
Citation: Mwitta, C.; Rains, G.C.;

Prostko, E. Evaluation of Inference

Performance of Deep Learning

Models for Real-Time Weed Detection

in an Embedded Computer. Sensors

2024, 24, 514. https://doi.org/

10.3390/s24020514

Academic Editors: Wei Guo and

Wenli Zhang

Received: 14 December 2023

Revised: 2 January 2024

Accepted: 10 January 2024

Published: 14 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Evaluation of Inference Performance of Deep Learning Models
for Real-Time Weed Detection in an Embedded Computer
Canicius Mwitta 1,2,* , Glen C. Rains 2,* and Eric Prostko 3

1 College of Engineering, University of Georgia, Athens, GA 30602, USA
2 Department of Entomology, University of Georgia, Tifton, GA 31793, USA
3 Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793, USA; eprostko@uga.edu
* Correspondence: cmwitta@uga.edu (C.M.); grains@uga.edu (G.C.R.); Tel.: +1-229-386-3520 (G.C.R.)

Abstract: The knowledge that precision weed control in agricultural fields can reduce waste and
increase productivity has led to research into autonomous machines capable of detecting and re-
moving weeds in real time. One of the driving factors for weed detection is to develop alternatives
to herbicides, which are becoming less effective as weed species develop resistance. Advances
in deep learning technology have significantly improved the robustness of weed detection tasks.
However, deep learning algorithms often require extensive computational resources, typically found
in powerful computers that are not suitable for deployment in robotic platforms. Most ground
rovers and UAVs utilize embedded computers that are portable but limited in performance. This
necessitates research into deep learning models that are computationally lightweight enough to
function in embedded computers for real-time applications while still maintaining a base level of
detection accuracy. This paper evaluates the weed detection performance of three real-time-capable
deep learning models, YOLOv4, EfficientDet, and CenterNet, when run on a deep-learning-enabled
embedded computer, an Nvidia Jetson Xavier AGX. We tested the accuracy of the models in detecting
13 different species of weeds and assesses their real-time viability through their inference speeds on
an embedded computer compared to a powerful deep learning PC. The results showed that YOLOv4
performed better than the other models, achieving an average inference speed of 80 ms per image
and 14 frames per second on a video when run on an imbedded computer, while maintaining a mean
average precision of 93.4% at a 50% IoU threshold. Furthermore, recognizing that some real-world
applications may require even greater speed, and that the detection program would not be the only
task running on the embedded computer, a lightweight version of the YOLOv4 model, YOLOv4-
tiny, was tested for improved performance in an embedded computer. YOLOv4-tiny impressively
achieved an average inference speed of 24.5 ms per image and 52 frames per second, albeit with a
slightly reduced mean average precision of 89% at a 50% IoU threshold, making it an ideal choice for
real-time weed detection.

Keywords: weed detection; precision weeding; deep learning weed detection; weed detection
inference in embedded computer

1. Introduction

Invasive weeds in agricultural fields provide competition for crucial resources to
crops. For most crops, weeds cause higher losses in production than pathogens and
animal pests [1], underscoring the importance of control. Weed control has proven to be
a significant challenge. Herbicides have been the go-to method of controlling weeds for
decades [2,3], in addition to other common solutions like mechanical weeding [4–6] and
even hand-picking.

The evolution of herbicide-resistant weed populations threatens agricultural produc-
tivity [7,8]. In addition to this, herbicides and other conventional methods of weed control
such as mechanical techniques are labor-intensive and expensive [9]. Technology provides

Sensors 2024, 24, 514. https://doi.org/10.3390/s24020514 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24020514
https://doi.org/10.3390/s24020514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3426-4904
https://orcid.org/0000-0002-2497-5422
https://doi.org/10.3390/s24020514
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24020514?type=check_update&version=1


Sensors 2024, 24, 514 2 of 19

an opportunity to increase efficiency in control and reduce costs. Weed control solutions
that automate the entire process or part of the process such as automatic sprayers [9–11]
and precision mechanical weed controllers [12,13] have been researched and implemented.

