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Abstract: Recent advancements in computer vision technology, developments in sensors and sensor-
collecting approaches, and the use of deep and transfer learning approaches have excelled in the
development of autonomous vehicles. On-road vehicle detection has become a task of significant
importance, especially due to exponentially increasing research on autonomous vehicles during
the past few years. With high-end computing resources, a large number of deep learning models
have been trained and tested for on-road vehicle detection recently. Vehicle detection may become a
challenging process especially due to varying light and weather conditions like night, snow, sand,
rain, foggy conditions, etc. In addition, vehicle detection should be fast enough to work in real time.
This study investigates the use of the recent YOLO version, YOLOx, to detect vehicles in bad weather
conditions including rain, fog, snow, and sandstorms. The model is tested on the publicly available
benchmark dataset DAWN containing images containing four bad weather conditions, different
illuminations, background, and number of vehicles in a frame. The efficacy of the model is evaluated
in terms of precision, recall, and mAP. The results exhibit the better performance of YOLOx-s over
YOLOx-m and YOLOx-l variants. YOLOx-s has 0.8983 and 0.8656 mAP for snow and sandstorms,
respectively, while its mAP for rain and fog is 0.9509 and 0.9524, respectively. The performance of
models is better for snow and foggy weather than rainy weather sandstorms. Further experiments
indicate that enhancing image quality using multiscale retinex improves YOLOx performance.

Keywords: autonomous vehicles; image processing; vehicle detection; YOLOx; deep learning

1. Introduction

The last decade witnessed automation in several areas like industry, engineering, etc.
The autonomous vehicle (AV) paradigm emerged as a potential solution to overcome the
limitations of human drivers. In addition, AVs facilitate safe, comfortable, and eco-friendly
future transportation. The current estimation of road accidents causing death is 1.3 million
while the injuries are approximately 3.5, as stated by the World Health Organization [1].
Such accidents are predominantly caused by human error of judgment, slow reflexes due
to intoxication, fatigue and sleep, and violations [2,3]. The prime objective of AVs is to
avoid such errors and violations and eradicate or mitigate the chances of accidents, the
final goal is to replace the human driver completely. The AV paradigm targets to reduce
these accidents gradually with different levels of automation which are defined by the
Society of Automotive Engineers (SAE). With each level of automation, the objective is
to enable automation to reduce human errors and mitigate the probability of accidents.
Finally, with full automation (level 5 of SAE), humans will be fully replaced and AVs will
make all decisions. Test drives are now underway for level 4 (high automation) by different
companies such as Tesla, Waymo, Audi, etc.

AVs are equipped with a large range and variety of sensors, both in terms of hardware
and function. Such embedded sensors collect data for the surrounding environment contin-
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uously. The data collected by these sensors are later used for decision making, employing
artificial intelligence (AI)-based frameworks. Radars, light detection and ranging (LiDAR),
video cameras, infrared sensors, and thermal cameras are the commonly used AV sensors.
The video camera provides continuous streams of traffic environment and is the common
choice for environment perception during the daytime. Vehicle detection using video
data is an important task for AVs for drivable space determining, path planning, traffic
flow, vehicle counting, etc. However, vehicle detection using video data may become very
challenging due to varying traffic environments where multiple vehicles and multiple
categories of vehicles are to be detected. Even worse, bad weather conditions like snow,
haze, and sandstorms make vehicle detection much more challenging.

Two desirable functions of a vehicle detection approach are its capacity to operate in
real time and its ability to perform detection in illumination changing and bad weather
conditions [4]. Several studies have presented the approaches to vehicle detection in
different weather conditions [5]. Such studies utilize different kinds of information for
vehicle detection, such as vehicle shadow [6], taillight [7], edge and color information [8,9],
symmetry [10], etc. For vehicle detection, different machine learning and deep learning
models are adopted. Machine learning models require feature extraction; consequently,
a large variety of features has been investigated such as HOG [11], DPM [12], Haar or
Haar-like [13], wavelet features, SURF [14], LBP, PCA, SIFT [15] features, etc. These features
are investigated with different machine learning models like AdaBoost, k nearest neighbor,
decision tree, etc. However, the support vector machine model is reported to produce
better results.

