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Abstract: Traffic congestion results from the spatio-temporal imbalance of demand and supply. With
the advances in connected technologies, incentive mechanisms for collaborative routing have the
potential to provide behavior-consistent solutions to traffic congestion. However, such mechanisms
raise privacy concerns due to their information-sharing and execution-validation procedures. This
study leverages secure Multi-party Computation (MPC) and blockchain technologies to propose a
privacy-preserving incentive mechanism for collaborative routing in a vehicle-to-everything (V2X)
context, which consists of a collaborative routing scheme and a route validation scheme. In the
collaborative routing scheme, sensitive information is shared through an off-chain MPC protocol for
route updating and incentive computation. The incentives are then temporarily frozen in a series of
cascading multi-signature wallets in case vehicles behave dishonestly or roadside units (RSUs) are
hacked. The route validation scheme requires vehicles to create position proofs at checkpoints along
their selected routes with the assistance of witness vehicles using an off-chain threshold signature
protocol. RSUs will validate the position proofs, store them on the blockchain, and unfreeze the
associated incentives. The privacy and security analysis illustrates the scheme’s efficacy. Numerical
studies reveal that the proposed incentive mechanism with tuned parameters is both efficient and
implementable.
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1. Introduction

Traffic congestion occurs as a result of an imbalance in demand and supply on a spatio-
temporal scale. The well-known Braess’ Paradox demonstrates that relying solely on supply
side solutions that focus on increasing the capacity of existing infrastructure without regard
for traveler behavior may have a negligible or even detrimental effect on the performance
of traffic networks. Demand-side strategies employ behavioral interventions to encourage
shifts in travel mode, travel routes, and departure times [1,2]. Of these, en route re-routing
is the most challenging problem due to the inherent dynamics and randomness. Over the
last few decades, effective behavioral intervention strategies have been developed, such as
toll and incentive mechanisms, using model-based [3–7] or model-free [8–10] approaches
to influence travelers’ en route behavior and thereby alleviate traffic congestion. However,
these intervention strategies frequently overlook individual-level heterogeneity, rely on
multiple user classes to reflect distinct behavioral patterns, and suffer from computational
tractability issues associated with centralized computation.

Emerging connected technologies enable information sharing among vehicles and
infrastructure through vehicle-to-everything (V2X) communications in a connected traffic
environment [11–15], facilitating more informed collaborations among connected vehicles
(CVs) in the re-routing process [16–18]. Li et al. [19] proposed a routing method facilitating

Sensors 2024, 24, 542. https://doi.org/10.3390/s24020542 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24020542
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3115-821X
https://orcid.org/0000-0002-4146-6793
https://doi.org/10.3390/s24020542
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24020542?type=check_update&version=3


Sensors 2024, 24, 542 2 of 19

the navigation through passing time windows in a connected vehicle environment; this has
informed the direction of our study. Additionally, Li et al. [20] developed a self-evolving
routing method, which introduces a novel formulation in the spatial domain that resolves
the mismatch between routing and planning found in conventional studies. This spatial
domain-based planning method represents a key contribution to the field of cooperative
routing. Nevertheless, individual heterogeneities are still not captured in these studies.

Wang et al. [21] proposed a novel incentive mechanism for collaborative routing in
a connected and autonomous vehicular environment, which leverages individual hetero-
geneity in the route preferences to enhance the system performance while ensuring user
satisfaction. A decentralized computational framework was developed to enable efficient
network-level deployment. On the other hand, individual heterogeneity necessitates that
each passenger discloses their personal preferences (e.g., value of time) as model inputs,
which can represent sensitive information that can be exploited. Also, as collaborative
routing reveals model outputs, travelers’ updated routes, and incentives to other travelers,
it raises privacy issues. Moreover, validation of execution (i.e., validating whether each
vehicle travels on the route selected in the incentive mechanism) can cause a substantial
computation burden and result in more privacy leaks if traditional centralized methods like
sharing GPS traces are used. Further, such privacy risks may act as a barrier to participation
in the system for societally vulnerable groups (e.g., sharing a low value of time may indicate
a low income level), further impairing mobility equity.

Blockchain has been gaining enormous attention since the whitepaper on Bitcoin [22].
A blockchain is a decentralized ledger with tamper resistance ensured by cryptography. The
popularity of blockchain is not limited to cryptocurrencies. Due to its decentralized nature,
it has demonstrated its promise in Internet of Things and vehicular ad hoc networks [23–25].
However, currently, a blockchain is mainly used to record and share public information
such as traffic incidents [26] rather than sensitive personal information in transportation
applications. In other studies [27], a blockchain is also used to store virtual credits (which
quantify the level of trust that users can place in certain users based on their historical
behavior). However, route preferences and historical travel routes are sensitive information
that can be potentially leaked even if anonymous identities are used in blockchains. As for
the anonymity paradox of Bitcoin, though every Bitcoin account is anonymous, identity
information can still be leaked through transaction pattern analysis because every transac-
tion is transparent. The historical travel routes associated with an account can be used to
deduce that user’s travel pattern and potentially leak their real-world identity. Therefore,
on-chain computation alone does not enable a privacy-preserving incentive mechanism for
collaborative routing.

Secure multi-party computation (MPC) is a subfield of cryptography which allows a
group to jointly compute a function without disclosing any participants’ private inputs. A
few studies [28,29] leverage MPC in intelligent transportation systems to address privacy
concerns. However, none of them address its potential for collaborative routing.

