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Abstract: In recent years, hydrogen energy has garnered attention as a potential solution for mitigating
greenhouse gas emissions. However, concerns regarding the inherent risk of hydrogen gas leakage
and potential explosions have necessitated the development of advanced sensors. Within our research
group, we have innovated an ultrathin platinum (Pt) film hydrogen sensor that gauges resistance
changes in Pt thin films when exposed to hydrogen gas. Notably, the sensitivity of each sensor is
contingent upon the thickness of the Pt film. To address the challenge of detecting hydrogen using
multiple sensors, we integrated the ultrathin Pt film as a resistance element within a twin-T type notch
filter. This filter exhibits a distinctive reduction in output signals at a specific frequency. The frequency
properties of the notch filter dynamically alter with changes in the resistance of the Pt film induced
by hydrogen exposure. Consequently, the ultrathin Pt film hydrogen sensor monitors output signal
variations around the notch frequency, responding to shifts in frequency properties. This innovative
approach enables the electrical control of sensor sensitivity by adjusting the operating frequency in
proximity to the notch frequency. Additionally, the simultaneous detection of hydrogen by multiple
sensors was successfully achieved by interconnecting sensors with distinct notch frequencies in series.

Keywords: hydrogen sensor; ultrathin film; twin-T; notch filter; platinum

1. Introduction

The excessive emission of greenhouse gases from fossil fuel usage is a critical contribu-
tor to global warming, causing environmental destruction and abnormal weather patterns.
To combat this, renewable energy has emerged as a promising alternative, with hydrogen
energy standing out due to its high efficiency and stable supply [1–3]. However, hydrogen
gas (H2) presents safety concerns, given its potential for easy leakage and explosive reac-
tions. Hence, the development of a sensor capable of early H2 detection is imperative for
ensuring safety.

Various hydrogen sensors [4] are currently available, including metal oxide semi-
conductors (MOSs) [5,6], catalytic-combustion (CC) types [7–9], field-effect transistors
(FETs) [10–12], and resistance change (RC) types [13,14]. The MOS-type sensor measures
resistance changes on MOSs when exposed to H2. This sensor has advantages, such as fast
response time and high sensitivity at 300 ◦C. The CC-type sensor measures the temperature
change of a catalytic metal film, such as Pt and Pd, when exposed to H2. Despite being less
influenced by ambient conditions, this sensor typically operates at higher temperatures,
resulting in increased energy consumption for heating. In contrast, the FET-type sensor,
operating at lower temperatures without a heater, offers lower energy consumption and
relatively high sensitivity by measuring the change in the work function of the catalytic
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metal film on the gate electrode. However, its fabrication process is complex. The RC-type
sensor, comprising Pd thin films on a substrate, has a simpler fabrication process than the
FET-type sensor. It measures the resistance change of Pd due to H2 absorption, but Pd
films may irreversibly degrade due to volume changes during absorption and dissociation
of H2 [15].

In our research group, we have proposed and developed an ultrathin Pt film hydrogen
sensor [16–19]. Pd films absorb hydrogen molecules and expand, but the state of Pt does
not change with H2 exposure. Therefore, Pt film sensors are more durable against H2
exposure. H2 dissociates on the surface of Pt films, injecting electrons into Pt films and
causing a decrease in resistance. Several studies have also explored sensors to detect
H2 using metal-catalyzed gasochromism semiconductors [20]. Similar to those proposed
herein, such sensors employ electrons generated by the catalytic reaction. These sensors use
semiconductors, which makes it easy to tune their properties. However, those proposed
here are based on single films, making their fabrication on polymers easy. Also, two
challenges require attention in this sensor. First, variations in sensitivity among sensors
arise from slight differences in Pt film thickness, posing a challenge for using multiple
sensors in the same environment. Second, employing multiple sensors for hydrogen
detection necessitates multiple power supplies and outputs. To overcome these challenges,
we have developed a new sensor by incorporating ultrathin Pt films into a twin-T type
notch filter circuit [21,22] as resistors. The objective is to create a sensor with adjustable
sensitivity and the capability for simultaneous detection by multiple sensors. Additionally,
for practical use, we assessed the detection limit of H2 and evaluated gas selectivity
against H2.

