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Abstract: Machine learning techniques have attracted considerable attention for wireless networks
because of their impressive performance in complicated scenarios and usefulness in various applica-
tions. However, training with and sharing raw data obtained locally from each wireless node does not
guarantee privacy and requires a large communication overhead. To mitigate such issues, federated
learning (FL), in which sharing parameters for model updates are shared instead of raw data, has
been developed. FL has also been studied using blockchain techniques to efficiently perform learning
in distributed wireless systems without having to deploy a centralized server. Although blockchain-
based decentralized federated learning (BDFL) is a promising technique for various wireless sensor
networks, malicious attacks can still occur, which result in performance degradation or malfunction.
In this study, we analyze the impact of a jamming threats from malicious miners to BDFL in wireless
networks. In a wireless BDFL system, it is possible for malicious miners with jamming capability
to interfere with the collection of model parameters by normal miners, thus preventing the victim
miner from generating a global model. By disrupting normal miners participating in BDFL systems,
malicious miners with jamming capability can more easily add malicious data to the mainstream.
Through various simulations, we evaluated the success probability performance of malicious block
insertion and the participation rate of normal miners in a wireless BDFL system.

Keywords: blockchain; federated learning; jamming attack

1. Introduction

Along with the rapid development and impressive performance of machine learning
(ML) techniques, many wireless network researchers have adopted ML-based solutions
to overcome optimization problems in unknown or highly complicated environments [1].
However, conventional data-driven ML algorithms require large communication overheads
to transmit raw data from multiple mobile nodes to a centralized ML processor. In addition,
even if mobile edge nodes are equipped with the computational capacity to train a local
learning model, data sharing with neighboring nodes is still required because the amount
of data that each device can collect is limited. More importantly, in this type of learning
process, there are concerns about security and privacy during data transmission and
sharing [2].

Recently, collaborative learning, called federated learning (FL), has attracted much
attention. FL-based algorithms perform the training process without exchanging local data
samples [3,4]. A centralized server coordinates edge nodes participating in FL and produces
a global model using parameters collected from locally trained models. After producing
the global model, edge nodes download the globally updated model and compute the next
local update. However, because of closed-loop model exchanges, the delay of each global
model update is occasionally more than several minutes (e.g., 10 min or more in some
systems) [3]. In addition, connectivity can be unstable and difficult to guarantee when the
communication channel is vulnerable or malfunction occurs at the centralized server [5].
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Pokhrel and Choi [6] proposed decentralized FL that exploits the blockchain-based
model update and verification process in a distributed manner to coordinate the global
model. Blockchain-based decentralized FL (BDFL) can provide privacy for the nodes by
sharing the model parameters instead of raw data, and they work in a decentralized manner
using the blockchain mechanism. By providing rewards proportional to the usefulness of
data sample sizes, BDFL motivates nodes to actively participate in learning [6]. In addition,
BDFL can extend the usage scenarios of FL in wireless networks such as unmanned
aerial vehicle networks [7]. When BDFL is adopted in a wireless network system, the
collection/sharing of locally updated models and the broadcasting of new blocks are
transmitted through wireless channels. However, due to the vulnerability of wireless
networks channels, security issues caused by jamming attacks still exist. Wireless channel
data transmission can be severely affected by interference signals and fail when the signal-
to-interference-plus-noise ratio (SINR) is insufficient. Therefore, when there are strong
jamming signals, miners may fail to receive any local parameters and be excluded from the
BDFL system.

If the number of participating miners decreases because of a jamming attack, the
malicious miner group can achieve a higher attack success probability even with the same
computing power. In this study, we investigated the impact of jamming attacks on BDFL in
wireless networks. We assumed that the malicious miner group has a jamming capability
and attempts to insert a malicious block into the ledgers of normal miners. In a wireless
BDFL system, miners associated with adjacent edge nodes collect the parameters of locally
updated models and perform block mining to generate a new block with its updated
global model. A new miner block that successfully generates the hash is propagated to
other miners. However, data transmission from edge nodes is vulnerable to interference
signals. By exploiting this vulnerability in a BDFL system, malicious miners participating
in the mining process of the blockchain system interfere with other miners’ data collection
by jamming signals. Because normal miners that fail to receive sufficient local model
parameters do not perform proof-of-work computation, malicious miners can exclude
other miners from BDFL by the jamming attack. Then, malicious miners can succeed
in proof-of-work computation with a higher probability even with the same computing
power, thus inserting malicious blocks into the mainstream. In other words, the malicious
miner group can perform a 51% attack without a significant increase in the computing
power required for block mining. When a group of miners controls more than 50% of the
network’s mining hash rate, they can control the blockchain mainstream. In this way, the
attacker group can introduce an altered blockchain into the network, called a 51% attack or
majority attack [8]. In this paper, we describe the outage probability caused by jamming
attacks and the corresponding attack success probability of attackers who attempt to add
malicious blocks to the mainstream. The main contributions of this study are summarized
as follows:

