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Abstract: Electrooculography (EOG) serves as a widely employed technique for tracking saccadic
eye movements in a diverse array of applications. These encompass the identification of various
medical conditions and the development of interfaces facilitating human–computer interaction.
Nonetheless, EOG signals are often met with skepticism due to the presence of multiple sources of
noise interference. These sources include electroencephalography, electromyography linked to facial
and extraocular muscle activity, electrical noise, signal artifacts, skin-electrode drifts, impedance
fluctuations over time, and a host of associated challenges. Traditional methods of addressing these
issues, such as bandpass filtering, have been frequently utilized to overcome these challenges but
have the associated drawback of altering the inherent characteristics of EOG signals, encompassing
their shape, magnitude, peak velocity, and duration, all of which are pivotal parameters in research
studies. In prior work, several model-based adaptive denoising strategies have been introduced,
incorporating mechanical and electrical model-based state estimators. However, these approaches
are really complex and rely on brain and neural control models that have difficulty processing
EOG signals in real time. In this present investigation, we introduce a real-time denoising method
grounded in a constant velocity model, adopting a physics-based model-oriented approach. This
approach is underpinned by the assumption that there exists a consistent rate of change in the
cornea-retinal potential during saccadic movements. Empirical findings reveal that this approach
remarkably preserves EOG saccade signals, resulting in a substantial enhancement of up to 29% in
signal preservation during the denoising process when compared to alternative techniques, such as
bandpass filters, constant acceleration models, and model-based fusion methods.

Keywords: biomedical signal processing; corneo-retinal potential; electrooculography; filtering
algorithms; eye tracking; Kalman filters; saccades

1. Introduction

Ocular motion sensing, also referred to as eye tracking, is utilized in both medical and
engineering applications [1–5]. These systems leverage various types of eye movements,
encompassing saccades, smooth pursuit, vergences, and vestibular–ocular reflexes [6,7].
Among the array of technologies available for sensing eye movement, electrooculography
(EOG) and videooculography (VOG) stand as the predominant techniques [8]. EOG relies
on the deployment of electrodes to measure the relative changes in the cornea-retinal
potential that manifest during the simultaneous rotation of the eye and the cornea-retinal
potential’s field vector [9]. On the other hand, VOG harnesses the infrared signals’ reflection
on the corneal–retinal surface to gauge the eye’s angular displacement [8]. VOG systems are
equipped with high-speed video cameras, surpassing EOG systems in accuracy. Notably,
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commercially available VOG systems, such as the EyeLink 1000 eye-tracker (EL), possess
the capability to capture eye movements at a remarkable sampling rate of 2000 Hz, with an
accuracy reaching an impressive 0.001 degrees of visual angle (DVA) [10]. However, it
is essential to recognize that VOG systems do entail several drawbacks. They tend to be
bulky, come with substantial costs, necessitate stringent or controlled lighting conditions,
and fall short in their capacity to monitor closed-eye movements. These inherent limitations
render EOG systems an indispensable choice for tracking eye movements across diverse
scenarios where the use of VOG systems may be unfeasible. Notably, in contexts such as
sleep disorder monitoring, EOG becomes indispensable, enabling the measurement of eye
movements even when the eyes are closed [2,11].

Among the different types of eye movements, saccades hold paramount significance
in medical and engineering applications. A saccade is defined as a swift and ballistic eye
motion that redirects the point of fixation from one relatively stable position to another [5].
Both EOG and VOG systems possess the capability to capture this eye movement. Nev-
ertheless, EOG systems suffer from a notable drawback—the presence of a substantial
volume of noise and artifacts that detrimentally impact the fidelity of the recorded EOG
eye movements. A typical EOG signal exhibits the intrusion of diverse artifacts, includ-
ing but not limited to electroencephalography (EEG) artifacts, electromyography (EMG)
artifacts, blink artifacts, and an assortment of noise sources [12,13]. These artifacts coexist
within similar frequency spectra, complicating the denoising procedure [14,15]. Conse-
quently, the extraction of saccades and the associated attributes, such as saccade amplitude,
velocity, and latency [5,10], from an EOG recording becomes an onerous and time-intensive
endeavor [16,17]. This onerous process exerts a detrimental influence on the accurate identifi-
cation and classification of saccades [14].

Contemporary traditional saccade detection and classification methods, which rely
on current threshold-based techniques, necessitate EOG signals characterized by minimal
noise levels to effectively discern abrupt changes in amplitude and velocity profiles [18].
To attain this objective, conventional signal processing techniques such as bandpass
filters [18,19], wavelet transforms [20–22], and smoothing filters [14,15], as well as special-
ized filters like morphological filters [23] and dynamic time-warping filters [24], have been
employed to denoise EOG signals. Nonetheless, these traditional filtering methods often
introduce distortions by inadvertently diminishing peak velocities and extending saccade
duration during the denoising process [14,15,18]. Furthermore, they tend to compromise
the preservation of EOG saccades and result in a significant deviation from the ground
truth [10]. In response to these limitations, adaptive filtering approaches have been de-
veloped to effectively filter EOG signals while retaining the fidelity of EOG saccades [25].
Notably, Kalman filters (KFs) [26] have been introduced as a means to fuse the measured
EOG signals with values estimated using a predefined mathematical model [26–28]. This
approach has shown substantial improvements in maintaining the shape and integrity of
EOG saccades [10]. Comparative studies have corroborated the superiority of KFs over
traditional filtering methods in denoising EOG signals [25]. Nevertheless, it is worth
noting that the accuracy of a KF is contingent on the precision of the underlying state
estimator [10].