Several pre-trained deep learning models have been introduced during the past few
years to reduce the training requirements for vision tasks such as VGG16, ResNet, R-CNN,
etc. The You Look Only Once (YOLO) series is one of the widely adopted models for object
detection and has been well investigated in the literature. The YOLOx series is relatively
new and this study considers it in the context of bad weather conditions. This study makes
the following contributions:

• YOLOx has not been extensively studied, especially in the context of vehicle detection
in bad weather conditions like snow and sandstorms. This study adopts three variants
of YOLOx such as x, m, and l variants for performance analysis in rainy, foggy,
sandstorm, and snowy weather conditions.

• Two strategies are adopted for experiments: using the original weather-affected dataset
and using enhanced images. For image enhancement, a multiscale retinex approach is
used in this study.

• For reproducibility, experiments involving using a publicly available dataset DAWN.
Performance comparison is carried out using precision, recall, mean average precision,
etc., as well as, comparing the performance of YOLOx with existing studies.

The rest of the paper is organized into four sections. Section 2 presents the related
work. The methodology is presented in Section 3 while the experimental results and
discussions are presented in Section 4. In the end, Section 5 concludes this study.

2. Related Work

Camera-based vehicle detection faces several challenges including varying sizes of
vehicles, type of vehicle, change in color, etc. However, the most desirable functions of a
vehicle detection system are real-time operation and detection in changing illumination [16].
These features are investigated with different machine learning models like AdaBoost, K
nearest neighbor (KNN), decision tree (DT), etc.

Recently, the use of deep learning models in image processing tasks showed superb
results [17]. As a result, several studies embrace deep learning models for improving
vehicle detection accuracy. These models are broadly categorized into two groups: target-
level and semantic segmentation-level vehicle detection. Where the former uses the label
assigned to the whole vehicle while the latter uses label assignment to each pixel of a
particular target in the image. While both approaches have favorable results, semantic
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segmentation is reported to show superior results [18]. The authors present a deep learning
framework for vehicle detection and tracking in adverse weather conditions in [19]. Images
from video streams are first adjusted using illumination, reflection, and weighted fusion.
Vehicle detection is carried out using the preprocessed image with the YOLOv3 model.
Superior results are reported using YOLOv3 compared to existing models for bad weather
vehicle detection.

Along the same lines, in [20], a real-time vehicle detection system is designed for bad
weather conditions. A visibility complementary approach is proposed to correct images
for obtaining improved detection results. The proposed image enhancement approach
aims at removing the impact of raindrops. The corrected images are then used with
YOLOv3 for vehicle detection. Experiments involve using rainy weather, gare, and haze
conditions. The results report 87.27% positive detection for rainy weather and 89.2% and
79.21% positive detection rates for glare and haze, respectively. The authors adopt a faster
R-CNN in [21] for vehicle detection in rainy conditions. The faster R-CNN is employed
along with region proposal networks (RPNs) for improved vehicle detection. To detect
vehicles of varying sizes, several RPNs are used with different sizes to enhance detection
performance. Experimental results on different datasets indicate 95.16% average precision
on the LISA dataset.

Real-time vehicle detection is one of the basic requirements of AV; however, camera-
based vehicle detection is computationally complex, requiring high on-board processing
capabilities. For this reason, a trade-off is often made between accuracy and speed [22].
Sensor fusion is recommended to increase the detection performance of a framework where
the data from the camera can be merged with radar, light detection and ranging (LiDAR),
etc., to obtain better detection results. The authors present a multi-sensor fusion approach
to improve vehicle detection in bad weather [23]. A LightGBM model is used for vehicle
target extraction using radar. The region of interest (ROI) is estimated using infrared images
concerning the distribution of radar targets. Later, Haar-like features are utilized to enhance
vehicle detection. An accuracy of 92.4% is reported in bad weather conditions.