To address privacy concerns in collaborative routing for CVs, this study first proposes
a privacy-preserving incentive mechanism based on the decentralized mechanism devel-
oped in our previous work [21]. Specifically, a collaborative routing scheme is developed
to enable travelers to update routes and compute associated incentives following an MPC
protocol without disclosing their value of time. Then, a blockchain-based route validation
scheme is proposed to securely validate travelers’ whereabouts at checkpoints along se-
lected routes with the assistance of nearby vehicles (i.e., witness vehicles) while allowing
them to conceal their trajectories in the blockchain. Combining on-chain and off-chain
cryptographic protocols, the proposed incentive mechanism protects sensitive personal
information throughout peer vehicle collaborations and prevents malicious parties from
conducting pattern-analysis attacks on the blockchain, ensuring that the entire collaborative
routing process adheres to a high standard of privacy.
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It is worth noting that the privacy concerns mentioned earlier are not specifically
associated with the collaborative routing strategy presented in [21]. Rather, they stem from
the inherent nature of personalization. To effectively account for the diverse heterogeneities
of individual users, personalization necessitates the incorporation of users’ unique charac-
teristics and preferences to generate tailored outputs that cater to their specific interests.
Consequently, while [21] primarily addresses the computational efficiency of enabling per-
sonalization within the routing context, the current study emphasizes the implementation
of structured privacy protection techniques to mitigate the privacy challenges associated
with personalization.

The rest of the paper is organized as follows. Section 2 provides an overview of the
proposed incentive mechanism. Section 3 presents detailed protocols of the mechanism.
Section 4 discusses numerical studies. Section 5 concludes the paper by summarizing
contributions and future directions.

2. Mechanism Overview

This study’s problem context is similar to that of our prior study [21]. As depicted
in Figure 1, the major objective is to encourage vehicles to reroute collaboratively during
their trips in order to improve system performance (specifically, reducing total travel time
in this study). When assigning vehicles, the system performance evaluation is based on
vehicles’ estimated travel times. Given the difficulty of precisely estimating long-term
travel times in the real world, the method will be executed repeatedly throughout the
whole horizon of interest. In each iteration, vehicles reroute based on precisely predicted
travel times inside the local range (shown by the gray line in Figure 1) and approximations
of travel times outside the local range. The decentralized incentive system in [21] follows
a hierarchical architecture. Vehicles with the same local origin–destination (OD) pairs
are grouped together (the temporary destinations within the defined local range in [21]).
First, a route flow assignment model finds the optimal route flows for all vehicle groups
in each iteration (with the same local OD pairs). Then, using these optimal flows and
the value of time for each vehicle as inputs, a vehicle assignment model assigns vehicles
to various routes within each vehicle group. Then, an envy-free procedure produces
incentives for every vehicle in the group to ensure participation willingness and behavioral
honesty. Notably, in [21], the participation willingness did not account for the potential
disadvantages associated with individuals’ privacy concerns about sharing sensitive data
during the process. Similarly, whereas behavioral honesty implies that users’ utilities are
maximized when they reveal their real value of time, the utility functions did not account
for the negative consequences of disclosing the value of time.
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solid lines and circles denote the road links and nodes within the local range; the dashed lines are
the remaining routes from the local destinations to the destination; and dollar signs represent the
incentives on the four local routes in the figure).
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For instance, there are four local routes for the group of vehicles in Figure 1. At the end
of the current iteration, the vehicles will be provided with four option bundles (incentives
calculated by the mechanism are bonded to the corresponding routes). Choosing a certain
route determines the bonded amount of incentives. The incentives are designed such that
all vehicles picking the bundles that optimize their individual utilities generate a local
system-optimal assignment [21]. However, these benefits come with a price in terms of
privacy. The vehicle route assignment and incentive calculation depend on vehicles sharing
their values of time. And there seems to be no way to prevent incentive scams in which a
vehicle claims to choose the option with the highest incentive but later travels on the route
with the shortest travel time.

Figure 2 depicts the conceptual structure of the privacy-preserving incentive mech-
anism for collaborative routing, which consists of a secure collaborative routing scheme
at the origin (or local origin), and a route validation scheme at the checkpoints along the
selected route. Both schemes employ on-chain and off-chain operations (depending on
whether they need logging information on the blockchain for the record), ensuring that
just the bare minimum amount of data are safely stored on the blockchain (against pattern-
analysis attacks). The collaborative routing scheme leverages MPC to securely execute the
protocols defined by the vehicle route assignment model and incentive model (steps 2 and
3 in the hierarchical framework) in [21]. Users will not receive the incentives corresponding
to the routes they choose at the origin. Instead, the incentives will be temporarily frozen,
which means they will be sent to a series of multi-signature wallets/accounts from the
traffic operator’s account. The incentives in a multi-signature wallet require m-out-of-n
signatures to become redeemable, where m is the minimum number of signatures required,
n is the total number of account holders of the wallet, and both m and n are determined
when the wallet is created. Apart from the vehicles receiving these incentives, the account
holders of a multi-signature wallet also include one or two verifiers and a mediator. The
multi-signature wallets are designed in a cascading manner, such that the frozen incentives
can only become redeemable when the user passes the route validation checkpoints along
the selected route in order.
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routing.

When the vehicle is around a checkpoint on the selected route, instead of using
GPS information (which can be easily forged by malicious vehicles), it needs to follow the
proposed route validation scheme to generate a position proof with the assistance of witness
vehicles (nearby vehicles willing to sign on the position proof) and send it to roadside
units (RSUs) to verify. The RSUs in the network will verify the proof independently and
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reach a consensus following the practical byzantine fault tolerance (PBFT) algorithm. If
the position proof is valid, a digest of the proof (which is a fixed-size representation of the
contents of the proof) will be included in the current block of a consortium blockchain.
Meanwhile, the verifier at the checkpoint will sign two multi-signature transactions: one
makes the frozen incentives associated with the current checkpoint redeemable for the user;
the other one is for the frozen incentives associated with the next checkpoint, which will
remain frozen for the time being and requires one more signature to be redeemable. The
user does not have to redeem the redeemable incentives (by signing their own signature on
the multi-signature transactions and sending them out) at the time he/she receives them.
Note that the transactions will be included in the consortium blockchain only when the
incentives are redeemed. Therefore, users can hide their trajectories on the blockchain by
redeeming the incentives from the checkpoints from multiple trips in arbitrary order.

Leveraging the tamper resistance of the on-chain information while keeping the
sensitive information off-chain, the proposed incentive mechanism eliminates both direct
privacy leaks (e.g., sharing the value of time in computation) and indirect privacy exposure
(e.g., historical trajectories inferred from the transaction pattern or plain position proofs
recorded in the blockchain). It also achieves high-standard security in terms of potentially
malicious behavior from both the user side and the infrastructure (i.e., RSUs).