Diverse KF state estimators have been developed, drawing upon the mechanical [10,20,29],
electrical [30,31], and parametric [15,32] attributes of the eye and its ocular movements. Notably,
lumped-element-based dynamic models have served as foundational state estimators in this
context [10,20,29]. Within these state estimators, the intricate agonist–antagonist dynamics of
the extraocular muscles are characterized by their electromechanical properties to accurately
estimate saccades, and these estimations are effectively integrated with EOG signals, leading to
substantial enhancements in EOG saccade fidelity [10].

While most of the model-based techniques have demonstrated proficiency in address-
ing issues such as the elimination of eye blinks, offset correction, and signal denoising,
they have typically necessitated real-time operation facilitated by a brain or neural con-
troller [10,29]. Similarly, electrical models rooted in Coulomb’s law have been developed
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to rectify the baseline drift in EOG signals [25,30], but they encounter comparable chal-
lenges in preserving the integrity of EOG saccades during the denoising process. In VOG
systems, KF fusion-based methodologies have been employed to denoise ocular motion
signals derived from pupil reflections [33]. Nevertheless, these model-based denoising ap-
proaches [34,35], which utilize acceleration-based fusion algorithms [25], exhibit a notable
disparity in accuracy when compared to ground truth measurements.

The present study explores a novel model-based technique aimed at enhancing the
denoising of EOG signals while concurrently preserving the fidelity of EOG saccades.
Specifically, we introduce a constant velocity-based model that considers the relationship
between the peak velocity and saccade amplitude in the human eye, serving as a state
estimator for the KF. We evaluate the effectiveness of this model in retaining EOG saccades
throughout the denoising process and compare its performance to several traditional and
adaptive denoising methods. This paper is structured as follows: Section 2 provides the
mathematical foundation of the model-based fusion algorithms, experimental procedures
employed for data acquisition and the algorithmic techniques employed for saccade identi-
fication and measurement. Sections 3 and 4 present the outcomes of our analyses and the
ensuing conclusions, respectively.

2. Materials and Methods

In this section, we introduce the constant velocity-based (CVM) KF method, where
dEe
dt is held at a constant value, and we present other established techniques for perfor-

mance comparison. Well-established KF-related approaches, including bandpass filters
(BP) [18,19], Brownian model-based (BM) KFs [17], constant acceleration model-based (CAM)
KFs [25] (where d2Ee

dt2 is kept constant), and linear reciprocal (LR) model-based filters [10], are
employed as benchmarks to assess and evaluate the efficacy of the CVM.

2.1. Theoretical Models

2.1.1. Saccadic Eye Movements and EOG Signals

EOG is a method for measuring the corneal–retinal potential of the eye. This potential
exhibits linearity with regard to angular displacements, spanning from −35◦ to 35◦ for
horizontal movements and −10◦ to 10◦ for vertical movements [1,9]. The amplitude of
EOG signals ranges from 50 to 3500 µV for both horizontal and vertical gaze movements
and falls within the frequency band of 1 to 35 Hz. Notably, the voltage sensitivity to
changes during horizontal and vertical movements (saccades) is approximately 16 µV and
14 µV DVA, respectively [1,9]. In the design of adaptive filters, effective noise models are
crucial, and the modeling and analysis of noise in biomedical systems have been elaborated
upon in a previous work [36]. For the purposes of this study, an additive white noise
model is employed to represent the noise inherent in EOG signals. This assumption has
been effectively utilized by previous researchers in the development of their denoising
methods [10,20,32].

A raw EOG signal comprises a combination of the corneo-retinal potential of the eye,
noise, and artifacts. The induced voltage in the EOG electrode, denoted as E(t), can be
described as follows:

E(t) = Ee(t) + φ + Ω (1)

where Ee(t) = corneal–retinal potential, φ = artifacts (eye muscles, eyelids, blinks, etc.),
and Ω = noise (electromechanical noise). However, Ee(t) is linearly proportional to the
rotation of the eyeball. Therefore,

Ee(t) = Kθaxis(t) (2)

where θaxis(t) is the angular displacement around the eyeball axis parallel to the location of
the electrode, and K is the calibration factor [10].
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2.1.2. Noise Model

The noise inherent in EOG can be effectively characterized, as illustrated in Figure 1,
with reference to prior studies [10,20,32,36]. In this depiction, U(t) serves as the input to the
deterministic plant, providing the visual cues necessary to initiate saccades, resulting in the
generation of an output denoted as Ee(t). A noise signal e(t) introduces stochasticity to the
process and gives rise to the additive noise component Ω in the signal. Additionally, U⋆(t) is
responsible for triggering artifacts, such as blinks, in the system. The ultimate measurement
received by the electrode, E(t), represents a composite of all these contributing factors
and artifacts. The accurate identification of the deterministic system is of paramount
importance to mitigate the adverse effects of the stochastic component. In this context,
a variety of corneal–retinal potential models, serving as state estimators, are explored
within the framework of this model (as discussed in Section 2.1.3). In the present study,
the stochastic system is described using a Gaussian noise model, while the deterministic
system is represented by the CVM.