Vehicle detection in complex environments like traffic jams and varying weather
conditions is carried out in [24]. The authors specifically consider different illumination
conditions like sunrise and sunset time, as well as, cloudy days, rainy days, sunny days,
etc. The authors design an adaptive vehicle detector for vehicle detection in bad weather
without extracting background information. For removing the effect of weather and light,
histogram extension is utilized. Similarly, for extracting moving objects, the grey-level
differential value is leveraged. Experimental results indicate that the proposed approach
is both robust and accurate, especially for complex scenarios. Similarly, the study [25]
proposes an approach for vehicle detection in sandstorms using videos collected from
YouTube for sandstorms in different countries including Kuwait, Saudi Arabia, Arizona, etc.
The study also utilized the Traffic-Net dataset which contains videos of burning vehicles
due to accidents and other complex situations. Promising results are reported in the study.

The study [26] introduces multi-scale vehicle detection for different weather conditions
using the YOLOv4 model. The research focuses on designing a single approach for vehicle
detection in dust, sand, snow, and rain for day and night time traffic alike. The CSPDarnet53
is used as the baseline with spatial pyramid pooling for vehicle detection. Experiments
involve using the DAWN dataset, as well as, the augmented DAWN dataset with hue,
saturation, noise, blur, etc. A mean average precision of 81% is reported. Similarly, an
enhanced YOLO model is proposed in [27] for vehicle detection in foggy weather. For
better results, a dehazing module is added to YOLO. The dehazing module is based on
multi-scale retinex with color restoration. Experiments are performed using the BDD100K
dataset, as well as, fogged images. The results show that the detection accuracy varies with
the degree of foggy weather.

A pedestrian and vehicle detection algorithm is presented in [28] that utilizes the
Swin Transformer. An end-to-end vehicle detection algorithm, PVformer is proposed for
enhanced vehicle and pedestrian detection accuracy. It comprises a deraining module that
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mitigates the impact of rain on images and enhances detection performance. Experiments
involve using multiple datasets including Rain100L, Rain100H, Raindrop, and Attentive
GAN-Data. Experimental results show an mAP of 88.9%.

Feature extraction is a key and critical part of object detection frameworks and an
appropriate feature selection approach can potentially impact their performance. The
study [29] focuses on the adoption of a pixel-level supervision neural network for obtain-
ing appropriate and discriminating features to improve low detection rates and reduce
high false alarms. Experimental results indicate improved performance of the proposed
approach with only a 3.02% false alarm rate.

The authors present a novel approach in [30] for vehicle detection in snowy conditions,
along with the introduction of a real-world object detection dataset. The proposed approach
is an unsupervised training strategy that performs a quantitative evaluation of snow on
various objects. In addition, a lightweight network is built using YOLOv5s for object
detection in snowy conditions. The results demonstrate that the proposed CF-YOLO
shows higher confidence for vehicle detection and reduces false detection. The model
shows better performance, particularly for difficult scenarios, where vehicle detection
is hard. An average precision of 71.10% is obtained with less number of epochs by the
proposed approach.

The study [31] focuses on alleviating the problems of image enhancement and incor-
porating the latent information in object detection tasks in bad weather conditions. A novel
approach, image adaptive YOLO (IA-YOLO) is proposed where each image is improved
adaptively. The authors introduce a differentiable image processing for bad weather. Ex-
periments involve the use of YOLOv3, DSNet, DAYOLO, and ZeroDCE in comparison to
the proposed approach. The results show a 70.02% mAP for the foggy dataset.

Despite the adoption of YOLOV variants in the existing literature, the YOLOx model is
not investigated well for vehicle detection in bad weather conditions. This study employs
YOLOx for vehicle detection in rain, fog, snow, and sandstorms to analyze its performance.

3. Methodology

This study uses the YOLOx model for vehicle detection in snow and sandstorms where
the visibility and illumination conditions are low and investigates the efficiency of three
variants of YOLOx. Figure 1 shows the workflow of the adopted methodology for vehicle
detection using YOLOx.

Figure 1. Architecture of the adopted methodology for vehicle detection.

3.1. YOLOx

YOLOx is an improvement in the YOLO series and is anchor-free. Decoupled head
and leading assignment strategies are also adopted [32]. YOLOv3, which is widely used
for vehicle detection, and YOLOv4 and YOLOv5 are anchor-based approaches. The anchor-
free detectors of YOLOx reduce the number of design parameters while decoupled head
improves convergence speed. Training time is improved by SimOTA advanced label
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assignment. This study utilizes the pre-trained models that can perform classification on
80 different classes.