3. Preliminaries
3.1. Hash Functions

Hash functions are fundamental components in cryptography. Ideally, a hash function
yields the following properties: (i) it is collision-free; that is, for a hash function H(·), it is
infeasible to find x1 and x2 such that H(x1) = H(x2); (ii) it is hiding, which means, given a
hash value y1 = H(x1), it is infeasible to find the corresponding x1; and (iii) it is quick to
compute the hash value H(x) for any input x. Therefore, hash functions are handy tools
for verifying the integrity of messages transmitted through V2X communications. We can
determine whether the message is changed by comparing the hash values of messages
(usually with a small and fixed length, and thus labeled message digests) calculated before
and after the transmission, no matter how large the raw message is.

3.2. Blockchain

From the data structure perspective, a blockchain is essentially a data block list linked
by hash pointers. As shown in Figure 3, each block consists of a hash pointer and block
data. Unlike normal pointers, hash pointers not only consist of the storing address of the
previous block but also the hash value of its content. Consequently, any changes to the data
on the blockchain will result in changes to the hash pointer of the following block, which
in turn will result in further changes to the blocks up until the most recent hash pointer.
As the manipulation of on-chain data is easily detectable, the on-chain data are deemed
immutable. In real-world applications, the data in each block are stored in Merkle trees [30]
such that they can be retrieved, and this process also utilizes hash pointers to ensure data
integrity.
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3.3. Elliptic Curve Cryptography

Elliptic Curve Cryptography is a public-key cryptographic approach based on the
algebraic structure of elliptic curves over finite fields [30]. Given a point P (also referred
to as the generator) on an elliptic curve (EC) y2 = x3 + ax + b and a secret key sk, the
public key is generated using the elliptic curve scalar multiplication pk = sk · P, which
essentially means successively adding P along the elliptic curve [30] to itself repeatedly
(which implies that sk is a scalar value while pk is a point). The reliability of ECC is based
on the one-wayness of the EC scalar multiplication, which means that it is infeasible to
solve sk given pk.

3.4. Encryptions and Digital Signatures

Encryptions can be categorized into symmetric and asymmetric encryptions. In this
study, we focus on public-key (asymmetric) encryption; that is, public keys are used for
encryption (e = Enc(m, pk), where m is the message, Enc is the encryption scheme, and
e is the ciphertext), while secret keys are used for decryption: m = Dec(e, sk) [31]. In the
smart vehicle context, a pair of public and secret keys can be created for each vehicle, with
the public keys revealed to all as an identity and the secret keys kept by the vehicle itself.
Messages sent to certain vehicles can be encrypted using their public identity/key, such
that only the vehicle with the corresponding secret key can decrypt them.

Similar to public-key encryptions, digital signature schemes also use public/secret
key pairs to sign signatures and verify signatures. However, in the context of digital
signatures, secret keys are used for signing (sig = Sign(m, sk, r), where sig is the digital
signature, Sign is the signing scheme, and r is the randomness added to the message to
prevent the signature from being re-used), while public keys are used for verification,
Veri f y(m, pk, sig) [32]. In this way, vehicles can sign on to the messages they want to
disseminate with their secret keys so that anyone who received the messages can validate
the authenticity and integrity of messages with the senders’ public keys.

3.5. MPC

In this study, MPC based on secret sharing is used. Secret sharing refers to constructing
secret shares for each private input of the participants, such that each participant holds
parts of secret shares, which contain no meaningful information regarding the original
private inputs separately, but, together, can reconstruct the original private inputs [33].
For instance, to create secret shares for one-bit private input x ∈ {0, 1}, one arbitrary
bit is chosen, x2 ∈ {0, 1}, then x1 = x ⊕ x2 (⊕ denotes the “xor” binary operation,
e.g., 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, and 1 ⊕ 1 = 0) and x2 form valid secret shares
of x, as no information of x is inferred with either x1 or x2 alone, but together, they can
reconstruct x because x = x1 ⊕ x2.

Computing the outputs of a function F with private inputs using secret sharing-based
MPC consists of the following steps: (i) represent F as a Boolean circuit C; (ii) generate
secret shares of the private inputs of C and disseminate them to all players; (iii) evaluate
C gate by gate (“gate” here refers to the Boolean gate), such that secret sharing is valid
for each wire (“wires” connect the Boolean gates and transmit the outputs of upstream
gates to the downstream gates as inputs); and (iv) reconstruct the function outputs on
the output wires. For example, suppose two vehicles want to report to an off-ramp RSU
regarding how many vehicles in total are taking the off-ramp without revealing their trips
to each other using MPC. They can use a binary adder as shown in Figure 4. The Boolean
circuit on the left side of Figure 4 takes two bits x and y as private indicators of whether
two vehicles will take the off-ramp. The circuit consists of an “and” gate and an “xor”
gate. The output consists of two bits p and z, which can form a binary representation of
the total number of vehicles taking the off-ramp. Both x and y can be secret-shared, as
Figure 4 shows such that vehicles 1 and 2 hold ( x1, y1) and ( x2, y2), respectively. Here, we
illustrate how secret sharing remains valid on the output wire of the “xor” gate. Vehicle 1
applies the “xor” operation on x1 and y1 to get z1 = x1 ⊕ y1 and, similarly, vehicle 2 obtains
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z2 = x2 ⊕ y2. Since z1 ⊕ z2 = (x1 ⊕ y1)⊕ (x2 ⊕ y2) = (x1 ⊕ x2)⊕ (y1 ⊕ y2) = x ⊕ y = z;
that is, we can reconstruct z with z1 and z2 while inferring no information about z solely
with z1 or z2. Therefore, secret sharing holds for the “xor” gate. And secret sharing for the
“and” gate also exists [34], though it is not as intuitive as that for the “xor” gate. Therefore,
vehicles 1 and 2 can send all the secret shares ( p1, z1) and (p2, z2), respectively, to the RSU
to compute the total number of vehicles taking the off-ramp.
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For more complicated F, as in our proposed schemes, there are MPC compilers that
can generate the corresponding circuit C, which is how we generate the MPC protocols in
our numerical studies.