Precision weed control methods demand knowledge of the types and location of weeds
in the field; therefore, weed detection solutions are essential for this task. Research into
weed detection technologies has resulted in various solutions that have proven valuable
for precision weed control. Some solutions have used infrared spectroscopy [14], fluores-
cence [15], or computer vision [16–18]. The availability of low-cost high-resolution cameras
and advances in computing hardware have sparked interest in computer vision solutions.
Some scholars have used a combination of simple image-processing techniques that utilize
the extraction of features like color, shape, or texture and machine learning algorithms like
support vector machines or random forest to identify weeds. For example, the authors
of [16–18] used a combination of image feature extraction and support vector machines
to discriminate weeds from crops. While these methods perform well in stable environ-
ments, they may not be robust in harsh outdoor conditions with changes in illumination,
occlusions, and shadows. Progress in deep learning technologies has led to an increase in
the use of convolutional neural networks (CNNs) for weed detection and classification,
achieving impressive results. For instance, the authors of [19–22] used CNN frameworks to
detect weeds in crop fields with a great level of stability and accuracy. Individual weed
detection makes it possible to implement weed removal solutions that can precisely target
individual weed species without interfering with other plants in the field. These solutions
include methods like spot spraying [23], electricity [24], or lasers [25].

Researchers have compared the effectiveness and efficiency of different deep learning
models in detecting different weed species, aiding informed decision making for field
implementation. For example, ref. [26] compared two deep learning models, the single-
shot detector (SSD) and Faster RCNN, according to their detection performance on UAV
imagery and found Faster RCNN to be the superior model. In another study, the authors
of [27] evaluated 35 deep learning models on 15 weed species, establishing a benchmark
for weed identification. Most of the performance evaluations and comparisons for deep
learning models have been conducted on powerful computers capable of handling the
computational demands of deep learning; however, given our focus on robotic applications,
many solutions require portable computers, which are often less powerful. For real-time
applications in agricultural fields, robotic platforms such as ground rovers and UAVs
usually use embedded computers that are not comparable to most powerful GPU-enabled
computers used for deep learning tasks.

This paper compares the performance of three single-stage deep learning models that
are lightweight enough for real-time applications: YOLOv4 [28], EfficientDet [29], and
CenterNet [30]. The comparison focuses on the real-time detection of thirteen common
species of weeds found in cotton and peanut fields. The comparisons were conducted in a
deep learning computer with powerful GPUs (RTX 2080Ti, Nvidia, Santa Clara, CA, USA)
and an embedded deep-learning-enabled computer (Nvidia Jetson Xavier AGX). These
models were chosen due to their reputation as state-of-the-art object detection models for
real-time applications. Detecting multiple species of weeds individually can help in making
real-time decisions about how to remove the weed; for example, if a robotic platform
is performing spot spraying and encounters an herbicide-resistant weed, an alternative
method can be employed.

2. Materials and Methods
2.1. Data Collection

More than 5000 color or RGB (Red, Green, Blue) images of 13 different weed
species—Palmer amaranth (Amaranthus palmeri), smallflower morningglory (Jaquemon-
tia tamnifolia), sicklepod (Senna obtusifolia), crabgrass (Digitaria spp.), Florida beggarweed
(Desmodium tortuosum), Florida pusley (Richardia scabra), pitted morningglory (Ipomoea
lcunos), goosegrass (Eleusine indica), crowfoot grass (Dactyloctenium aegyptium), purple



Sensors 2024, 24, 514 3 of 19

nutsedge (Cyperus rotundus), yellow nutsedge (Cyperus esculentus), ivyleaf morningglory
(Ipomoea hederacea), and Texas panicum (Urochloa texana), seen in Figure 1—were collected
from University of Georgia research fields near Ty Ty, GA (31.509730 N, 83.655880 W)
and the University of Georgia Tifton campus, GA (31.473410◦ N, 83.530475◦ W) using
smartphone cameras or hand-held digital cameras. Images were captured at early stages
of weed growth (from 1 to 3 weeks) at different camera angles, under different weather
conditions, and at different times of the day.