3.2. Dataset

For experiments, the publicly available dataset DAWN is used [33]. The DAWN
dataset contains 1000 images from real traffic conditions in different weather conditions.
It contains images of rain, fog, snow, and sandstorms. Data collection scenarios involve
urban, highway, and freeway and contain single to multiple vehicles in a single image.
Four types of vehicles are present in the dataset including cars (the predominant class),
motorcycles, buses, and trucks. For each scenario, the number of images is different, as
shown in Table 1.

Table 1. Images for each category in the dataset.

Scenario # of Images Classes

Snow 205 Car, motorcycle, bus and truck
Sand 324 Car, motorcycle, bus and truck
Rain 200 Car, motorcycle, bus and truck
Fog 300 Car, motorcycle, bus and truck

3.3. Vehicle Detection

The methodology adopted for vehicle detection in sand and snow storms is shown in
Figure 1. The images for snow, rain, fog, and sandstorms are input for preprocessing. The
collected images have different dimensions, so image resizing is performed to transform
the image into 640 × 640 dimensions, and image rescaling is carried out to maintain the
height-to-width ratio. The processed images are then fed into a pre-trained YOLOx model
for vehicle detection. The model’s performance is analyzed in terms of mean average
precision and precision–recall curve.

4. Results and Discussions

This section discusses the results of the ‘s’, ‘m’, and ‘l’ variants of the YOLOx series for
vehicle detection in two bad weather conditions including rain and snow.

4.1. Experimental Setup

Experiments are performed on an Intel Core i7 machine running on a Windows 10
operating system and 16 GB RAM. Matlab 2022b is used for model implementation. The
number of snow- and sandstorm-affected images used for model testing is different.

4.2. Results for Snow

Table 2 shows the precision results of all three variants of YOLOx for vehicle detection
under snowstorm conditions. The precision is calculated for each class in the dataset. True
positives are calculated using an intersection over union (IoU), and true positives are those
with an IoU ≥ 0.5.

Table 2. Results for class-wise precision of YOLOx for snow.

Model
Precision

Car Motorcycle Bus Truck

YOLOx-s 0.9588 1.00 0.8646 0.7698
YOLOx-m 0.9167 1.00 0.9167 0.7385
YOLOx-l 0.9317 0.50 0.9062 0.7600

Figure 2 illustrates the precision–recall curve for YOLOx models for snow storms.
The plot indicates that the performance of YOLOx-s is better compared to other variants
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concerning car, motorcycle, and truck detection. On the other hand, YOLOx-m shows
better performance for bus detection. YOLOx-l has marginally lower precision for truck
and car detection than YOLOx-s and YOLOx-m, respectively. The main emphasis is on the
precision–recall curve of the ‘car’ class as it has the highest number of images. Precision
for the YOLOx-s is 0.9588 for the car class which is better than 0.9167 and 0.9317 from
YOLOx-m and YOLOx-l models, respectively.

(a) (b)

(c)
Figure 2. Precision–recall curve for YOLOx in snow storms, (a) YOLOx-s, (b) YOLOx-m, and
(c) YOLOx-l.

4.3. Results for Sand Storms

Class-wise precision results for the YOLOx model in sandstorms are given in Table 3.
In contrast to results for snow conditions, where YOLOx-s performed better for car detec-
tion, YOLOX-l shows better performance for car detection in sandstorms with a 0.8543 pre-
cision compared to 0.8526 and 0.8501 from YOLOx-m and YOLOx-s, respectively. However,
for motorcycle, bus, and truck detection in sandstorms, the precision scores for YOLOx-s
are better. Figure 3 shows precision–recall curves for all models in sandstorms. It shows
the mixed performance of models for different classes in the case of vehicle detection
in sandstorms.

Table 3. Precision and recall of YOLOx series for sandstorms.