4. Privacy-Preserving Incentive Mechanism

Before presenting the details of the proposed incentive mechanism, this section starts
with an introduction of the main entities: a trusted authority (TA), CVs, and RSUs, and
how they are involved in the proposed incentive mechanism.

• Trusted Authority: The TA plays two essential roles in the proposed mechanism: the
identity manager (I) is responsible for generating identities (public key and private
key pairs) and relating vehicles’ pseudonyms to their real identities, and the mediator
(M) unfreezes the frozen incentives to either refund the traffic operator when users
behave dishonestly or transact the incentives to users when RSUs behave maliciously
(are hacked). Therefore, TA is assumed to be fully secure and trusted. Note that though
both I and M function in a centralized manner, little computation or communication
burden is introduced because vehicles only request identities once with I when they
participate in the mechanism for the first time. M only interacts with vehicles and
RSUs under malicious behaviors, which are rare because the malicious party can be
traced and penalized.

• CVs: Each CV is assumed to be able to communicate with RSUs and nearby vehi-
cles using V2X technology. There are initiators/leaders LR, LV , which initiate the
collaborative routing scheme and the route validation scheme, respectively, and corre-
sponding followers FR,FV The study does not consider attacks in the communication
process, implying communication channels are assumed to be secure. Also, each
vehicle is assumed to have a tamper-resistant device with which to store sensitive
information, including a secret key and value of time securely (vehicle hardware side
attacks are not considered).

• RSUs: RSUs also play multiple roles in the proposed mechanism. Some RSUs serve
as checkpoint signers (S) in the route validation protocol, signing on multi-signature
transactions when vehicles pass the validation at the checkpoints. And all RSUs are
the nodes of the consortium blockchain, with some authorized RSUs (V) verifying
the incentive transactions and position proofs and undertaking the consensus work
to generate new blocks. The RSUs are semi-trusted and can be potentially malicious.
However, we assume that only a small percentage of RSUs are malicious, which is
widely accepted in other consortium blockchain applications [35,36].
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4.1. Collaborative Routing Scheme

The collaborative routing scheme consists of an off-chain MPC and an on-chain in-
centive freezing process. The off-chain MPC takes the optimal route flows as public
inputs and the value of time of vehicles in the local vehicle group as private inputs to
generate route suggestions and associated incentive amounts for vehicles in the group.
With the envy-freeness analysis in [21], rational users will always choose the suggested
routes. After confirmation from users, the incentives will be frozen in a series of cascading
multi-signature wallets for each vehicle until they pass further route validations.

First, we describe how I generates pseudonyms for vehicles that participate in the
mechanism for the first time using an Elliptic Curves Cryptography (ECC) based combined-
public key (CPK) scheme. Identity-based CPK derives public keys (pseudonyms) from real-
world identities; hence, it does not require certificates as traditional public key encryptions,
reducing the key management burden [37]. In our case, the public keys are derived from
the VIN (Vehicle Identification Number) of vehicles. The identity generation process is
as follows:

1. Select an elliptic curve C. Let H be an addition group of points on C, and let P be the
generator of H. q ∈ H is an order of H (most encryption/signature schemes in this
study are based on ECC; please refer to [16] for ECC basics).

2. Generate an m-length master private key vector X = (x1,x2, . . . , xm), where xi are
randomly selected from Zq.

3. Generate the corresponding public key vector Y = (y1, y2, . . . , yn), where yi = xi · P.
4. Using X and Y, generate the private key and public key for each vehicle as follows:

skID = ∑m
i=1 hi(ID)xi mod q, (1a)

pkID = ∑m
i=1 hi(ID)yi, (1b)

where hi(ID) is the i th bit of the digest of the vehicle’s VIN generated by
H0 : {0, 1}∗ → {0, 1}m . It is trivial to see that pkID = skID · P holds, i.e., (pkID, skID)
is a valid pair of ECC keys.

5. Send vehicles their private keys through secure communication channels along with
the following information as the public parameters of the cryptographic system
(H, q, Y, (H0, H1, H2, H3, H4, H5, H6), E), where E is a symmetric encryption pro-
tocol (given cyphertext y = Ek(x); we can obtain the plaintext x = E−1

k (y)), and Hi
represents hash functions used in the schemes.

Using the pseudonyms, vehicles can initiate and participate in the collaborative routing
scheme, which can be described as follows:

1. One vehicle (defined as the leader of the collaborative routing scheme LR) initiates
a request for collaborative route updating by sending nearby vehicles the message
{IDL, des, sigL}, where IDL is the VIN of LR, des is the destination identifier, and
sigL = sign(skL, H1(des)) is the signature that LR signs using its secret key skL on
the digest of des, H1(des).

2. Vehicles heading to the same destination and interested in joining the collaborative
routing scheme (defined as the followers of the collaborative routing scheme FR),
after verifying the request (isValid(pkL, des, sigL ), each vehicle can reply a signed bit
1, sigID = sign(skID, 1) together with its VIN ID to LR.

3. LR collects the responses from FR, verifies the responses (isValid(pkID, 1, sigID),
and counts the total number of vehicles participating in this session, ns (which is the
demand of this specific OD pair).

4. LR reports ns to the RSU nearby, which will update the flows related to this OD pair
iteratively together with other RSUs in a distributed manner following the route flow
assignment model in [21].

5. At the same time, LR and (n s − 1) FR start establishing the communication net-
work for the MPC protocol. LR produces a participation confirmation message,
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{
< ID1, ID2, . . . , IDns >,< sigID1 , sigID2 , . . . , sigIDns

>
}

, which generates an order
for all participants.

6. After FR receive the confirmation message, they start creating secret shares of their
value of time. λIDi is denoted as the value of time of the ith vehicle (i ∈ [1, 2, . . . , ns]
in the confirmation message. The vehicle creates secret shares sij, j ∈ [1, 2, . . . , ns]
for the jth vehicle and sends it.