2. Materials and Methods

Figure 1a illustrates the structure of the ultrathin Pt film hydrogen sensor, consisting
of three layers: silicon, titanium nitride (TiN), and Pt. Using the sputtering method [23,24]
in a vacuum (2.5 × 10−4 Pa), TiN and Pt were deposited on a silicon substrate, with
thicknesses of 20 nm and 10 nm, respectively. The sensor was bonded to the substrate
through a bonding wire. Figure 1b presents the equivalent circuit of the twin-T type notch
filter circuit. In this study, the ultrathin Pt film hydrogen sensors were incorporated as
resistors (R12 and R34) into a twin-T type notch filter circuit. This circuit is characterized by
a reduction in output signals at a specific frequency, known as the notch frequency ( fN),
which can be determined by

fN =
1

2πRC
(1)

where C is capacitance, and R is resistance.
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Figure 1. (a) The structure of the ultrathin Pt film hydrogen sensor with a length of 3 mm and a width
of 10 mm; (b) the equivalent circuit of a twin-T; a notch filter circuit combining a low pass filter and a
high pass filter in a T-shaped connection.
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Similar to the earlier-discussed ultrathin Pt film hydrogen sensors, the resistance
decreases with increasing H2 concentration. Since the Pt film serves as the resistive compo-
nent of the circuit, the notch frequency shifts upon exposure to H2. Figure 2 schematically
illustrates the frequency dependence of amplitude and phase before and after H2 exposure,
showing a slight increase in the notch frequency. Consequently, the concentration of H2
can be measured by assessing the amplitude and/or phase of the output signals (Vout)
operating at the frequency ( f0 ≈ fn). The sensitivity (S) is given by the equation

S =
dVout

d f

∣∣∣∣
f= f n

(2)
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Figure 2. Schematic depicting the frequency dependence of (a) amplitude and (b) phase before and
after exposure to H2. The blue graph represents voltage, and the red graph represents phase as a
function of frequency. The solid line corresponds to conditions before exposure to H2, while the
dotted line represents conditions after exposure.

Since sensitivity depends on differential properties with frequency, it can be electrically
controlled by altering the operating frequency.

The measurement system configuration is shown in Figure 3. Various gases were
controlled using a gas switcher, and the flow rate was set to 1 L/min with a gas flow meter.
The air gas was balanced by 20% oxygen and 80% nitrogen gas, maintaining a pressure of
1 atm, while H2 was balanced by the air gas. Precise H2 concentrations were achieved using
a gas switcher. The ultrathin Pt film within the chamber was exposed to these gases, and
the amplitude and phase of the output signals were measured by applying input from an
AC voltage source.

As the sensor operates only at signal inputs near the notch frequency, the operation of
multiple sensors is independent of frequency. Thus, simultaneous hydrogen detection by
multiple sensors was achieved by connecting three sensors with distinct notch frequencies
(Sensor A: fN = 1.2 kHz, Sensor B: fN = 12.7 kHz, Sensor C: fN = 58.2 kHz) in series for
frequency division detection (Figure 4). During 5 min of exposure to air gas and H2, the
output voltage was sampled for the composite wave signal of each sensor’s notch frequency.
Frequency analyses were conducted using FFT. Additionally, the voltage was repeatedly
sampled while the sensor was exposed to air gas and H2, and the power spectrum was
measured at each frequency resolution (∆ f ∼= 73 [Hz]) in real-time. The number of samples
was 4096, and the sampling rate was 30,000 [S/s].
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The resistance of each ultrathin Pt film (RA, RB, and RC) was nearly the same, allowing each sensor to
be designed for different notch frequencies by adjusting the elements in each circuit.

3. Results and Discussions
3.1. Electrical Control of Sensitivity

In previous investigations, the resistance change of the ultrathin Pt film sensor was
quantified, revealing an approximate 1.5% alteration when exposed to H2 for 5 min [16].
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In this study, the ultrathin Pt film sensor was integrated into a twin-T type notch filter
circuit, and the resulting output signals were characterized by measuring both amplitude
and phase. The change in amplitude (∆V/V) can be given by

∆V/V =
V − V0

V0
(3)

where V is the output voltage, and V0 is the voltage at the commencement of the measure-
ment. The phase was initialized at 0 degrees. Figure 5 illustrates the temporal evolution of
amplitude and phase (∆θ) at a notch frequency of 1.2 kHz. The changes in amplitude and
phase were 2.8% and 4.8 degrees, respectively. Furthermore, the change in output signals
from the sensor with the twin-T circuit was found to be 1.3% to 2.3% higher compared to
the previous sensor. After H2 exposure, the sensor exhibited a long recovery time: it took
more than 12 h for the output signals to recover and return to their original value after the
gas supply switched from H2 to air. To overcome this problem, the sensor was subjected to
thermal treatment by pulsed current injection [18].
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Figure 5. Temporal evolution of (a) amplitude and (b) phase at the notch frequency of 1.2 kHz. The
sensor was exposed to H2 for 5 min, with exposure to air gas for an additional 5 min before and after.