Model
Precision

Car Motorcycle Bus Truck

YOLOx-s 0.8501 0.8333 1.00 0.7788
YOLOx-m 0.8526 0.8269 0.9737 0.7373
YOLOx-l 0.8543 0.8083 0.9408 0.6488
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(a) (b)

(c)
Figure 3. Precision–recall curve for YOLOx in sandstorms, (a) YOLOx-s, (b) YOLOx-m, and
(c) YOLOx-l.

4.4. Results for Rainy Conditions

Table 4 shows the results of all three variants of YOLOx for vehicle detection under
bad weather conditions concerning precision and average recall. Average precision and
average recall are calculated for all images concerning vehicle detection. True positives are
calculated using an intersection over union (IoU) indicating that the prediction is correct if
IoU ≥ 0.5.

Table 4. Class-wise precision and recall of YOLOx series for rain conditions.

Model
Precision

Car Motorcycle Bus Truck

YOLOx-s 0.9283 1.00 1.00 0.8752
YOLOx-m 0.9090 1.00 1.00 0.8562
YOLOx-l 0.9124 0.6667 0.8846 0.8223

Table 4 shows the performance of YOLOx for rainy conditions where class-wise
precision is reported. Figure 4 shows the precision–recall curve for YOLOx models for
rainy conditions; Figure 4a–c show the precision–recall curves for YOLOx-s, YOLOx-m,
and YOLOx-l, respectively. It shows that the performance of YOLOx-s is better compared
to other variants. The main emphasis is on the precision–recall curve of the ‘car’ class as
it has the highest number of samples in the dataset. Precision for the YOLOx-s is 0.9283
for the car class, which is better than 0.9090 and 0.9124 for the YOLOx-m and YOLOx-l
models, respectively. Motorcycle objects are few and they can have high precision and
better precision–recall curves.
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(a) (b)

(c)
Figure 4. Precision–recall curves for YOLOx-s for rainy conditions, (a) YOLOx-s, (b) YOLOx-m, and
(c) YOLOx-l.

4.5. Results for Foggy Conditions

Results for YOLOx mode in foggy weather conditions are given in Table 5. YOLOx-s
again indicates a better precision score of 0.9617 than other variants for the car class. The
same is true for other classes as well. Figure 5 shows precision–recall curves for all models
in foggy conditions. It indicates better performance of YOLOx-s compared to other models.

Table 5. Class-wise precision and recall of YOLOx series for fog conditions.

Model
Precision

Car Motorcycle Bus Truck

YOLOx-s 0.9617 1.00 1.00 0.8479
YOLOx-m 0.9534 1.00 0.9872 0.8167
YOLOx-s 0.9485 1.00 1.00 0.8117

(a) (b)
Figure 5. Cont.
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(c)
Figure 5. Precision-recall curve for YOLOx in foggy conditions, (a) Curve for YOLOx-s model,
(b) Curve for YOLOx-m model, and (c) Curve for YOLOx-l model.

4.6. Results Regarding Mean Average Precision

Besides the precision and precision–recall curve, the mAP metric is a widely used
performance evaluation metric for object detection. It is especially important when the
detection task involves multi-class detection. This study also uses mAP which is calcu-
lated using

mAP =
1
N

N

∑
i=1

APi (1)

where N indicates the total number of classes, four in this case, and APi indicates the
average precision of class i.

Table 6 shows mAP for all models for rain, fog, sand, and snow storms, demonstrating
the better performance of the YOLOx-s model over other models.

Table 6. Experimental results for YOLOx concerning mAP.

Model
mAP

Snow Sand Rain Fog

YOLOx-s 0.8983 0.8656 0.9509 0.9524
YOLOx-m 0.8930 0.8476 0.9413 0.9393
YOLOx-l 0.7745 0.8130 0.8215 0.9400

For snowstorm weather, the performance of YOLOx-s is marginally better with an
mAP of 0.8983 than YOLOx-m, which has an mAP of 0.8930. However, for sandstorms, it
shows much better performance with 0.8656 mAP compared to 0.8476 and 0.8130 mAP
scores of YOLOx-m and YOLOx-l, respectively. Similarly, YOLOx-s shows superior per-
formance for rainy and foggy conditions with 0.9509 and 0.9524 mAP which is better than
other variants.