7. After the RSU receives optimal route flows, it broadcasts the information as public
inputs of the MPC protocol.

Note that step 6 takes the most time out of the entire process as there are ns(ns − 1)
messages sent. However, this happens while RSUs are solving for the optimal flows, which
is also the most time-consuming step in the hierarchical framework in [21], which mitigates
the influence of step 6′s relatively long computation time.

With all required private and public inputs, the vehicles can execute the MPC protocol
to produce the private outputs, which consists of their updated routes and corresponding
incentives. However, MPC protocols are pre-compiled, which means that they have a
fixed number of inputs, while the number of vehicles participating in the collaborative
routing scheme varies in the real world. Hence, the vehicle assignment model and incentive
mechanism proposed in [21] are modified as follows. Assume that the MPC protocol
requires N vehicles to collaboratively update their routes (N is the maximum number
of participants allowed in the scheme, determined by step 6 in practice). According to
Lemma 3 in [21], the vehicle assignment is to sort vehicles’ value of time. We can create
(N − ns) fake vehicles with zero value of time to complement the number of inputs required
by the MPC protocol. In this way, the updated routes of the participants are the same as the
ones they are supposed to obtain in the vehicle route assignment model. When determining
the incentives, the protocol assumes that fake vehicles take a fake route with the same
travel time as the longest travel time of all real routes. According to Lemma 4 in [21],
the adjustment incentives of the fake vehicles are zero and the real vehicles’ adjustment
incentives are the same as those they are supposed to obtain from the incentive mechanism
in [21]. The details of the MPC protocol for route/incentive assignment (Algorithm 1) are
described as follows.

Algorithm 1. MPC protocol for route/incentive assignment

Private input: individual value of time λi, i = 1, 2, . . . , ns.
Public input: travel times and optimal route flows for each route Tk, fk, k ∈ K, K is the route id
set (∑ fk = ns).
Public output: incentives pk for each route k ∈ K.

1. Sort λi (denote smallest as λmin and Tk add N − ns vehicles with λi = 0, and add N − ns
flow to route with largest travel time.

2. Duplicate Tk for fk times such that there are N travel times in total.
3. Assign the vehicle with the rth largest value of time, λ(r), to the route with rth shortest travel

time T(r) (denoted as η(r)).

4. Compute p(1) = 1
ns

∑N
j=2 ∑

j
m=2 λ(m)

(
T(m) − T(m−1)

)
,

and p(r) = 1
ns

∑N
j=2 ∑

j
m=2 λ(m)

(
T(m) − T(m−1)

)
− ∑r

m=2 λ(m)
(

T(m) − T(m−1)
)

as if there
were N vehicles.

Return η(r) and p(r) to the vehicle with λ(r).

The MPC protocol also generates the outputs required for the traffic manager to freeze
incentives. Figure 5 shows an example of the process of freezing incentives. The route
that the vehicle takes has four checkpoints A, B, C, and D. The amount of incentives
that the vehicle receives for this trip is divided into four parts aA, aB, aC, and aD, which
correspond to the four segments of the route divided by the checkpoints. To ensure that the
vehicle follows the route, the traffic manager does not send the incentives to the vehicle
directly at the origin. Instead, it sends the segment incentives to a series of cascading
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multi-signature wallets, which require multiple signatures to be authorized to transfer. The
wallet corresponding to the first checkpoint is a two-out-of-three wallet, which requires at
least two signatures from three wallet holders: the signer at checkpoint A, SA, the vehicle,
and the mediator M. In normal operations, SA signs on the transaction after the vehicle
passes the route verification at checkpoint A, which makes the incentives associated with
segment OA redeemable for the vehicle; it can sign on the transaction to meet the two-out-
of-three signature requirement when it wants to redeem the incentives. M only plays a
role when malicious behaviors are detected. Either the traffic manager or the vehicle can
submit evidence to let M sign on the transaction to either refund the frozen incentives to
the traffic manager or transmit the frozen incentives to the vehicle. The other wallets are
three-out-of-four wallets, which require at least three signatures from four wallet holders:
the signer at the upstream checkpoint, the signer at the current checkpoint, the vehicle, and
the mediator.
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Notably, the secret shares of the private inputs and outputs of Algorithm 1 can
be fed into Algorithm 2 to skip the step of generating secret shares of the inputs of
Algorithm 2. The outputs from Algorithm 2 are a series of cascading incentive freez-
ing transactions to be signed by the traffic manager. They are marked as public because the
signed transactions will be published on-chain to freeze the incentives for each segment
in the corresponding multi-signature wallets. Since the signed transactions are recorded
in the blockchain, the contents of Addsj are open to everyone. However, the sensitive trip
information is protected twofold. First, it is almost impossible to tell which transaction
is generated for which segment incentives for whose trip, because the address of a multi-
signature wallet does not explicitly show the wallet holders’ identities. As (3) shows, it is
a hash of a piece of code. The public keys of the involved vehicle, checkpoints, and the
mediator only appear in the code. Recall that hash functions are hiding; it is impossible to
reconstruct the code using the wallet address (which is the hash of the code). It is also hard
to enumerate the combinations of the wallet holders if each RSU/checkpoint has tens of
valid identities registered at I. Second, each trip is divided into multiple segments, which
makes identifying the entire trip of a certain vehicle exponentially harder, since it requires
unhashing the wallet addresses of all involved transactions.
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Algorithm 2. MPC protocol for incentive freezing

Private input: individual route choices ηi ∈ K, i = 1, 2, . . . , ns
Public input: incentives for route k denoted as pk, lengths lsi , si ∈ Sk where Sk is the segment set
of route k, and PKcj , the public key set of signer Scj at checkpoint cj ∈ Ck along route k ∈ K, where
Cj is the checkpoint set along route k.
Public output: transactions TRANSsi , si ∈ Sk, k ∈ K, which are to be signed by the traffic
manager to freeze segment incentives.
1. For each individual i = 1, 2, . . . , ns : calculate

psj =
lsj

∑sj∈Sηi
lsj

pηi , sj ∈ Sηi . (2)

2. To freeze segment incentive psj , generate the following transaction TRANSsj .

From: the traffic manager’s address (i.e., its public key)
To: the address of the multi-signature wallet

Addsj = H2(script(pki, pkM, pkr, pkm)), sj ∈ Sηi , (3)

where pkr ∈ PKb
sj

, pkm ∈ PKe
sj

(PKb
sj

and PKe
sj

are the public key sets of the signer at the
beginning and end of segment sj, respectively), and script(·) is the payment script that is used to
validate the transaction.