• We present a security threat that can be induced by a malicious miner group with
jamming capabilities in blockchain-based FL operating in a wireless network. Under
proof-of-work mechanisms for blockchain consensus protocols, normal miners cal-
culate a hash value to upload a global model generated by combining local model
parameters received from adjacent edge nodes to the blockchain. If sufficient data
cannot be collected because of a jamming attack, the corresponding miner will not
proceed with the mining process and be excluded from BDFL. In addition, we present
a conceptual countermeasure to respond to the attack.

• We analyze the outage probability of normal miners and the success probability of
malicious block insertion under jamming attacks. Jamming attacks increase the outage
probability of normal miners, and as normal miners’ mining participation decreases,
the block insertion success probability of malicious miner groups increases.

• Using various simulations, we evaluated the performance of the success probability
of malicious block insertion and the participation rate of normal miners in a wireless
BDFL system.
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This paper is organized as follows. In Section 2, we present related work on blockchain-
based FL and its security issues including jamming attacks in wireless networks. In
Section 3, a system model for the considered BDFL system in a wireless network and signal
transmissions under a jamming attack by malicious miners is described. In Section 4, we
analyze the outage probability of normal miners and the success probability of attacks that
attempt to insert malicious blocks into the mainstream of BDFL systems. In Section 5, the
simulation results are presented, and the conclusion is presented in Section 6.

2. Related Work

ML is a data-based learning algorithm, and the amount of data used for training
directly affects learning performance. In conventional learning algorithms, a system in
which a large amount of data are aggregated and used on a centralized server has been
considered [9]. However, data aggregation on a centralized server is problematic for
guaranteeing privacy [2]. FL was proposed to prevent privacy issues and alleviate system
overheads during data transmission and sharing. FL aggregates local model parameters
instead of data samples originating from each edge node [4,10]. In FL, a centralized server
produces a global model using the parameters collected from locally trained models, and
edge nodes download the globally updated model and compute their next local update.

Concerned about server malfunction and connection to the server, Pokhrel and Choi [6]
addressed decentralized FL that manages a global model through a blockchain mechanism
rather than deploying a centralized server or unit. They developed a mathematical frame-
work that features a controllable network and blockchain-based FL parameters, such as the
number of retransmissions, block sizes, block arrival rates, and frame sizes. End-to-end
delay is quantified using the analysis results, and a delay minimization algorithm that
adjusts the block arrival rate based on channel dynamics was proposed. Lu et al. [11] devel-
oped a secure data-sharing structure using blockchain technology, tailored for distributed
stakeholders. They incorporated privacy-preserving FL into the consensus mechanism of a
permission-based blockchain, enabling the computational efforts required for consensus to
simultaneously facilitate federated training. Nguyen et al. [12] presented an overview of the
fundamental concepts and explored the opportunities of integrating of FL and blockchain
in multi-access edge computing networks. Cui et al. [13] studied a fast blockchain-based
FL to handle large amounts of communication traffic in practical scenarios. They proposed
a compression communication method for blockchain-based FL to improve communica-
tion efficiency. The proposed method compresses traffic while minimizing the training
loss subject to a limited training time. They verified the performance of the proposed
method with regard to compression and block generation rate. Ali et al. [14] conducted
a comprehensive analysis of IIoT literature focusing on the integration of Blockchain and
federated learning to augment intrusion detection systems and boost their capabilities
in detecting threats. Beltrán et al. [15] examined the key differences between centralized
and decentralized FL, focusing on federation architectures, topologies, communication
methods, and security approaches.