Figure 6 demonstrates the precision–recall curve of all YOLOx variants for sand and
snow storms. Two important observations are the change in the performance of models
in snow and sandstorms and the difference in models’ individual performance. First, the
YOLOx-s model proves to be more precise with a better precision–recall curve while the
second is the better performance of models in snow storms. Figure 6 shows that models
perform poorly in sandstorms.

Figure 7 illustrates the precision–recall curve of all YOLOx variants for rain and foggy
weather. It shows two noteworthy points: the first is the better performance of the YOLOx-s
model for object detection while the second is the better performance in foggy conditions.
The results displayed in Figure 7 show that models perform poorly in rainy conditions.
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Figure 6. Precision–recall curve of all models for all classes in snow and sand.

Figure 7. Precision–recall curve of all models for all classes in rain and fog.

Table 7 shows the results regarding the number of ground truth objects and detected
objects by each model for snow and sandstorms. As stated earlier, the images predomi-
nantly contain the ‘car’ class, followed by truck, bus, and motorcycle. The results indicate
that the YOLOx-m and YOLOx-l detect a higher number of objects than the YOLOx-s
model. However, these detections contain many false positive samples which degrade their
overall performance.

Results regarding the number of ground truth objects and detected objects by each
model for rainy and foggy conditions are provided in Table 8. As stated earlier, predom-
inantly the images contain the ‘car’ class, followed by truck, bus, and motorcycle. The
results indicate that the YOLOx-m and YOLOx-l detect a higher number of objects than the
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YOLOx-s model. However, these detections contain many false positive samples which
degrade their overall performance.

Table 7. Results for original and detected vehicles from YOLOx.

Model
Car Motorcycle Bus Truck All Classes

Total Detected Total Detected Total Detected Total Detected Total Detected

Snow

YOLOx-s 1751 1078 1 1 22 29 108 125 1882 1233

YOLOx-m 1751 1185 1 1 22 22 108 152 1882 1360

YOLOx-l 1751 1076 1 2 22 28 108 153 1882 1259

Sand

YOLOx-s 977 641 18 12 35 17 119 99 1149 769

YOLOx-m 967 702 18 13 35 18 117 125 1137 858

YOLOx-l 977 683 18 13 35 22 119 139 1149 857

Table 8. Original and detected vehicles from YOLOx.

Model
Car Motorcycle Bus Truck All Classes

Total Detected Total Detected Total Detected Total Detected Total Detected

Rain

YOLOx-s 1355 903 4 2 13 8 188 105 1560 1018

YOLOx-m 1355 1002 4 2 13 16 188 137 1560 1157

YOLOx-l 1355 972 4 2 13 17 188 182 1560 1173

Fog

YOLOx-s 1120 685 18 9 49 25 110 60 1297 779

YOLOx-m 1120 750 18 13 49 30 110 81 1297 874

YOLOx-l 1120 729 18 12 49 24 110 103 1297 868

4.7. Performance of YOLO with Enhanced Images

The images in the used dataset contain noise introduced by weather conditions like
snow, rain, etc., which affects the performance of YOLO. For improving the performance of
the model, image enhancement is carried out before feeding it to the YOLO, as shown in
Figure 8. In addition to the steps followed for vehicle detection using YOLO, an image en-
hancement strategy is adopted to improve the image quality. This step involves enhancing
image quality using color restoration by multiscale retinex (MSR) adopted from [34].

Image Rescaling

Trained YOLOX

Vehicle Detection

--Precision

--Precision-Recall curve

--mAP

--YOLOX_S

--YOLOX_M

--YOLOX_L

Image Resizing

Snow and Sand storm images

Enhanced Image

Multiscale Retinex

Figure 8. Architecture of the methodology involving image enhancement for vehicle detection.
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Contrary to single-scale retinex, which requires a trade-off between range compression
and color rendition, MSR affords a better trade-off between local dynamic range and color.
The following equation is used in MSR

RMSRi =
N

∑
n=1

wnRni =
N

∑
n=1

[logIi(x, y)− long(Fn(x, y) ∗ Ii(x, y))] (2)

where N, and wn show the number of scales and their weight, respectively, while
Fn(x, y) = Cnexp[−(x2 + y2)/2σ2

n ].
MSR image enhancement helps improve light and color transformation which is

expected to improve the performance of YOLO vehicle detection. A few images before and
after restoration are presented in Figure 9.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 9. Original and enhanced images using multi scale retinex, (a,b) rain-affected, (c,d) fog-affected,
(e–h) enhanced images for rain and fog, (i,j) snow-affected, (k,l) sand-affected, and (m–p) enhanced
images for snow and sand.