Figure 1. Noise model for a raw EOG signal. U(t): input to the deterministic systems (visual
cue), U⋆(t): trigger signal for the artifacts, Ee(t): output of the deterministic signal (corneo-retinal
potential), e(t): white noise signal to the stochastic system, Ω: additive noise signal, E(t): raw EOG
signal, and φ: artifacts [10].

2.1.3. Corneo-Retinal Potential Models for Saccades

The sensor fusion approach introduced in this paper is based on a KF, which employs
linear quadratic estimation to filter a sequence of measurements collected over time. In this
context, both process uncertainties and uncertainties in the measured values are treated
as sources of noise. The process can be mathematically represented in a discretized form
as follows:

Ee_k = AEe_(k−1) + BUk + Ωk (3)

In this context, Ee_k corresponds to the discretized states of the system, which can
be expressed as a 3 × 1 column vector. Here, sk, vk, and ak denote the biosignal, its rate
of change, and the second rate of change, respectively, for the kth sample. The process
noise, denoted as Ωk, is assumed to follow an additive Gaussian white noise distribution
with a covariance matrix Q, i.e., Ωk ∼ N(0, Q). Additionally, the state transition matrix,
denoted as A, characterizes the dynamics of the system, reflecting the state transition
relation. The specific form of this matrix is contingent on the time-domain process model
of the system. For this study, three saccadic eye models are considered: Brownian, constant
velocity, and constant acceleration. Notably, the input gain matrix B is omitted, as this work
operates as a “free” model and does not involve an input variable Uk”. The measurement,
denoted as Ee_k (EOG), is subject to measurement noise, which is assumed to follow an ad-
ditive white Gaussian noise distribution with a covariance matrix R, i.e., ϵk ∼ N(0, R). This
assumption is made under the premise of no correlation between Ωk and ϵk”. The output
model is represented as follows:

Ek = HEe_k + ϵk (4)
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where H represents the measurement matrix. The CVM is employed to describe Ee(t),
which is discretized as Ee_k. Subsequently, for the purpose of assessing the performance
of the CVM in conjunction with state-of-the-art KFs, H is substituted with the BM, CAM,
and LR, as elucidated in subsection D.

Constant Velocity Model

The analysis of the peak velocity in saccades has been a common practice in studies
related to ocular motion [15,32]. Controlled experiments involving saccades have revealed
that the peak velocity conforms to a nonlinear function characterized by its amplitude,
as depicted in Equation (5). Furthermore, the product of the peak velocity and saccade
duration, as described by Equation (6), exhibits a linear correlation with the amplitude [32].

Vp = a1(1 − e−θ/a2) (5)

Vp × D = θ (6)

Here, in Equations (5) and (6), Vp denotes the peak velocity, a1 and a2 represent
arbitrary constants, D signifies the duration of the saccade, and θ stands for the amplitude
of the saccade. Drawing upon the findings presented in [17,32], Equation (6) can be
construed as a representation of the saccade amplitude achieved by maintaining a constant
velocity for a given duration. Based on this observation, we propose a linear constant
velocity state estimator model for the Kalman filter (KF), under the assumption that the peak
velocity remains approximately constant for higher saccade amplitudes. This assumption
further implies that dEe

dt , representing the peak rate of change of the differential potential,
remains relatively constant, as we are linearly associating changes in potential with the
saccade amplitude. The state-space representation of this corresponding process model,
in discrete form, can be expressed as follows:

Ee_(k+1) = AEe_k + KĖe_k (7)

Ėe_(k+1) = Ėe_k (8)

Therefore, the state-space form of the model is[
Ee_(k+1)
Ėe_(k+1)

]
=

[
1 k
0 1

][
Ee_(k)
Ėe_(k)

]
+ Noise (9)

Kalman Filter Model

The state estimation uses the following state estimation scheme of prediction and correction.
Prediction:

Ê−
e_k = Ê−

e_(k−1) + BUk + R

P−
k = AP−

k−1 AT + Q

Correction:
Kk = P−

k HT(HP−
k HT + R)−1

Pk = (I − Kk H)P−
k

Êe_k = Ê−
k + Kk(Zk − HÊ−

e_k)

where Êe_k = estimate, Pk = covariance, and Kk = Kalman gain.

2.1.4. Other State Estimator Models

Brownian Motion

In the context of the BM model, Brownian motion serves as the foundational concept
from which the state estimator is derived, as referenced in [10,17]. The state-space repre-
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sentation of the corresponding process model, when expressed discretely, can be written
as follows:

Ee_(k+1) = AEe_k + Noise (10)

where A = system matrix, which is an identity matrix, in the present work.

Constant Acceleration Model

The CAM considers ( d2Ee
dt2 ), the 2nd rate of change of the differential potential, to be

a constant [10,17,25]. The state-space representation of the corresponding process model,
in the discrete form, can be written as

Ee_(k+1) = Ee_k + kĖe_k +
1
2

k2Ëe_k (11)

Ėe_(k+1) = Ėe_k + kËe_k (12)
...
E e_(k+1) = Ëe_k (13)

Therefore, the state-space form of the model is Ee_(k+1)
Ëe_(k+1)...
E e_(k+1)

 =

1 k 1
2 k2

0 1 k
0 0 1

Ee_(k)
Ëe_(k)
Ëe_(k)

+ Noise (14)

Linear Reciprocal Model

The state estimator of the LR model-based KF is inspired by the agonist–antagonist
EOM model of the human eye. The development of the LR model-based KF is detailed
in [10]. The state-space representation of the corresponding process model, in the discrete
form, can be written as

Ẋ1
Ẋ2
Ẋ3
Ẋ4

 =


0 1 0 0
0 0 1 0
0 0 0 1

−C0 −C1 −C2 −C3




X1
X2
X3
X4

+


0
0
0
1

δU + noise (15)

where Xi = E, Ci are constants derived from the parameters that govern eye movements as
detailed in [10].