Aponte-Novoa et al. [16] investigated 51% attacks using block mining behavior. By
detailing the characterization of miners in the Bitcoin and Crypto Ethereum blockchain,
they identified a mining pattern among the main miners. They also demonstrated that the
hash rate power was increased in a minimal set of miners, which could present a risk to
the current blockchain-based system. Ye et al. [8] proposed a tree-structure method that
simulates the blockchain process and analyzes the relationship between the number of
attacks and the number of states to evaluate the security of each state. They applied the 51%
attack strategy to simulate the attacker’s behavior to determine the trend of the number
of states and the number of attacks. Shrestha and Nam [17] investigated the design of
a regional blockchain of VANETs to achieve a low 51% attack success probability. They
derived a condition that guarantees a low 51% attack success probability in terms of the
number of normal and malicious nodes, message delivery time, and puzzle computation
time. Yang et al. [18] combined the history-weighted information of miners using the



Sensors 2024, 24, 535 4 of 17

total calculation difficulty to increase the cost of a traditional attack to alleviate the 51%
attack problem. Khan et al. [19] examined the X.509 Public-Key Infrastructure (PKIX)
system, focusing on its architecture, history, certificate issuance, and vulnerability to
cyber-attacks. They covered various PKIX and certificate revocation proposals, including
their modern implementation on blockchain and ledger technologies. Guru et al. [20]
investigated the current landscape of blockchain consensus algorithms, focusing on their
security features and vulnerabilities to various attacks such as ARP, DDoS, and sharding in
permissionless blockchains.

Along with the 51% attack problem, security issues regarding blockchains and FL have
been studied. Gangwani et al. [21] proposed an architecture that involves various types of
nodes that can be used to integrate IoT devices and blockchain technology. They identified
and described various challenges that arise when a blockchain and IoT are integrated.
Ruby et al. [22] investigated the challenges of selecting clients and allocating channels, as
well as managing power control in the uplink process of FL within the IoMT field. This was
particularly focused on scenarios involving a jammer, with an emphasis on the impact on
the duration of long-term learning. They utilized the Stackelberg game to find the joint best
response strategy for the jammer and FL network by leveraging the difference of convex
programming approach and the dual decomposition technique. Xu et al. [23] investigated
the security performance of wireless blockchain networks in the presence of malicious
jamming when the Raft consensus mechanism is adopted. Shayan et al. [24] introduced a
completely decentralized, peer-to-peer method for multi-party ML. This approach leverages
blockchain technology and cryptographic elements to facilitate a privacy-secured ML
procedure among peering clients. Shi and Sagduyu [25] studied how to launch over-the-air
jamming attacks to disrupt the FL process when it is executed over a wireless network.
They took into account the impact of jamming attacks on various transmission aspects: this
included the disruption of local model updates sent from clients to the server, interference
with global model updates transmitted from the server to clients, or a combination of
both scenarios.

Research on jamming attacks continues to target vulnerabilities in the physical layer
of wireless networks. Kim et al. [26] studied a deep learning-based reactive jamming attack
that selectively transmits jamming signals when the detected signal is expected to be a
control frame such as an acknowledge frame. Amuru et al. [27] studied a learning-based
jamming attack that adaptively adjusts physical layer parameters. Their proposed method
is based on a multi-armed bandit, and the signaling scheme, transmission power, and
jamming duration are adjusted to maximize the jamming efficiency against stationary pairs
of transmitter and receiver nodes. The attacker learns the duration of signals by training
the deep neural networks using the front part of the collected signals and reactively attacks
the transmitted signal in the air when the duration of the detected signal is expected to
be shorter than the threshold. Kim and Lim [28] studied beamforming-based jamming
attacks in blind networks. Assuming that attackers have no prior knowledge in blind
networks, they proposed a reinforcement learning-based beamforming-based jamming
attack that measures statistical changes in the channel busy time to evaluate the impact of
the jamming. Pirayesh et al. [29] presented an extensive survey of existing jamming attacks
and anti-jamming strategies across various wireless networks.

Although many recent studies have focused on security issues regarding blockchain
and FL, consideration of the environment in which jamming attacks occur has not received
much attention. H. M. Buttar et al. [30] investigated a comprehensive study aimed at miti-
gating active attacks on IoT networks, which leverage blockchain technology for enhanced
security. They considered network model comprises a singular leader node responsible for
the centralized management of logs and transactions, alongside various follower nodes.
However, a notable gap persists in the existing literature regarding strategies to counter
jamming attacks within BDFL. Because threats to the physical layer of wireless networks
are inevitable, these vulnerabilities must be considered. To the best of our knowledge, the
current paper is the first to address the threat of jamming attacks specifically within wire-
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less systems employing BDFL. In this study, we analyzed a scenario in which a malicious
miner group with jamming capability aims to increase the probability of block insertion
success by interfering with the data collection of neighboring miners in the BDFL system.
In our previous work, we presented a conceptual scenario in which malicious miners with
jamming capabilities intervened in a BDFL system [31]. We provided a proof-of-concept of
the impact of jamming on blockchain-based processes by simply limiting the computational
power of normal miners. To improve this, herein, the attack on the BDFL system scenario
and the system model are further specified, and the jamming impact and resulting block
insertion success probability are analyzed.