After improving the image quality, the same procedure is followed for vehicle detection
as was carried out for vehicle detection from the original images using YOLOx. Precision
recall curves for all variants of the YOLOx model are presented here in comparison to
the curves for the original images. Figure 10 shows a performance comparison of YOLO
variants before and after image enhancement is carried out. The results are indicative of
improved performance thereby showing the potential of image enhancement to improve
the vehicle detection performance of the YOLO model.
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(a) (b)

(c)

Figure 10. Precision–recall curves for YOLO variants using enhanced images, (a) YOLOx-s model
performance for all classes, (b) YOLOx-m model performance for all classes, and (c) YOLOx-l model
performance for all classes.

4.8. Speed and Floating Point Operations per Second

Speed and floating point operations per second (FLOPs) are regarded as important pa-
rameters to evaluate computer performance and are considered a better measure compared
to instructions per second. Table 9 shows the speed, number of parameters, and GFLOPs of
the three YOLO variants used in this study.

Table 9. Speed, FLOPS, and number of parameters for YOLO models.

Variant Speed (ms) FLOPS (Mega) Parameters (m)

YOLOx-s 9.9 0.4831 9.0
YOLOx-m 12.3 0.9834 25.3
YOLOx-l 14.5 1.2587 54.2

4.9. Performance Comparison with Existing Studies

A comparative analysis with existing studies is also carried out to evaluate the efficacy
of YOLOx in relation to other variants. Table 10 shows the comparison of the [30,31]
in the context of YOLOx variants for foggy conditions. The results show that YOLOx
performs better. However, it must be noted that the CF-YOLO model is tested in hard
foggy conditions where vehicle detection is difficult in comparison to light or medium fog
conditions which are adopted in [31].
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Table 10. Performance analysis of YOLOx concerning existing works.

Reference Model Weather Intensity Weather mAP

[30] CF-YOLO Hard Foggy 71.10%
[31] IA-YOLO Medium Foggy 70.02%

Current study YOLOx-s Light-to-Medium Foggy 95.24%
Current study YOLOx-m Light-to-Medium Foggy 93.93%
Current study YOLOx-l Light-to-Medium Foggy 94.00%

4.10. Discussions

This study leverages the YOLOx model, the latest addition in the YOLO series, for
vehicle detection in sand and snow storms. During experiments, several important points
are observed which are discussed here.

The first problem originates from car-carrying trailers. As shown in Figure 11, YOLOx
treats both as different vehicles and detects them separately. At the same time, the car
carrying the trailer is also detected as a ‘truck’ which is a false positive. The yellow rectangle
indicates YOLOx detection while the cyan rectangle shows the ground truths.

Figure 11. Car-carrying trailer detected as ‘truck’ in snow.

Secondly, another type of false positive from YOLOx models comes in the form of a
‘rickshaw’ classified as a ‘truck’. One sample of such false positives is shown in Figure 12
where the rickshaw is labeled as the truck.

Figure 12. A sample of false positive from YOLOx in snow.

Thirdly, several cases are observed where the YOLOx model detects a partial part of
a vehicle as the vehicle which means that the boundary identification is not proper. For
example, Figure 13 shows one such instance where the wheel part of the truck is identified
as the truck by the model.
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Figure 13. Wrong detections from YOLOx in a sandstorm.

Finally, the performance of YOLOx for vehicle detection is affected primarily on
account of the higher number of vehicles in a scene rather than sand or snow storms. For
example, Figure 14a shows detection in rainy conditions where the road is covered by snow
and moving traffic is affecting visibility. It can be observed that several vehicles are not
detected by the model.

