, which showed both Free and Bound.

For the mobile base, the robot’s circular trajectory amplitude variations did not alter
the core Laban attributes, marked as Free, Direct, Sustained, and Light. This suggests
robustness despite the amplitude fluctuations. Rapid robot movements did not sway the
Time attribute, which upheld a consistent pace. The ‘Sustained’ descriptor underscored
the robot’s potential for ongoing motion. Its on-screen actions focused mainly on spatial
movement via acceleration alterations and a lack of distinct movement qualities. This might
be because the human neutral state overshadows expressive attributes, given identical
Laban descriptors for mobile base actions and human neutral inputs. The Laban experts
highlighted that the lack of limbs may limit the expressive diversity of the mobile base,
affecting comprehensive expressive quality conveyance.
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Furthermore, the Laban experts pointed out the morphological differences between
robots and human arms. Hence, the Weight and Flow attributes carried less significance,
and Time and Space were prioritized when discerning expressiveness. This mirrors the
simulation results where the Jensen–Shannon distance between generated and human
movements revealed that the Weight and Flow components showed minor changes. Still,
Time and Space produced smaller values (refer to Figure 3A).

6. Discussion

The features harnessed by the model, refined via LEQ use, adeptly altered the robot’s
motion. The model’s robustness and capabilities suggest the alignment of generated mo-
tions with the expressive nuances of human movement, which is evident in the simulation
and expressive validation findings. Laban expert annotations, particularly for the double
pendulum and robotic arm, underscored this idea. The model maintained intrinsic data
relationships even without direct emotion recognition training. Emotion interplay and the
λ factor created dynamic motion, amplifying the expressiveness of robot movement. The
simulation insights highlight this variety, showing that the model crafts a distinct expres-
sive robot motion for each emotion combined with its λ. These findings hint at the model’s
robust flexibility and adaptability in mirroring and transmitting expressive subtleties.

The simulation phases and real-world implementation showed trajectory variations;
however, leveraging the Laban Effort qualities for motion expressivity was unsuccessful.
This challenge is notable in the mobile base real-world scenarios. Trajectory modifications,
such as start–end position shifts or acceleration changes, did not always translate into
clear expressivity. Discrepancies surfaced when comparing the Laban qualities identified
by experts in human movements and those observed in the mobile base and 5DoF robot
arm. However, when the morphologies were mirrored, which was evident in the double
pendulum and human arm, Laban’s qualities remained consistent. Such insights spotlight
hurdles in the use of Laban annotations for diverse morphologies. Although past research
indicates the successful application of Laban qualities in crafting non-humanoid motions
and allowing non-experts to discern robot expressivity shifts [91], these changes can be
subtle, even for seasoned experts. Overcoming this may demand refined adjustments, pos-
sibly weaving in more variables to emphasize morphological nuances or bolster expressive
feature portrayal.

7. Conclusions

This study introduces a method for equipping robots with nuances of human expres-
sivity. This approach effectively recognizes expressive behaviors and extracts them from the
physical signals, acceleration, and angular velocities. It then combines these features with
robot tasks to produce new expressive motions. When tested in both simulated and real-
world environments across various robot designs, the method showcased its adaptability
and broad application.

Through the Laban qualities analysis and the feedback from Laban experts, the method
proved to be sufficient to understand the expressive qualities from the human motion input
and transfer them to the robot’s motion. This implies that it is possible to characterize the
expressive intent by relying on the acceleration and angular velocity of the human input
from any body part. Moreover, it proves that modifying a robot’s expressive demeanor is
feasible without requiring expert design and constant reprogramming. Its application and
use with three different embodiments in a simulation and a real-world scenario showcased
an effective expressive transmission with diverse robotic morphologies.

As robots become more predominant in our daily lives, especially in our homes,
social spaces, and work settings, they will be required to understand, comply, and modify
their demeanor according to their user’s inputs. Expressivity can work in this regard
as a common trait. Our framework serves as a preliminary approach in this regard; by
removing the need for specific morphology constraints, additional interfaces, or multi-
modal requirements, it is possible to deliver a widely applicable interactive medium.
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By relying on movements, which are capabilities common to most robots nowadays, it is
possible to have the same medium of interaction with the human user. Our results highlight
these facts, which will enable various applications, in the arts and collaborative settings.
By simply relying on movement, the behavior of the robot will be affected, and the necessary
characteristics will be integrated into the robot’s behavior. In this regard, the users’ trust,
user experience, and the overall interactive capabilities of the robots will be enhanced,
thus providing more versatile interactions, enriched artistic expressive representations,
and more explainable robot behavior.

8. Limitations and Future Works

Although the double pendulum results aligned with the expected expressive quali-
ties from the human movement, the method presented difficulties when embedding the
expressive qualities to morphologies that do not closely resemble the human body. This
partly has to do with the analysis through the use of Laban experts since these changes
are subtle, even for them. Further research will explore means of generalization through
the use of direct guidance from expert feedback to train the generative model, additional
constraints in the control loop of the robot, and we will perform user studies to explore
their perceptions.

Even though the method was tested on various robots, exploration with humanoid
robots remains challenging owing to difficulties in determining optimal input points for
their full-body expressivity. Future research could investigate this issue and incorporate
reinforcement learning with human feedback to enhance the model. Previous studies
indicated that reinforcement learning can improve generative skills with minimal data [92].
By harnessing feedback from Laban experts, it may be possible to align closely with
the Laban Effort qualities observed in human movements and match them with user
preferences. Additionally, an expanded dataset for both robots and humans can further
enhance the method’s feature extraction and generation capabilities.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s24020569/s1, Video S1: A Generative Model to Embed Human Expressivity
into Robot Motions.
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8. Brock, H.; Šabanović, S.; Gomez, R. Remote You, Haru and Me: Exploring Social Interaction in Telepresence Gaming With a
Robotic Agent. In Proceedings of the 2021 ACM/IEEE International Conference on Human-Robot Interaction (HRI’21), Boulder,
CO, USA, 9–11 March 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 283–287. [CrossRef]

9. Berg, J.; Lu, S. Review of interfaces for industrial human-robot interaction. Curr. Robot. Rep. 2020, 1, 27–34. [CrossRef]
10. Złotowski, J.; Proudfoot, D.; Yogeeswaran, K.; Bartneck, C. Anthropomorphism: Opportunities and challenges in human–robot

interaction. Int. J. Soc. Robot. 2015, 7, 347–360. [CrossRef]
11. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.
12. Zhang, C.; Chen, J.; Li, J.; Peng, Y.; Mao, Z. Large language models for human-robot interaction: A review. Biomim. Intell. Robot.

2023, 3, 100131. [CrossRef]
13. Capy, S.; Osorio, P.; Hagane, S.; Aznar, C.; Garcin, D.; Coronado, E.; Deuff, D.; Ocnarescu, I.; Milleville, I.; Venture, G. Yōkobo: A
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