3. System Model

We considered a wireless network scenario in which edge nodes can train their local
learning model and upload/download learning parameters to/from an associated miner
in a BDFL system. Figure 1 shows wireless network BDFL system. Each wireless edge node
downloads a global model from the associated wireless miner that updates the global model
by aggregating local model parameters from associated edge nodes or using the global
model received in the new block from other miners that successfully generates the hash for
the new block. Next, each edge node updates the local model with the help of the global
model and trains the local model with newly obtained local data samples. Then, each miner
collects locally updated model parameters from associated nodes and performs mining to
generate a new block. When miners receive newly updated parameters, they broadcast the
obtained parameters to other miners to accelerate the learning convergence and alleviate
the biased learning. Note that the number of collected sets of model parameters for each
miner can vary depending on the location of the miners, channel conditions, and number
of associated nodes.

Figure 1. Blockchain-based decentralized federated learning in wireless networks.

3.1. Blockchain-Based Decentralized FL in Wireless Networks

In the BDFL system, we denote M as the set of normal miners, where
M = {m1, m2, · · · , mM} and M is the number of miners. Miner mj is connected to Nj
edge nodes, where Nj = {nj,1, nj,2, · · · , nj,Nj} is the set of edge nodes connected to mj, and
N is the set of all edge nodes. Miner mj performs block mining and collects local model
parameters from Nj and adjacent miners. Mj = {mj,1, mj,2, · · · , mj,Mj} denotes the set of
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miners within the communication range of mj, where Mj is the size of set Mj. Using the
collected local model data, each miner generates a global model candidate which becomes
the new global model when the corresponding miner successfully generates the hash for
the new block. The collected local model parameters are aggregated in accordance with the
adopted model aggregation algorithm (i.e., FedSGD and FedAvg).

Each miner inserts the collected local parameters into a contending block until the
block size reaches the threshold Rs or the gathering time exceeds the time threshold Rt. The
miner then conducts the model aggregation. The miner then begins the block generation
process, and the newly generated block is propagated into the blockchain system and
verified if one miner successfully generates the hash for the new block. In this study, the
blockchain system adopts a proof-of-work consensus mechanism that requires a significant
amount of computing power from a network of devices. When a miner receives a newly
generated block during its block generation, it stop the block generation computation and
verifies the received block by checking the hash value. If the received new block has the
correct hash value, the miner sends an acknowledgment and performs the mining process
for the next block. All nodes are associated with their miner download a new global model
and use it for local model updates.

In this study, we assumed that each miner sets out on a block generation process when
the number of collected local model data in the contending block is Nth or more. For the
next global model, mj collects local model data from Nj nodes and Mj adjacent miners and
inserts the collected data into a contending block. Here, if the collected data is equal to
or bigger than Nth, the miner begins the block generation process. However, due to the
processing time required for the local model learning of each edge node, fewer than Nth
nodes or miners can transmit the data. In this case, mj would not be able to collect Nth or
more data. In addition, queueing or transmission delays may cause mj to not collect enough
data. Furthermore, mj may fail to receive signals due to the vulnerability of the wireless
channel between mj and nj,i or mj,k. In these cases, when mj fails to collect sufficient data,
the miner is not involved in the block generation process; only the other miners participate
in the process.

3.2. Jamming Attack by Malicious Miners

In this study, it was assumed that a malicious miner group participates in BDFL to
make malicious blocks that are included in the mainstream while interfering with other
normal nodes or miners using wireless jamming attacks. Notably, the objective of the
malicious miner group is not to impact model aggregation by altering local model data.
Instead, their aim is to affect the global model disseminated through the BDFL system
by inserting malicious blocks into the blockchain system. We denoted a set of malicious
miners, called attackers, as A where A = {a1, a2, · · · , a|A|}. Attackers can propagate
jamming signals; therefore, the outage probability of transmissions between normal nodes
in N and M increases. Here, we assumed that the attackers perform reactive jamming, in
which jamming signals are propagated when the transmitted signals are detected. Reactive
jamming has a lower detection probability and higher power efficiency compared to
continuous jamming.