Amount: psj

3. Return Addsj , sj ∈ Sηi to vehicle i.

4.2. Route Validation Scheme

To verify that the vehicle is at a certain checkpoint CP, SCP needs a position proof.
Instead of using traditional GPS information (which can be easily tampered with), the
position proof is generated by the witness vehicles at checkpoint CP. A reasonable assump-
tion entails the presence of a sufficient number of vehicles in proximity to the checkpoints.
Consequently, the approach delineated in this section holds significance under congested
conditions, where V2X communication and privacy protection are predominantly required.
To protect the privacy of the witness vehicles, threshold cryptographic techniques are used
in the route validation scheme. Specifically, the signatures of real witness vehicles are
mixed with other fake signatures to protect their pseudonyms from being tracked. The
route validation scheme can be divided into three stages: a vehicle needing a position
proof initiating a request for route validation, witness vehicles replying to the request, and
verifiers validating the position proof. The first stage is as follows.

1. The vehicle that wants to prove that it is at checkpoint CP (defined as the leader of the
route validation scheme LV) generates a plaintext pos describing its current position
(e.g., “on xxx link near checkpoint CP at time yyy”).

2. LV requests the number of witnesses required, nw, from nearby RSUs and calculates
the total number of signatures on the position proof as np = ⌈nw/η⌉, where η ∈ (0, 1]
is the privacy protection parameter (for larger η, the pseudonyms of witness vehicles
are mixed with fewer fake identities, and thus they will receive less privacy protection).
That is, there should be at least nw nearby vehicles that witness LV ′s presence at CP
and they should sign on the position proof. Meanwhile, there should be another
np − nw fake signature on the position proof as well to protect the privacy of these
witness vehicles. Otherwise, anyone can learn from the position proof that these
vehicles themselves are near CP at this specific time. Therefore, LV needs to generate
and include np − nw fake signatures in the route validation request such, that the
witness vehicles can generate signatures that cannot be distinguished from the fake
signatures.

3. LV generates np − nw fake IDs from the feasible ID set, Ω f =
{

ID1, ID2, . . . , IDnp−nw

}
and the corresponding public keys, pkIDj = ∑m

i=1 hi
(

IDj
)
yi, ∀j ∈

{
1, 2, . . . , np − nw

}
.
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4. LV generates the fake signatures for the fake vehicles. For IDi ∈ Ω f , it selects
ai, bi ∈ Zq and computes:

Ai = ai · P + bi · pkIDi , (4a)

βi = −b−1
i Ai[x], (4b)

mi = αiβi, (4c)

where Ai[x] is the x coordinate of point Ai. Note that (Ai, βi) is a valid EC Elgamal
signature of mi, because mi · P = Ai[x] · pkIDi + βi · Ai. The fake signatures are created
but LV has no control over the corresponding mi.

5. LV generates np − nw different indexes κi = H3(Ai) ∈ Zq, i ∈
{

1, 2, . . . , np − nw
}

for further Lagrange polynomial interpolation.
6. LV initiates the request of route validation at checkpoint CP by sending the following

message to the nearby vehicles:
{
(IDi, mi, κi)i=1, 2, ..., np−nw

, pos, np, nw

}
Upon receiving the route validation request, nearby vehicles that identify LV at

checkpoint CP will reply to the request with a signed message back, becoming witness
vehicles in LV ’s position proof. A witness vehicle FV generates its signature as follows:

1. FV constructs a polynomial f with np − nw degrees defined on Galois field GF(2nl )
(Ai[x] ∈ GF(2nl )) using Lagrange interpolation, such that f (0) = H4(des) and
f (κi) = Ek(mi), i = 1, 2, . . . , np − nw, where k = H5

(
np

∣∣∣∣nw
)
.

2. FV chooses a random index κ /∈
{

κ1, κ2, . . . , κnp−nw

}
and generates m = E−1

k ( f (κ)).

3. Fv randomly selects c ∈ Zq and generates the EC Elgamal signature (A, β) of m,
where A = c · P, β = (m − sk · A[x])c−1.

4. Fv replies to the route validation request by sending a message, {ID, m, κ, (A, β)},
to LV .

Once LV receives more than nw responses from the nearby vehicles, it aggregates the
fake and collected signatures to generate a position proof P and sends it to the verifiers V:

P =
{
(IDi, mi, κi, (Ai, βi))i=1, 2, ..., np

, pos, np, nw

}
.

Each V then verifies the position proof P as follows:

1. V generates the public keys pkIDj = ∑m
i=1 hi

(
IDj

)
yi, ∀j ∈

{
1, 2, . . . , np

}
.

2. V verifies whether the signatures (Ai, βi) are valid by checking whether
mi · P = Ai[x] · pkIDi + βi · Ai holds for i ∈

{
1, 2, . . . , np

}
.

3. V randomly selects np − nw tuples from (IDi, mi, κi, (Ai, βi))i=1,2,...,np
, reconstructs

the polynomial f using Lagrange interpolation, such that f (0) = H4(des) and
f
(
κj
)
= Ek

(
mj

)
, where k = H5

(
np

∣∣∣∣nw
)
, and verifies whether f (ki) = Ek(mi) holds

for all i ̸= j.
4. V accepts the position proof if it passes all verifications.

To prevent malicious behavior by a single V, the position proof is sent to all V in the
RSU network, and the PBFT algorithm [38] is used to generate a consensus mechanism.
The presence of malicious nodes will not impact the final consensus when the number
of malicious nodes is less than one-third of the participating nodes. When consensus is
achieved that the position proof is valid, the digest of the position proof, H6(P), instead
of the plaintext P, is written to the latest block of the blockchain. SCP will sign on the
unfreezing transaction after verifying that the position is in the blockchain (which indicates
that the position proof has been verified by the majority of the verifiers).