Similarly, Figure 14b shows a large number of vehicles in sandstorms. It can be
seen that the visibility is better compared to Figure 14a. However, the model misses
more than 15 vehicles on the scene. The model specifically shows inefficacy in detecting
partially occluded and partial vehicles. It emphasizes the need for image correction and
enhancement approaches to improve the detection performance of the YOLOx model.

(a) (b)

Figure 14. Missed vehicle from YOLOx in bad weather, (a) snow, and (b) sandstorm.

Experiments involving rainy and foggy conditions, also highlight several problems
of the YOLOx model for vehicle detection. The first is the pattern of vehicle detection by
YOLOx which is affected mostly on account of the higher number of vehicles in a scene
rather than weather conditions. Figure 15a shows detection in rainy conditions where the
road is covered by water and moving traffic is affecting the visibility. The yellow rectangle
indicates YOLOx detection while the cyan rectangle shows the ground truths. It can be
observed that nine vehicles are missed by the model. In Figure 15b, the visibility is better;
however, the number of vehicles is higher. In this case, as well, the model misses more than
15 vehicles. The model shows inefficacy in detecting partially occluded and partial vehicles.

Secondly, some obvious vehicles are missed by the model. Let us have a look at
Figure 16, which contains only one vehicle. Due to the water splash, the vehicle is occluded
and the model is unable to detect the vehicle, although it is very visible.
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(a) (b)

Figure 15. Detections from YOLOx in bad weather, (a) Wrong detections in medium rain, and
(b) Wrong detections in light rain.

Figure 16. Missed vehicle from YOLOx in bad weather.

Figure 17 shows another case of vehicle detection affected by the rain. The cases
where the windshield is partially blocked by the rainwater lead to no vehicle detection.
The visibility is severely affected and vehicles are not visible except for the tail lights.
YOLOx shows poor performance and can not detect vehicles. It emphasizes the need for
image correction and enhancement approaches to improve the detection performance of
the YOLOx model.

Figure 17. No detection in screen covered by rainwater.
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Finally, a few samples are observed where YOLOx detects vehicles that are not in the
ground truth data. For example, Figure 18 shows one such instance where a car is detected
by the YOLOx. The detected car is a reflection of an on-road car in the window of a house.

Figure 18. YOLOx car detection in window glass.

YOLO model has shown promising results for object detection and has been considered
more efficient than CNN, Faster R-CNN, and similar other models. YOLO is proven to be
more efficient for object detection due to its end-to-end training. It provides more robust
and accurate results. However, weather-affected images contain noise in the form of rain
and fog drops or sand grains, etc., which results in poor image quality. It is observed
that the results of the YOLOx variant are bad when there is less contrast and poor light
conditions. Poor light conditions also lead to poor contrast which affects the model’s
performance for vehicle detection.

5. Conclusions

The objective of this study is to analyze the efficacy of the YOLOx model for vehicle
detection in bad weather conditions, particularly rainy and foggy conditions, and snow
and snow storms. For experiments, the publicly available benchmark dataset DAWN is
used, and ‘s’, ‘m’, and ‘l’ variants of YOLOx are utilized. The results show that YOLOx
often shows better performance for different classes of vehicles than its counterparts. It has
a 0.8983 mAP for snowy conditions and achieves a 0.8656 mAP for sandstorms. Similarly,
experimental results for rainy and foggy conditions demonstrate a better performance
of YOLOx-s over the other two models with an mAP of 0.9509 in rain and 0.9524 in
foggy conditions. Overall, the models show better performance in snow storms than in
sandstorms. All models tend to perform better in fog than in rain. It is also observed that
the performance of YOLOx is degraded when the image has a higher number of vehicles,
partially occluded vehicles, and low visibility indicating the scope of image enhancement
approaches for better performance. The model experienced degraded results for poor light
conditions where the contrast is low; we intend to perform further experiments with image
enhancement approaches. Moreover, the categorization of weather conditions into light,
medium, and hard should also be taken into account as weather intensity has a huge impact
on YOLO performance. Performance comparison in the context of other models like Faster
CNN, etc., will also be considered.
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