Under jamming attacks by attackers, the received signal from nj,i at mj is represented
as follows:

ynj,i ,mj =hnj,i ,mj

√
pnj,i xnj,i + I(Anj,i ) + zmj , (1)

where hnj,i ,mj is the channel gain between nj,i and mj, pnj,i is the transmission power of nj,i,
and zmj is the white Gaussian noise with variance σ2 at mj. I(Anj,i ) is the sum of strong
interference from members of the attacker group located in the communication range of nj,i
to detect the transmitted signal and reactively attack the corresponding signal. Here, Anj,i

is a set of attackers that cause I(Anj,i ). When mj,k receives locally updated parameters from
associated nodes, it broadcasts the received parameters to adjacent other miners, including
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mj for performing unbiased FL and accelerating the learning convergence. The received
signal at mj, which is transmitted from mj,k, is represented as follows:

ymj,k ,mj = hmj,k ,mj

√
pmj,k xmj,k + I(Amj,k ) + zmj , (2)

where hmj,k ,mj is the channel gain between mj,k and mj, pmj,k is a transmission power of
mj,k, and I(Amj,k ) is the sum of the strong interference from members of the attacker
group located in the communication range of mj,k to detect the transmitted signals and
reactively attack the corresponding signal. Here, Amj,k is a set of attackers that cause
I(Amj,k ). In this study, it was assumed that signals transmitted from other nodes or miners
do not interfere with the current signal due to the adopted transmission protocol for BDFL
even if mj receives some interference signals that are negligibly small compared to strong
jamming signals.

Figure 2 shows the BDFL process in a wireless network comprising edge nodes,
normal miners, and attackers. As shown in Figure 2, attackers launch a jamming attack
on nearby miners, which disrupts their data receiving and prevents them from collecting
enough data. These interrupted miners have difficulty collecting data, and some miners
do not proceed with the block generation process. In this case, the number of attackers
can be more significant than that of the normal miners, and attackers have a higher chance
of successfully computing the hash value before the normal miners. Accordingly, the
malicious block stream created by the attacker group can become mainstream. Section 4
presents a detailed explanation of malicious block insertion.

Figure 2. Blockchain-based decentralized federated learning with malicious miners in a wire-
less network.

4. Jamming Attacks on Blockchain-Based Decentralized FL in Wireless Networks

In the BDFL system, blocks are verified by a proof-of-work, and one stream can be
maintained through the consensus, such as the longest chain consensus adopted in the
Bitcoin protocol. In the longest chain consensus, if two or more different streams are
connected to one block for reasons such as network delay, and a chain fork occurs, only one
stream is maintained with the longest chain as the mainstream. In this study, the longest
chain consensus was adopted to maintain the mainstream.

Although the blockchain system is more reliable than the existing centralized system,
there remains a risk of the mainstream being manipulated by attackers. The manipulated
blocks are included in the mainstream when the following conditions are satisfied:

(i): The number of blocks generated by normal miners is greater than the number of
transfer confirmations.

(ii): The number of blocks in the manipulated stream is greater than the number of blocks
in the normal stream.
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The normal transaction is completed when condition (i) is satisfied, whereas the
manipulated stream becomes mainstream if condition (ii) is also satisfied by the longest
chain consensus. Notably, the attack success probability depends not only on the computing
power of normal and malicious miners but also on the stability of radio transmissions in a
BDFL-based wireless network.

If normal miners have difficulty collecting data because of a jamming attack, there is a
high probability that malicious miners can insert manipulated blocks into the mainstream.
This is because the total computing power of the normal miners decreases, and as a result,
a proportion of the normal miner group’s computing power decreases compared to the
malicious miner group’s when miners who did not collect enough data due to reception
failure drop out of the block mining process. In other words, the victim miner will not be
able to collect enough data and will be left out of the mining process when wireless signals
transmitted from edge nodes to the victim miner are detected and reactively interfered
by attackers with jamming capability. Here, the attacker observes the target channel and
immediately radiates a jamming signal when a target signal is detected for performing the
reactive jamming attack. In this case, the number of blocks created by normal miner groups
decreases, and it is possible for the attacker group to generate a longer block stream and
turn this stream into the mainstream more easily when the jamming attack is successfully
performed. In the following section, we analyze the attack success probability of malicious
block insertion.

4.1. Miner Outage Probability

Under the assumption that the normal miners and edge nodes transmit data while
avoiding signal collision, the SINR at miner mj from the associated node ni ∈ Nj is
expressed as follows:

γni ,mj =
pni |hni ,mj |2

I(Anj,i ) + σ2 . (3)

With simple data transmission in the Rayleigh fading channel, the outage probability at
miner mj from node ni is represented as follows [32]:

Pout(ni, mj) = P(γni ,mj < γth)

= 1 − exp
(
−

(
1

|hni ,mj |
2

)
(22Rt − 1)

γni ,mj

)
,

(4)

where γth is the SINR threshold and Rt is the target probability. Similarly, the SINR and
the corresponding outage probability from miner mk to mj are expressed as follows:

γmk ,mj =
pmk |hmk ,mj |2

I(Amj,k ) + σ2 , (5)

Pout(mk, mj) = P(γmk ,mj < γth)

= 1 − exp
(
−

(
1

|hmk ,mj |
2

)
(22Rt − 1)

γmk ,mj

)
.