Bandpass Filtering

The employed BP filter within the scope of this study is as mentioned in [1,9,16].
The FIR process involves the utilization of a bandpass filter with a bandwidth ranging from
0.5 to 35 Hz, a drift removal step, the incorporation of a notch filter set at 60 Hz, and the
application of a Savitzky–Golay filter with a fifth-order polynomial and a frame length
of 111.

Sensor Fusion

EOG dry electrodes are employed for the assessment of the corneal–retinal potential
of the eyeball. The experimentally obtained signals are integrated with the saccade models
delineated in this section. An overview of the comprehensive fusion algorithm is provided
in Figure 2. The initiation of saccades is prompted by visual cues (Uk), and their measure-
ment is conducted via the raw EOG signals (Ek) within the time interval from t = 0 to
t = tend. Subsequently, distinct state estimators inspired by the BM, CVM, CAM, and LR
models are applied to compute Eek and enhance the signal quality using the KF.
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Figure 2. Schematic diagram of the model-based fusion algorithm. The saccades are initiated by
visual cues leading to estimation and measurement. The velocity model is used to estimate the states
of the eye and the Kalman filter is used to fuse the estimation with the measurement to generate the
final output. To compare the velocity model with other model-based approaches, the state estimator
was modified accordingly (e.g., with a constant acceleration model).

2.2. Experimental Description

2.2.1. Participants

The primary objective of this human study is to assess the efficacy of the proposed
denoising process in preserving EOG saccades by comparing them with saccades recorded
by the EyeLink 1000, considered the gold standard in saccade measurement. This direct
comparison of EOG and VOG saccades necessitates the simultaneous recording of saccades
by both devices, as elaborated in Section 2.2.2. Procedure: In this experiment, any inherent
variability in individual eye movements is mitigated, as both devices capture identical eye
movements concurrently. This study involved thirteen healthy adults, aged 18 to 29 years,
all of whom possessed normal or corrected visual acuity. The participants who regularly
used eyeglasses or contact lenses to achieve 20/20 vision in their daily lives also wore these
corrective lenses during the experiments. Ethical approval for conducting experiments on
human subjects was granted by the University of British Columbia’s Behavioral Research
Ethics Board (Approval No. H18-03792). Prior to participating in the study, written
informed consent was obtained from all the participants. All the testing sessions took
place at the UBC Vision Lab in Canada. The dataset reported in this study excluded
data collected from participants with known eye disorders or individuals with significant
optical corrections. However, two participants were excluded from the subsequent analysis
and results: one participant did not meet the calibration requirements for pupil–corneal
reflection (PCR) eye tracking, and another reported a diagnosis of Leber’s hereditary optic
nephropathy, which is a congenital eye disorder associated with oculomotor abnormalities.

2.2.2. Apparatus

To minimize any potential interference caused by head movements during data ac-
quisition, the participants were instructed to maintain the utmost stillness by utilizing a
chin-and-forehead rest. Monocular eye movement recordings were performed on the right
eye at a sampling rate of 250 Hz, employing both the OpenBCI Cyton board for acquiring
the EOG signal and the EyeLink 1000, resulting in the simultaneous generation of two
parallel data streams. For EOG data collection, pre-gelled Skintact electrodes were securely
positioned at the participant’s outer canthus and forehead. The EyeLink system tracked
the gaze position based on the PCR, which was captured using its built-in infrared camera.
Owing to the superior reliability of the EyeLink system, the data recorded by it were later
employed for the calibration and validation of the EOG measurements (as illustrated in
the experimental setup depicted in Figure 3). The stimulus presentation was under the
precise control of the custom software developed using the PsychoPy3 package in Python.
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Visual cues were displayed on a 121.9 cm × 71.1 cm LCD monitor with a resolution of
1920 × 1080 pixels and a refresh rate of 30 Hz. Audio cues were emitted through standard
computer speakers. A keyboard, placed in front of the participants, allowed them to initiate
the next trial in the queue by pressing a key. The event data, including keyboard inputs,
EOG signals, and EyeLink measurements, were synchronized in real time with a shared
computer clock utilizing the Lab Streaming Layer (LSL) software. Although all the data
samples were recorded using the same clock reference, some random time lags were ob-
served in certain samples, as exemplified in Figure 4. These lags were unsystematic and
sporadic, occurring only in the data collected from specific participants. These discrepan-
cies were not considered in the qualitative analysis, as our calculations were independent
of the temporal data provided by the time stamps.

Figure 3. Experimentation arrangement of EyeLink 1000 tracker, OpenBCI device, and participant.