4.3. Privacy and Security Analysis

To ensure that the proposed schemes can prevent privacy leaks and ensure consistency
between the routes that vehicles choose and the ones they take, this section analyzes the
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potential privacy leaks in the scheme steps and discusses how malicious behavior can be
managed in the incentive mechanism.

First, the proposed schemes are privacy-preserving in both the collaborative routing
and the route validation processes. In the collaborative routing scheme, LR and FR hide
their real identities with pseudonyms when sending messages. Vehicles receiving messages
only know that some vehicles are heading to des but cannot connect these messages
to nearby vehicles. Also, as the messages are kept off-chain, it is hard to connect the
pseudonyms to real identities through pattern analysis. The messages sent to RSUs are
aggregated information, ns. Therefore, no individual privacy information is leaked when
RSUs compute optimal route flows. When computing updated routes and incentives
thatfollow the MPC protocol, vehicles only send secret shares of their value of time to other
vehicles, and outputs are generated by each vehicle using these shares. No meaningful
information can be inferred from incomplete shares. In the on-chain incentive freezing
process, incentives are sent to different multi-signature wallets. Note that S of multi-
signature wallets do not need to be the RSUs near the corresponding checkpoints (because
verifying position proofs is a cryptographic process independent of the RSU position).
Therefore, wallet addresses only provide random signers’ public keys, which cannot be
used for privacy pattern analysis. In route validation schemes, the pseudonyms of LV and
FV are mixed with fake pseudonyms in position proofs, which provides additional privacy
protections, as position proofs are sent to all RSUs for PBFT consensus. Before logging into
the blockchain, the position proofs are hashed to ensure no position/route information can
be inferred from pattern analysis of the information in the blockchain.

Behavioral honesty can also be illustrated for both the collaborative routing and the
route validation processes. Given that the MPC protocol ensures no privacy leakage risks,
vehicles participating in collaborative routing have no privacy concerns. And [21] has
shown that under this condition, vehicles will behave honestly (i.e., provide genuine inputs
to the collaborative routing scheme) to maximize their own utilities. In the route validation
scheme, first, the cryptographic tools used in the scheme design mitigate common types of
attacks. The identity-based asymmetric key generation mitigates Sybil attacks, in which
a single entity operates multiple fake identities simultaneously to undermine the system
by gaining the most influence in the network. Also, the EC digital signature algorithm
widely applied in the proposed scheme ensures that signatures cannot be forged, and
messages are tamper-resistant. Therefore, adversaries cannot launch replay attacks in the
route validation scheme by re-sending messages they received before. Also, LV cannot
generate a fake position proof by forging more than np − nw signatures. Because LV

has no control over the mi corresponding to fake signatures, it can forge at most np − nw

signatures to identify np − nw points on GF
(

2l
)

(there is an additional point (0, H4(des)))
and determine a polynomial with degree np − nw. If it forges more signatures, it cannot
ensure that the corresponding mi is on the polynomial, which can be easily detected by V.

5. Numerical Studies

Simulation studies are conducted to illustrate the performance of the privacy-preserving
incentive mechanism. First, we show the correctness of the proposed incentive mechanism.
Then, the computational efficiency of the collaborative routing scheme and the route
validation scheme is analyzed under different privacy protection settings. The MPC
protocols are implemented in SCALE-MAMBA (https://github.com/KULeuven-COSIC/
SCALE-MAMBA (accessed on 9 January 2024)) and MP-SPDZ (https://github.com/data6
1/MP-SPDZ (accessed on 9 January 2024)), and the route validation scheme is implemented
using Python.

To validate the correctness of the MPC protocol, the example network (see Figure 6)
in [21] is used to illustrate that the MPC protocol can calculate the same incentives with
proper settings. Twenty vehicles depart from node 13 to node 16 in the network. There
are three local destinations, nodes 21, 22, and 23, and four alternative routes connecting
nodes 13 and 16, as listed in Table 1 and illustrated in Figure 6. The desired flows and the

https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/data61/MP-SPDZ
https://github.com/data61/MP-SPDZ


Sensors 2024, 24, 542 14 of 19

corresponding travel costs of the four routes are provided by the route flow assignment
model in [21]. The values of time () for the individual vehicles are shown in Table 2. With
these inputs, the implemented MPC scheme can generate the same vehicle route assignment
results ηi, i = 1, . . . , 20 (the id of the route that vehicle i should take) as in [21]. In terms of
the incentives, when the integer representation precision of the MPC protocol is set as 15-bit
fixed point numbers with a 5-bit decimal part, the output incentives p(5, 15)

i are different

from the ones calculated in [21] (although ∑20
i=1 p(5, 15)

i = 0 holds as ∑20
i=1 pi = 0). If the

precision is increased to 31-bit fixed point numbers with a 16-bit decimal part, the output
incentives p(16, 31)

i = pi, i = 1, . . . , 20 (i.e., the implemented MPC scheme can calculate
the same incentives as in [21] under this setting). The total data exchanged among the
vehicles when executing the MPC scheme increase from 135.478 MB to 180.649 MB in this
case, which is acceptable in the real world.
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Figure 6. Example local road map from [21] (the blue circles are local destinations; the green and red
circles are the origin and final destination; and the link/node IDs are denoted in the figure).

Table 1. Alternative routes with desired route flows and travel costs.

Route ID Links Flow Travel Cost

1 1-2-10 8 289.961
2 1-2-4-9 2 290.086
3 1-3-7-9 1 331.512
4 1-3-8 9 331.500

Table 2. Vehicle incentives comparison.