(6)

Here, the interference terms in Equations (3) and (5) toward miner mj are represented
as follows:

I(Anj,i ) = ∑
ai∈Anj,i

pai |hai ,mj |
2, (7)

I(Amj,k ) = ∑
ak∈Amj,k

pak |hak ,mj |
2. (8)
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Note that Anj,i and Amj,k are the sets of attackers located in the communication range
of ni and mk trying to transmit data to the miner mj, as defined in Section 3.2.

Let Smj be a set of normal miners/nodes that successfully transmit data to mj. Then,
Smj can be represented as follows:

Smj ={sj|ni ∈ Njwith probability
(
1 − (4)

)
,

mj,k ∈ (M\ mj) with probability
(
1 − (6)

)
.

(9)

Because miner mj does not perform the mining process when |Smj | < Nth, the set of
miners participating in BDFL (i.e., M̂) is represented as follows:

M̂ ={mj|mj ∈ M, |Smj | ≥ Nth}. (10)

4.2. Attack Success Probability of Malicious Block Stream Generation

In this section, we describe the attack success probability when the set of miners
participating in the blockchain process is denoted M̂ instead of M. Here, the probability of
(i) and (ii) are Pi(M̂,A) and Pii(M̂,A), respectively; therefore, the probabilities Pi(M̂,A)
and Pii(M̂,A) can be calculated using the number of generated blocks. The number of
blocks generated by normal miners in M̂ and attackers in A is affected by the computing
power of each group, and BM̂ and BA are the number of normal blocks and the number
of malicious blocks originating from M̂ and A, respectively. f c(·) is the function of the
computing power normalized by the total computing power sum of both normal miners and
attackers in the networks; therefore, the probability Pi(M̂,A) is calculated as follows [33]:

Pi(M̂,A) =

(
BM̂ + BA − 1

BM̂ − 1

)
( f c(M̂))BM̂( f c(A))BA . (11)

The probability Pii(M̂,A) is calculated as follows [34]:

Pii(M̂,A) =
( f c(A)

f c(M̂)

)BM̂−BA+1, f c(M̂) > f c(A), BM̂ ≥ BA

1, otherwise

.
(12)

Using the probabilities calculated by Equations (11) and (12), the attack success probability
Patt(M̂,A) is calculated as follows:

Patt(M̂,A)

=
∞

∑
BA=0

Pi(M̂,A)Pii(M̂,A)

=


1 − ∑

BM̂
BA=0 (

BM̂+BA−1
BM̂−1 )( f c(M̂))BM̂( f c(A))BA

×
(
1 −

( f c(A)

f c(M̂)

)BM̂−BA+1), if f c(M̂) > f c(A)

1, if f c(M̂) ≤ f c(A)

.

(13)

Equation (13) describes the probability that malicious blocks generated by attackers will
be included in the mainstream. The malicious blocks included in the mainstream cause
the malfunction or performance degradation of wireless nodes in the networks. Therefore,
Equation (13) equals 1 when the computing power sum of the normal miners participating
in BDFL is less than the computing power sum of the attackers.

In general, attackers generally increase high-cost computing power to increase the
attack success probability. However, in a wireless BDFL system, attackers with jamming
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capability can perform jamming attacks instead of increasing computing power to insert
malicious blocks into the blockchain system. As interference from attackers increases, nor-
mal miners find it difficult to participate in BDFL, as represented by Equations (9) and (10).
Because M̂ depends on the outage probabilities as calculated by Equations (4) and (6), the
probability calculated by Equation (13) is eventually affected by the jamming success prob-
ability. Hence, without a significant increase in the computing power sum of attackers for
block mining, that is f c(A), the probability calculated by Equation (13) could be increased
by attackers with jamming capability.

It is worth nothing that the analysis of jamming attacks in the wireless BDFL system
presented in this paper is not limited to FL applications and can be extended to the analysis
of block insertion attempts by adversary groups with jamming capabilities in general
wireless blockchain systems. Considering the ongoing researches in recent times concerning
jamming attacks in wireless blockchain systems [35], this paper, which deals with attacks
involving intentional selective jamming for block insertion rather than naive jamming, may
have the potential to make a valuable contribution to such research. However, a detailed
analysis of this matter falls outside the scope of this paper, so in this paper, we have limited
our discussion to presenting its potential applicability.