Figure 4. Recording of EyeLink 1000 tracker signals and OpenBCI EOG signals simultaneously using
Lab Streaming Layer. The corneo-retinal potential is recorded by the electrodes placed on the outer
canthus with respect to the electrode placed on the forehead. Horizontal saccades are directed to
targets presented at −12, −11, 11, and 22 degrees of visual angle on the LCD screen.

2.2.3. Procedure

The display featured a central marker in the form of a small circle, serving as the “home”
fixation point. The magnitude of a saccade was quantified in relation to this home position,
which was aligned with the participants’ midsagittal plane. Four target locations, labeled
“A”, “B”, “C”, and “D”, were presented at angular deviations of −22◦, −11◦, 11◦, and 22◦

from the visual angle, respectively. Notably, “A” and “B” targets were situated to the left
of the home position, while “C” and “D” were positioned to the right. The investigation
exclusively focused on horizontal saccades, and as such, all the target points were aligned
along a horizontal axis traversing the center of the display. The initiation of each trial
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was contingent upon a keypress executed by the participant. Following trial initiation,
an auditory cue was delivered, directing the participant to execute a saccade toward the
designated target location. Subsequently, a second auditory cue, signified by a “ping”
sound, prompted the participant to return their gaze to the home position, thus concluding
the trial. The administration of the trials followed a pseudo-random order.

2.2.4. Calibration

Before each testing session, a calibration procedure was conducted, comprising five
consecutive trials for each of the four target locations, namely, A, B, C, and D. Subsequently,
the raw EOG signal, measured in microvolts, was transformed into the eyeball angle
through the application of linear parametric regression. Calibration points, denoted as
Epeakaverage, were derived based on signal peak averages (Eepeak ) and peak counts (Npc),
following the formula:

E(peak_average)(θ) =
1

Npc

n=Npc

∑
n=1

[min max thresh(E[n])] (16)

2.2.5. Kalman Filter

In KFs, a higher value of Q representing the model noise leads to an elevated gain and
imparts greater significance to the measurement, albeit at the cost of introducing a time lag.
Conversely, a lower Q value enhances the accuracy but may result in a delayed response.
Therefore, the selection of an appropriate Q value necessitates a trade-off between the
time response and accuracy, as discussed in references [10,26,37]. In this study, the Q
values were determined using an iterative trial-and-error methodology. The values of R
(representing sensor noise) were computed based on the mean of the standard deviations
of the normalized errors observed in the calibration trial data.

2.2.6. Study Parameters

Throughout the data processing phase, the trials were delineated by recorded event
markers, which corresponded to audio cues and keyboard inputs denoting the commence-
ment and conclusion of each trial. The saccades were subsequently identified by detecting
the two change points employing MATLAB’s “findchangepts” function, a tool designed
to pinpoint abrupt shifts within a signal. The peaks situated between these two change
points were extracted using MATLAB’s “findpeaks” function, and their average values
were employed to define the saccade amplitude, corresponding to the angular displacement
of the eyeball for both the EOG (θEOG) and EyeLink (θEL) data. An additional key feature
calculated during the analysis was eye movement latency, denoted as tlatEOG and tlatEL ,
representing the time interval between the audio cue signaling the commencement of the
trial and the first identified change point. Numerical differentiation was applied to the
EOG and EL signals to derive the peak velocities, defined as VEOG and VEL, denoting the
maximum slope of the saccade response.

Furthermore, two definitions of error were considered: the EOG error relative to
EL (EEOG−EL = |θEOG − θEL|) and the measurement error (absolute error in EOG or EL,
EEOG/EL = |θEOG/EL − θ|, where θ denotes the physical angle in the experimental setup).
Additionally, for both EL and EOG, the accuracy and precision were assessed by examining
the mean value and variance of the percentage of the normalized error (measurement
error or absolute error, expressed as a percentage of the normalized error). To compare the
noise power and signal power of the filtered signals, the signal-to-noise ratio (SNR) was
employed. In this context, the SNR was defined as follows:

SNR(dB) = 10 log[ ∑n=k
n=1 Ēk

∑n=k
n=1[Ek − E′

k]]
(17)
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Furthermore, the analysis involves the consideration of the computation time (tc)
and nonlinear curve fitting of the peak velocity, utilizing Equation (5). A comprehensive
overview of the parameters employed in this study is provided in Table 1.

Table 1. Definitions of study parameters.

Study Parameter Symbol Definition

Amplitude θ Angle of the landing position of eye from the center
Peak velocity Vp Average of the maximum peaks at the fixation
Latency ts Time taken to initiate the saccade after receiving cue
Abs. relative error EEOG−EL Absolute of difference between EOG and EL mag.
Abs. EyeLink error EEL Absolute difference between EL and physical mag.
Abs. relative error EOG EEOG Absolute of difference between EOG and physical mag.
Normalized error EN Normalized absolute relative error
Computation time tc Time taken to process the data between markers
Signal-to-noise ratio SNR Ratio of the signal power to the noise power