Vehicle ID λi ηi ai pi p(5,15)
i p(16,31)

i

1 0.80 1 0.000 −12.401 −12.375 −12.401
2 0.91 1 0.000 −12.401 −12.375 −12.401
3 0.45 4 24.786 12.385 12.313 12.385
4 0.46 4 24.786 12.385 12.313 12.385
5 0.72 1 0.000 −12.401 −12.375 −12.401
6 0.64 2 0.080 −12.321 −12.281 −12.321
7 0.54 4 24.786 12.385 12.313 12.385
8 0.84 1 0.000 −12.401 −12.375 −12.401
9 0.61 2 0.080 −12.321 −12.281 −12.321

10 0.42 4 24.786 12.385 12.313 12.385
11 0.60 4 24.786 12.385 12.313 12.385
12 1.00 1 0.000 −12.401 −12.375 −12.401
13 0.40 4 24.786 12.385 12.313 12.385
14 0.43 4 24.786 12.385 12.313 12.385
15 0.87 1 0.000 −12.401 −12.375 −12.401
16 0.76 1 0.000 −12.401 −12.375 −12.401
17 0.23 4 24.786 12.385 12.313 12.385
18 0.71 1 0.000 −12.401 −12.375 −12.401
19 0.49 4 24.786 12.385 12.313 12.385
20 0.15 3 24.788 12.387 12.313 12.387
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Next, we validate the computational efficiency of the collaborative routing scheme.
Due to our modifications (fake vehicles and routes) to the incentive mechanism, the com-
piled MPC protocol can be executed by fewer vehicles than the predefined number of
parties, N. Figure 7 shows how the computational time of different stages changes with
the number of participating vehicles ( ns) given a compiled 8-party MPC protocol ( N = 8).
The computational times of the input and output stages increase with ns because fake
vehicles’ inputs are pre-determined and do not require outputs. The computation time for
the computation stage slightly increases as the number of fake vehicles decreases.
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Figure 7. Computational times of the collaborative routing scheme.

Figure 8 shows how the computational time of the output stage changes with N and
ns ( ns ≤ N). It increases significantly with an increase in the number of MPC parties. To
enable real-time implementation, the vehicle group size should be limited to 10. When
more than 10 vehicles want to participate, they can be assigned into multiple vehicle groups
with the same OD. The flow updating model can accommodate such settings. Also, the
simulations were conducted on one desktop with one thread, while in real implementation,
outputs can be generated parallelly on all participating vehicles, which can reduce the
total computational time as well. Given the exponential increase in the MPC scheme
computational time with the increase in MPC parties, a potential refinement is to subdivide
the collaborative routing problem into smaller portions. This process would enable the
MPC schemes to be executed with a reduced number of parties involved in each smaller
subproblem. The results obtained from these smaller subproblems can then be aggregated
by another MPC scheme. Structuring MPC in this hierarchical way is likely to address the
computational issue associated with a large number of MPC parties.
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Next, the computational feasibility of the route validation scheme is evaluated. The
results in Figure 9 seem counter-intuitive at first glance; the time the leader vehicle takes to
generate the request, the time that witness vehicles take to reply to the leader, and the total
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computational time all decrease as the number of witness vehicles increases. Since np is
fixed, an increase in the number of witness vehicles will result in a decrease in the number
of fake signatures that the leader generates; thus, the leader request time is reduced. Also,
when witness vehicles generate the replies, the most time-consuming step is constructing
the polynomial based on all fake signatures, which takes more time as the number of fake
signatures increases. Therefore, the reply times of witness vehicles indicated by the yellow
bars in Figure 9 decrease as the number of witness vehicles increases.
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Figure 9. Computational times of the route validation scheme with different numbers of witness
vehicles when np = 20.

To evaluate how the value of the privacy protection parameter η influences the effi-
ciency of the route validation scheme, we compare the computational time of simulations
with different η when the number of required witness vehicles nw = 5. Figure 10 shows
that the computational time decreases significantly as η increases, especially the time that
witness vehicles take to generate a reply message and the message verification time of V.
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It should be noted that the collaborative routing scheme and route validation scheme
encompass a variety of critical cryptographic operations, including the EC Elgamal key
generation algorithm and signature algorithm. The time complexity of these components
is substantially influenced by the parameters of the cryptographic settings, such as the
order q of the addition group H. This section predominantly focused on analyzing the
effects of parameters that hold greater relevance to the transportation context. In practical
applications, the selection of these parameters must strike a balance between privacy
security and computational efficiency. Securing privacy is certainly a crucial aspect, but
the emphasis should equally be on computational feasibility, especially for vehicular
applications. Generally, enhancing privacy protection could imply a potential trade-off in
computational efficiency. For instance, using a smaller η affords better privacy protection
for witness vehicles, as more fake signatures are blended into the position proof. However,
this could concurrently increase the computational times, as indicated in Figure 10, thus
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impacting the route validation scheme’s efficiency. Hence, a careful trade-off must be
enabled in practice.

6. Conclusions

This study offers several significant contributions. First, collaborative routing facili-
tates personalization by accounting for user heterogeneities, leading to increased privacy
concerns. To address this issue, the proposed method combines MPC with collaborative
routing, thereby enabling privacy-preserving collaboration and showcasing a potential
solution to privacy concerns associated with personalization. Second, the study introduces
a V2V-based position proof approach as an alternative to the widely used GPS, which has
raised concerns regarding the sharing of privacy-sensitive information. This alternative
allows users to verify their travel history without disclosing their historical positions, a
characteristic that has not been achieved previously. Third, the study presents a novel
on-chain/off-chain structure that capitalizes on the tamper-resistance property of on-chain
data while maintaining sensitive privacy pattern information off-chain. This design offers
valuable insights into harnessing the benefits of blockchain technology while circumventing
privacy risks associated with its inherent transparency. It should be emphasized that the
suggested approach extends significantly beyond the scope of [21], as the primary objective
of the current study is to address potential privacy breaches arising from personalization
within transportation systems. The MPC framework may be adapted to alternative appli-
cation contexts involving personalized demand-side solutions. Furthermore, the position
verification technique can be employed in additional applications necessitating the sharing
of travel history, thereby safeguarding user privacy.

Potential directions for future research include: (i) making position proofs reusable
for witness vehicles to reduce duplication of verification; (ii) refining the MPC structure to
allow more vehicles in one vehicle group; and (iii) incorporating the incentive mechanism
into the broader intelligent transportation system to form a sustainable incentive ecosystem,
where users can spend the incentives they gain, such that pseudonyms do not need to be
connected to bank accounts, further protecting privacy.
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