4.3. Countermeasures

BDFL operating in a wireless network cannot be free from jamming attacks because of
the inherent characteristics of the wireless channel. Naive countermeasures against jam-
ming attacks include anti-jamming techniques like frequency hopping spread spectrum or
direct sequence spread spectrum, which aim to evade channels where jamming signals are
present or to prevent detection by jammers. However, these countermeasures may become
ineffective if a miner with prior knowledge of the communication protocol participates
in the attack. Security rules can be used to prevent the participation of malicious miners;
however, because the participating miners may have different purposes after approval,
countermeasures are required to respond to such threats. In other words, it is necessary for
a blockchain system to detect and hinder block insertion attacks by malicious miner groups
with jamming capability. One possible approach is to detect abnormalities by increasing the
likelihood of an attack’s existence through a dedicated security channel, especially when
an edge node identifies persistent transmission failures to the miner in the corresponding
channel. Then, miners who have reported this can check the communication or channel
status with other nodes and determine whether there is an attack. For example, under
this process, if there is a notable discrepancy in channel conditions among neighboring
miners, those with unusually better channel conditions may be subject to suspicion. Then,
measures such as imposing restrictions on the block insertion activities of these miners can
be considered. On the other hand, by pre-assessing the computing power of miners, the
blockchain system can identify anomalies by comparing the block generation rate of specific
miners against their computing capabilities, flagging rates that are disproportionately high
or low. As a countermeasure that can reduce the effectiveness of the attack, if the number of
successful hash calculations for each miner or a randomly selected group of miners is higher
or lower than a certain threshold within a certain time window, the block transmitted at
this time is ignored and the next miner’s block selected. In this case, since miner groups
are randomly selected and partitioned, it becomes easier to detect the presence of an attack
if a malicious miner group attempts to disrupt the mining participation of nearby miners.
Additionally, periodically updating the grouping and refraining from disclosing group
designation information to miners can also prevent targeted attacks.

5. Performance Evaluation

In this section, we present the results of MATLAB-based simulations designed to
evaluate the impact of jamming on transmission outage and the success probability of a
block insertion attack in a wireless BDFL system. In the network, the normal miners are
evenly distributed across the area in a grid pattern. Normal nodes are uniformly distributed
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in the network, and each node is associated with the closest normal miner to achieve high
received signal strength. Attackers are randomly distributed in the network, and they
reactively propagate jamming signals when the data signals of local model parameters
from miners or edge nodes participating in BDFL are detected. For the simulation, we
assumed that the computing powers of miners and attackers were the same.

The simulation was implemented in MATLAB, and the simulation parameters are
listed in Table 1. We assumed a network space of 100 × 100 m2 for the simulations. Trans-
missions were performed at a carrier frequency of 2.4 GHz and attenuated with a pathloss
exponent of 3 under the Rayleigh fading channel. The transmission power of normal
nodes, normal miners, and attackers was equally 10 dBm for each. The target probability
Rt calculated by Equations (4) and (6) was set at Rt ∈ {0.5, 1.5} bps/Hz. As the target
rate increases, the required SINR for successful transmission increases, and eventually, the
outage probability increases, as calculated by Equations (4) and (6). Attackers with jamming
capability can employ either omnidirectional or beamforming jamming. Depending on the
jamming strategy employed by attackers, the amount of mean interference toward normal
nodes or miners calculated by Equations (7) and (8) is then determined. For beamforming
jamming, the beamforming gain is added toward the channel gain toward the target. In the
simulation, we assumed 10 dBi beamforming gain for jamming signals toward the attack
target, as followed by [28]. Note that the beamforming gain of the jamming signals can
be increased by narrowing the beam width. However, as the beam width narrows, the
number of victim miners or normal nodes decreases depending on the network topology.
In the simulation, we assumed a grid and uniform distribution of miners and normal nodes,
respectively, to consider common network scenarios. Thus, we set the attackers to perform
beamforming jamming on the nearest miner; otherwise, we performed omnidirectional
jamming attacks.

Table 1. Wireless channel-related parameters.