3. Results and Discussion

The proper calibration of the KF is of utmost importance for optimizing the perfor-
mance of each of these filters. The determination of the R values was carried out based on
the results of the individual calibration trials, while the Q values remained consistent across
various methods, with Q being determined using a trial-and-error approach as elaborated
in Section 2.2.5. The values of both R and Q employed in each trial are documented in
Table 2. Each experimental session consisted of two distinct types of trials, wherein the par-
ticipants first engaged in a series of calibration trials followed by a sequence of experimental
trials. The data recorded during the calibration trials were employed in conjunction with
linear regression techniques to calibrate the subsequent experimental trials. The calibration
factors generated through this process are presented in Table 3. It is worth noting that
both the EOG and EL recordings underwent the same calibration process. However, it is
important to emphasize that the recorded EL data, due to its inherent high quality, did not
require denoising and were considered as the ground truth for this experiment. To process
the recorded signals, a polynomial piece-wise detrend function in MATLAB was employed.
This function was utilized to rectify any drift between the trial markers, specifically the
“start” and “end” events, and to normalize the isolated EOG saccades to their baseline
value, effectively removing the systematic baseline drift. Outliers within the data were
identified and removed using the interquartile range method, which entails removing data
points that fall outside a range of 1.5 times the interquartile range from the first and third
quartiles, thereby ensuring a dataset devoid of bias. The application of different denoising
methods yielded varying results in terms of signal denoising and the reduction in outliers
in the EOG saccades. Table 2 provides a summary of the percentage of outliers removed
after each denoising method was applied (namely, 13.48% for BP, 10.90% for BM, 12.05% for
CVM, 12.02% for CAM, and 12.2% for LR). On average, all the model-based filters exhibited
a 12.5% improvement in comparison to the bandpass filter method. Figure 5 illustrates
an example of the recorded data extracted between the “start” and “end” event markers
for participant P023 during the execution of a C trial (i.e., a saccade of 11◦). Subfigure (a)
displays the raw recorded signal (comprising both the EOG and EL data), while subfigures
(b) to (e) depict the outcomes following the application of various denoising methods.
A thorough examination of these figures reveals that CVM has the capability to preserve
EOG saccades more effectively when compared to other filters, as the overall signal shape
closely resembles the EL records. In order to further assess and quantify the performance
of the CVM, a comprehensive analysis was conducted, encompassing a correlation study,
a numerical feature analysis of the EOG parameters, and an error analysis, utilizing data
from all the participants.

Given the utilization of two distinct recording devices in this study, an examination
was conducted to assess the feature correlation between different features and the applied
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denoising methods, thereby establishing a relationship between each filter and the features
derived from the two devices. Specifically, the θ, EEOG/EL, Vp, and ts of EOG and EL were
computed for each denoising method and are comprehensively presented in Table 4. No-
tably, all these methods exhibited a robust correlation, with the KF-based filter techniques
demonstrating an enhanced correlation of approximately 0.8% in amplitude. It is pertinent
to note that θ, representing the average peak values of the saccade at fixation, is a key
feature influencing the shape of the signal. Furthermore, the SNRs were computed and their
results are displayed in Table 5 to affirm the efficacy of all the employed denoising methods
in generating a potent output signal. As anticipated, the average tc (also showcased in
Table 5) was higher for the model-based KF in comparison to the BP method, aligning
with expectations.

Table 2. Percentage of outliers (Out.%) excluded, Q, and R values for each participant.

BP BM CVM CAM LR *

PID Out. % Out. % Q Out. % Q Out. % Q R Q R Out. %

P20 14.08 10.06 0.01 8.66 0.5 11.57 0.5 10.53 0.5 11 13
P22 9.95 7.52 0.01 8.76 0.5 7.19 0.5 15.56 0.5 16 11.1
P23 15.25 15.16 0.01 15.70 0.5 16.19 0.5 8.06 0.5 8 12.8
P24 6.31 8.29 0.01 4.71 0.5 6.58 0.5 15.55 0.5 16 7.3
P25 14.13 17.88 0.01 17.49 0.5 13.59 0.5 16.64 0.5 17 18
P26 21.24 9.26 0.01 8.50 0.5 11.09 0.5 5.55 0.5 6 10
P27 12.52 11.54 0.01 9.84 0.5 9.15 0.5 150.40 0.5 150 13.9
P28 16.03 14.15 0.01 14.49 0.5 14.51 0.5 10.14 0.5 10 14.8
P29 14.08 11.37 0.01 15.72 0.5 14.42 0.5 21.71 0.5 22 12.1
P32 17.10 19.24 0.01 19.20 0.5 17.43 0.5 22.85 0.5 13 15
P33 7.63 6.88 0.01 9.42 0.5 10.49 0.5 173.31 0.5 173 6.4

Note: Data points were excluded as outliers if they fell outside the interquartile range at the participant level.
BP = bandpass, BM = Brownian motion model, EL = EyeLink 1000, CAM = constant acceleration model,
CVM = constant velocity model, PID = Participant ID. * The results for LR model were extracted from [10].

Table 3. Calibration factors for EOG based on each filtering technique (mV deg−1) and EL (px deg−1).

PID BP BM CAM LR * EL CVM

P20 0.25 0.28 0.29 0.03 0.07 0.25
P22 0.21 0.23 0.20 0.01 0.08 0.18
P23 0.48 0.40 0.52 0.06 0.07 0.47
P24 0.29 0.47 0.41 0.02 0.07 0.31
P25 0.12 0.08 0.09 0.03 0.08 0.09
P26 0.15 0.14 0.49 0.03 0.07 0.36
P27 0.50 0.99 0.57 0.04 0.07 0.42
P28 0.23 0.24 0.30 0.04 0.07 0.27
P29 0.27 1.11 0.42 0.02 0.08 0.37
P32 0.20 0.19 0.26 0.03 0.07 0.24
P33 0.17 0.37 0.25 0.02 0.08 0.25

Note: PID = Participant ID. * The results for LR model were extracted from [10].