Figure 6 illustrates the amplitude and phase variation as a function of the circuit’s
operating frequency when exposed to H2. The measurements involved adjusting the
frequency in increments of 200 Hz, ranging from 200 Hz to 1400 Hz. The most significant
change in amplitude occurred at 1.0 kHz, reaching 4.3%, while at the notch frequency
of 1.2 kHz, it measured 2.9%. The amplitude increase at frequencies deviating from
1.2 kHz is attributed to the sensitivity (S) rise. However, excessive deviation from the
notch frequency may prevent adequate signal attenuation by the twin-T circuit, resulting
in reduced amplitude change. The maximum phase change was observed at 1.2 kHz,
registering at 4.8 degrees, diminishing as the operating frequency moved away from the
notch frequency. By finely tuning the operating frequency near the notch frequency, the
changes of both the amplitude (2.9–4.3%) and phase (2 degrees to 4.8 degrees) could be
adjusted. This outcome distinctly highlights the electrical regulation of sensor sensitivity
through operating frequency manipulation.
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Figure 7 presents the gas selectivity under exposure to 1% nitrogen-based H2 and
interfering gases for 5 min. Carbon dioxide, methane, and ethane served as interfering
gases. Carbon monoxide and nitrogen oxides will also be explored in future studies. The
change in H2 exposure was approximately 5%, whereas the exposure to interfering gases
changed by only 0.02%, constituting less than one-hundredth of the change in H2 exposure.
The sensor developed in this study operates at room temperature and remains unaffected
by interfering gases, exhibiting selective reactivity exclusively with H2.
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Figure 8 depicts the detection limit for hydrogen concentration by varying the concen-
tration by one digit. The results demonstrate a response to hydrogen concentrations as low
as about 10 ppm. The change in amplitude increased with rising hydrogen concentration,
measuring 0.02% at 10 ppm and 0.14% at 1000 ppm. Considering the lower explosive limit
concentration of H2 in the air is 4%, the sensor developed in this study proves capable of
detecting leaks before reaching hazardous levels.
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3.2. Simultaneous Hydrogen Detection

Figure 9 presents the results of FFT analysis on the output signal of the composite
wave input to the series circuit when air gas and H2 flowed into Sensor A. The change
in amplitude at 1.2 kHz was 2.45%, while changes at 12.7 kHz and 58.1 kHz were 0.68%
and 0.21%, respectively. Thus, the amplitude increased only at the operating frequency
of Sensor A with hydrogen exposure. Table 1 details the change in amplitude at each
frequency when H2 flowed into each sensor. The amplitude at the operating frequency of
the sensor changed the most with the inflow of H2, suggesting that the ultrathin Pt film
hydrogen sensor with a twin-T type notch filter could be employed in a series circuit for
simultaneous hydrogen detection by multiple sensors.
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Table 1. Change in amplitude at each frequency when H2 flew into each sensor.

Sensors Exposed to H2 1.2 kHz 12.7 kHz 58.2 kHz

Sensor A 2.45% 0.68% 0.21%
Sensor B 0.17% 2.61% 0.81%
Sensor C 0.19% 0.10% 17.2%

Figure 10a displays the spectrograms when Sensor A was exposed to H2. The horizon-
tal axis represents time, the vertical axis indicates frequency, and the color code represents
amplitude. Amplitudes at the frequency bands around 1.2, 12.7, and 58.2 kHz were larger
than those at other frequencies. Figure 10b provides an enlarged view around 1.2 kHz. The
amplitude remained constant from 0 to 300 s during exposure to the air gas. In contrast, the
amplitude increased from 1.9 5 × 10−2 to 2.10 × 10−2 at 1175 Hz during 300–600 s when
exposed to H2. This result indicates that Sensor A detected H2, and the hydrogen detection
using this sensor could be visualized. On the other hand, the amplitude at the frequency
bands around 12.7 kHz (Figure 10c) and around 58.2 kHz (Figure 10d) did not change as
they were not exposed to H2. Only the amplitude of Sensor A exposed to H2 changed.
Simultaneous hydrogen detection by multiple sensors in real-time is possible, making it
easier to locate leaks.
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4. Conclusions

We developed a resistance change-type sensor utilizing an ultrathin Pt film. In this
paper, a twin-T type notch filter sensor incorporating the ultrathin Pt film as a resistive
element was fabricated. The objective was to adjust the sensitivity of the sensor and enable
the simultaneous detection of H2 by multiple sensors. Designing multiple sensors with
consistent sensitivity allows their use in the same environment. Moreover, by connecting
twin-T-type notch filter sensors in series, the operation of each sensor is synchronized,
leading to the creation of a system that functions only when the sensor is exposed to H2.
This system would facilitate the safe handling of hydrogen in large-scale situations.
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In future work, we aim to expand the number of series circuits to achieve multipoint
simultaneous measurements through frequency multiplexing.
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