Parameter Value

Carrier frequency 2.4 [GHz]

Pathloss exponent 3

Small-scale fading Rayleigh fading

Transmission power 10 [dBm]

Beamforming jamming 10 [dBi]

Target probability {0.5, 1.5} [bps/Hz]

Network area 100 × 100 [m2]

Figure 3 shows the attack success probability with respect to the number of attackers
when |M| = 9 and |N | = 45. As shown in Figure 3a, when attackers without jamming
capability are deployed in the network, the attack success probability depends strictly on
the number of attackers. Note that we assumed that the computing power of miners and
attackers is the same for block generation; thus, the average attack success probability is
0.5 when there are nine attackers in the network. When attackers with jamming capability
are deployed, they can achieve a higher attack success probability even when the number
of attackers is less than the number of miners. As shown in Figure 3, beamforming jam-
ming achieved slightly higher attack success probabilities than omnidirectional jamming.
The simulation results imply that there could be significant performance degradation in
BDFL-based wireless services when attackers have jamming capability. The simulation
results also show that an increase in target probability may lead to a higher attack success
probability because the outage probabilities for transmissions between non-attacker nodes
such as normal miners or normal nodes increase. Figure 3b shows the results when Nth
is increased to 7 compared to the results where Nth = 3, as shown in Figure 3a. In this
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case, because the miners need to gather more data to participate in BDFL, as calculated by
Equations (9) and (10), higher outage probabilities are introduced compared to the results
shown in Figure 3a.
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Figure 3. Attack success probability when |M| = 9 and |N | = 45 with regard to the number of
attackers. (a) Attack success probability, Nth = 3; (b) attack success probability, Nth = 7.

Figure 4 shows the attack success probability when |M| = 16 and |N | = 80. The
results show that the attack success probabilities of attackers without jamming capability
significantly decrease compared to the results shown in Figure 3. This is because the
number of normal miners increases and the attackers need higher computing power for
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block generation to make malicious blocks become mainstream. However, if the attackers
can effectively interfere with other nodes by jamming signals, they will achieve a higher
attack success probability.
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Figure 4. Attack success probability when |M| = 16 and |N | = 80 with regard to the number of
attackers. (a) Attack success probability, Nth = 3; (b) attack success probability, Nth = 7.

Figure 5 shows the average number of miners participating in the BDFL calculated
by Equation (10) with respect to the number of attackers with jamming capability when
|M| = 9 and |N | = 45. As shown in the results, in some wireless network scenarios,
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attackers with jamming capability can significantly impair the BDFL service by disrupting
miners’ participation.
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Figure 5. Average number of normal miners actually participating in BDFL when |M| = 9 and
|N | = 45 with regard to the number of attackers. (a) Average normal miners (|M̂|), Nth = 3;
(b) Average normal miners (|M̂|), Nth = 7.

Using the simulation results, we verified the impact of jamming attacks on the BDFL
system when an attacker group attempts to insert malicious blocks into the mainstream.
Because the number of participating miners is reduced when miners fail to collect enough
data because of a jamming attack, the attack success probability increases as the number
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of attackers with jamming capability increases or the number of required Nth increases.
Therefore, it is necessary to consider the capability of attackers when designing a BDFL
system in a wireless network and setting the parameters. To respond to the above attack,
each miner needs to be able to adjust the Nth value adaptively by considering the number of
connected edge nodes and the channel environment. In addition, the blockchain mechanism
should be able to identify abnormalities and devise countermeasures to deal with them.

6. Conclusions

In this study, we investigated the impact of jamming attacks on BDFL in wireless
networks. In general, to increase the attack success probability of malicious block insertion
on blockchain systems, attackers must increase the mining computational power to generate
more blocks than normal miners. However, when the attack is performed in a wireless
network where the transmission channel is vulnerable to interference signals, attackers can
increase the success probability with less computing power by failing to receive signals
from normal miners during a jamming attack. Therefore, service providers should pay
more attention to wireless channels when employing blockchain systems for FL mechanism.
In this study, we studied the outage and attack success probabilities when attackers with
jamming capability perform an attack to insert a malicious block into a BDFL system.
Through various simulations, we evaluated the performance of the success probability of
malicious block insertion and the participation rate of normal miners in the wireless BDFL
system. Here, we also verified that a malicious miner group can increase the attack success
probability by performing a jamming attack instead of significantly increasing high-cost
computational power.

In future work, we intend to develop specific countermeasures against jamming threats
that may arise in wireless systems adopting BDFL. We aim to develop an algorithm that
can detect the existence of malicious miners and prevent block stream generation from
being dominated by specific miner groups with jamming capability. In addition, our next
study will address developing algorithms that consider potential vulnerabilities in the
model aggregation process, as well as the integrity and confidentiality of aggregated model
updates. Moreover, we plan to build and evaluate the performance of a system targeting
specific protocols of blockchain and FL. Additionally, we aim to observe the performance
changes of the system under various jamming techniques and assess the robustness of the
system with the developed countermeasures.
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