Table 4. Feature correlations between the filtered EOG signal and EL.

Feature BP BM CAM LR * CVM

Amplitude 0.991 0.999 0.999 0.997 0.999
Error 0.654 0.139 0.540 0.732 0.671
Peak Velocity 0.976 0.935 0.157 0.485 0.967
Latency 0.999 0.649 0.576 0.336 0.583

Improvement (%) – 8 8 7.5 8
Note: Correlations were computed using Pearson’s method. * The results for LR model were extracted from [10].
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Table 5. Signal-to-noise ratio and computation time.

Measurement BP BM CAM LR CVM

SNR 10.72 12.2 11.46 9.01 11.48
tc 0.48 0.22 0.94 0.72 0.98
% improvement in tc with respect to
BP − −13.47 95.36 49.19 104.43

Note: BM has a lower tc and other methods have a higher tc than BP.
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Figure 5. The responses of different filters, when applying on raw EOG signals. The comparison
against (a), raw EOG signal and EL signal demonstrate the contribution of each filter. Note: in (a), left
Y axis and blue line represent the raw EOG signal and right green axis represents the EL signal. From
(b) to (f), the left Y axis and blue line are the same and the right green axis represents the filtered signal.
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To conduct a more comprehensive examination of the capacity to retain EOG saccades
within the proposed denoising procedure, four key parameters were subjected to analysis.
Figure 6 provides a visualization of the average values of these primary parameters, consid-
ering data from all the participants (encompassing both EOG and EL saccades) throughout
the study, subsequent to the application of various denoising methods. In Figure 6a,b,
the behavior of θ following the application of each denoising method is depicted. As sum-
marized in Table 6, the utilization of the CVM has demonstrated a notable enhancement
of the EOG signal by 28.7% in comparison to the BP method, resulting in a reduction
in the EEOG. Furthermore, when compared to the EL signal, the overall EOG signal has
experienced a 22.3% improvement (EEOG−EL). Figure 6c illustrates the ts of the saccades,
revealing that the application of these denoising methods does not have a significant impact
on the EOG saccade ts. In Figure 6d, the relationship between the peak velocity (Vp) and
magnitude after the application of various denoising methods is elucidated. The filtered
saccades were fitted to Equation (5) and compared with the data from reference [32]. The re-
sulting fitted curves produced values of 62.13 for CVM, 110.63 for BP, 83.86 for CAM,
18.78 for BM, and 16.11 for LR, all fitted with p < 0.001. Although BM and LR exhibited low
RMSE values, their Vp was diminished post-filtering. In contrast, the CVM, BP, and CAM
yielded far more realistic Vp values compared to the peak velocity versus amplitude data
published in reference [32]. Among these methods, CVM displayed the lowest RMSE,
indicating the closest fit to the Vp formula. This analysis underscores that the CVM filter
has not only effectively denoised the signal but has also preserved the EOG saccades during
the denoising process. Representative examples of randomly selected trials are provided in
Appendix A for further illustration.

Table 6. Mean errors (DVA) and improvement (%) with respect to bandpass for model-based KFs.

Parameters BP BM CAM CVM LR *

E_abs_EL Mean 2.85 2.85 2.85 2.85 2.85
SD 0.42 0.42 0.42 0.42 0.42

E_abs_EOG Mean 6.80 5.49 4.93 4.85 6.75
SD 1.04 0.95 0.85 0.84 1.23
Improv. % - 19.30 27.50 28.70 1

E_EOG_EL Mean 7.57 6.76 6.18 5.88 7.83
SD Improv. % 1.13 1.16 0.97 0.93 1.28
Improv. % - 10.70 18.40 22.30 3.43

Note: * The results for LR model were extracted from [10] and E_abs_EL mean and SD remain unchanged, as the
filters were exclusively applied to EOG signals, with EL considered as the gold standard.

To conduct a more in-depth performance analysis of the CVM in comparison to other
denoising methods, we examined the kernel density of the probability distribution of
the percentage of the normalized error, as depicted in Figure 7. This was computed by
evaluating the (measured value − true value)/true value after the removal of outliers
using 1.5 times the IQR criterion. The calculated mean values (µ: EL = 0.18, CVM = 0.28,
CAM = 0.3, BP = 0.38, and BM = 0.55) of this distribution serve as an indicator of the accuracy
of each technique concerning EL. It is evident from the analysis that the CVM exhibits an
improvement in accuracy of 2%, 10%, and 27% when compared to the CAM, BP, and Brow-
nian techniques relative to EL. Furthermore, two-sample t-tests were conducted against EL,
and all the filtering techniques demonstrated the rejection of the null hypothesis, thereby es-
tablishing the significance of the difference between the recorded percentages of the normal-
ized error values (p values: CVM—1.65 × 10−6, CAM—1.59 × 10−7, BP—3.94 × 10−16, and
BM—2.15 × 10−54. Consequently, the CVM showcases superior accuracy in comparison
to other techniques concerning EL. The variance (σ2: EL = 0.03, CVM = 0.06, CAM = 0.07,
BP = 0.08, and Brownian = 0.08) of the percentages of the normalized error values also
reveals that the CVM demonstrates a 1%, 2%, and 2% enhancement in precision relative to
the CAM, BP, and Brownian techniques concerning EL.
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4. Conclusions

In this paper, we introduce an adaptive filtering method grounded in the assumption
of constant velocity, which entails considering the rate of change in the corneal–retinal
potential as constant. We then conduct a comparative assessment of this CVM against
established techniques, such as BP, BM, CAM, and LR-based methods. To rigorously evalu-
ate these methods, we employ controlled experiments wherein saccades are concurrently
measured using an OpenBCI Cyton Biosensing board (for EOG signal acquisition) and an
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EyeLink 1000 eye-tracker. We extract essential parameters including θ, EEOG/EL, Vp, and ts
from the signals and employ them to assess the performance of each denoising method,
with particular emphasis on characterizing the efficacy of the recently introduced CVM
approach. The CVM exhibited the most superior performance, manifesting in the filtered
data by achieving the lowest errors (EabsEOG = 9.52◦ and EEOG−EL = 10.63◦). The outcomes
reveal that, in comparison to the physical size of the saccade, the CVM enhanced the EOG
signal by approximately 29%, and in relation to the EyeLink (EL) recordings, it improved it
by over 22% when contrasted with the BP filter. Furthermore, compared to the physical size
of the saccade, the CVM outperformed the BP filter by approximately 2% and surpassed it
by over 21% when evaluated against the EL recordings. The kernel density distribution of
the normalized error percentages indicates that the introduction of sound mathematical
models can augment the filtering capabilities of Kalman filters (KFs). As demonstrated by
the results, both the CVM and CAM substantially elevated the accuracy and precision of
the eye movement recordings. Specifically, the CVM exhibited an average improvement of
13% in accuracy and 3% in precision when compared to other denoising methods.

In Figure 7, we present the computed means derived from the entire dataset, character-
izing the four key saccade features: amplitude (Figure 6a), error (Figure 6b), peak velocity
(Figure 6c), and latency (Figure 6d). A comparative analysis is performed between the
means obtained from the EyeLink and the EOG signals, utilizing various filtering methods,
including the BP, Brownian, CAM, and CVM. The accompanying error bars depict the
standard deviation. It is important to note that the EyeLink signal is regarded as the
primary reference point for comparison, given its recognized accuracy in measurements.
Upon examining Figure 6a,b, a discernible pattern emerges, wherein saccades with smaller
amplitudes exhibit superior accuracy in the EOG signal when compared to saccades with
relatively larger amplitudes. Specifically, targets A and D correspond to the most peripheral
goal locations, entailing saccade amplitudes of ±22◦ concerning the home position, where
the induced charge approximates zero. This peripheral positioning may introduce non-
linearity into the signal, potentially diminishing the accuracy of the recording. A similar
trend is observed in Figure 6b, where the saccades directed toward targets B and C display
reduced errors in comparison to those aimed at targets A and D. It is noteworthy that the
application of the filtering methods has a negligible impact on the latency of the signal.
This outcome aligns with expectations, as these filters are not anticipated to influence the
temporal resolution of the signal.

The CVM-based KF employed fixed values for Q and R”, as outlined in Section 2.2.5.
These values were established at the outset of each session and remained unaltered through-
out the signal processing phase. It is plausible that this static configuration may have con-
strained the algorithm’s overall performance. Thus, it is posited that the implementation of
a methodology to dynamically compute real-time adjustments for the Q and R values could
enhance the efficacy of the signal filtering process. As indicated in Figure 6d, saccades
demonstrate a constant velocity behavior for only high degrees and speeds. Consequently,
there may be a necessity to modify this method for effective application in very short
range saccades and low-speed scenarios, such as those encountered in smooth pursuit eye
movements. Furthermore, it is important to note that the method does not encapsulate
any mechanical or electrical characteristics of the eyeball or eye muscles, unlike models
such as LR which incorporate electromechanical properties. Therefore, in instances of
extreme conditions, such as individuals with disorders affecting the eyeball or eye muscles,
the method, in its current state, may encounter challenges in accurately enhancing signals.
Furthermore, the amalgamation of sensor data from both EyeLink (EL) and EOG sources
has the potential to yield highly accurate EOG saccades. However, such an approach may
impose limitations on the practical applicability of this technology, particularly in scenarios
requiring the detection of closed-eye movements. One notable limitation in the present
study pertains to the collection of EOG data under conditions of consistent illumination.
Given the sensitivity of the corneal–retinal potential to variations in lighting conditions, this
factor assumes significance in real-world applications where illumination levels are subject
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to change. Future research endeavors could extend upon this foundation by exploring
the filtering capabilities of this algorithm when applied to EOG records acquired under
varying lighting conditions. Additionally, there exists the opportunity to investigate novel
machine learning-based techniques for EOG denoising that offer comparable capabilities.
The current investigation is specifically concentrated on saccadic eye movements, given
their prevalence and frequent occurrence in daily human activities. Subsequent research
endeavors are anticipated to extend the scope of these methods to encompass less common
eye movement types, such as smooth pursuit movements and vestibular–ocular reflexes.
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Figure A1. Randomly selected trials. (a,c,e,g) are EL vs. raw EOG and (b,d,f,h) are raw EOG vs. CVM.
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