Sensors 2024, 24, x FOR PEER REVIEW 3 of 22 
 

 

2. Materials and Methods 

2.1. Data Collection 

More than 5000 color or RGB (Red, Green, Blue) images of 13 different weed spe-

cies—Palmer amaranth (Amaranthus palmeri), smallflower morningglory (Jaquemontia 

tamnifolia), sicklepod (Senna obtusifolia), crabgrass (Digitaria spp.), Florida beggarweed 

(Desmodium tortuosum), Florida pusley (Richardia scabra), pitted morningglory (Ipomoea 

lcunos), goosegrass (Eleusine indica), crowfoot grass (Dactyloctenium aegyptium), purple 

nutsedge (Cyperus rotundus), yellow nutsedge (Cyperus esculentus), ivyleaf morningglory 

(Ipomoea hederacea), and Texas panicum (Urochloa texana), seen in Figure 1—were collect-

ed from University of Georgia research fields near Ty Ty, GA (31.509730 N, 83.655880 W) 

and the University of Georgia Tifton campus, GA (31.473410° N, 83.530475° W) using 

smartphone cameras or hand-held digital cameras. Images were captured at early stages 

of weed growth (from 1 to 3 weeks) at different camera angles, under different weather 

conditions, and at different times of the day. 

 

Figure 1. Examples of images of 13 weed species. 

2.2. Data Labeling 

More than 3500 images were labeled using an open-source annotation tool, La-

belImg v1.8.6 (https://github.com/HumanSignal/labelImg, accessed on 10 February 

2022). This tool allows for the drawing of boundaries around objects in images to identi-

fy them and creates records that indicate the object’s location in the image, as seen in 

Figure 2. Labeling was conducted in both PASCAL VOC [31] format for TensorFlow 

model training and YOLO [32] format for YOLO model training in darknet. 

Figure 1. Examples of images of 13 weed species.

2.2. Data Labeling

More than 3500 images were labeled using an open-source annotation tool, LabelImg
v1.8.6 (https://github.com/HumanSignal/labelImg, accessed on 10 February 2022). This
tool allows for the drawing of boundaries around objects in images to identify them and
creates records that indicate the object’s location in the image, as seen in Figure 2. Labeling
was conducted in both PASCAL VOC [31] format for TensorFlow model training and
YOLO [32] format for YOLO model training in darknet.

2.3. Train–Test Split

The labeled data were divided into a training set (60%) for training the models to learn
the features, a validation set (20%) to validate the model’s precision and avoid overfitting,
and a testing set (20%) for benchmarking, as shown in Figure 3.

https://github.com/HumanSignal/labelImg


Sensors 2024, 24, 514 4 of 19Sensors 2024, 24, x FOR PEER REVIEW 4 of 22 
 

 

 

Figure 2. Example of labeling weed image using LabelImg. 

2.3. Train–Test Split 

The labeled data were divided into a training set (60%) for training the models to 

learn the features, a validation set (20%) to validate the model’s precision and avoid 

overfitting, and a testing set (20%) for benchmarking, as shown in Figure 3. 

Figure 2. Example of labeling weed image using LabelImg.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 22 
 

 

 

Figure 3. Labeled dataset split. 

2.4. Data Augmentation 

Since deep learning models rely heavily on extensive data for improved accuracy 

and to prevent overfitting, any additional data are valuable. Data augmentation involves 

techniques that add slightly modified copies of the existing data to the training set to 

enhance the size and quality of training data [33]. 

The training data were augmented through techniques such as rotation, shearing, 

blurring, and cropping using an open-source image augmentation library, CLoDSA 

(https://github.com/joheras/CLoDSA, accessed on 2 May 2022). This increased the train-

ing set to more than 67,000 images. 

2.5. Training 

Training was conducted using transfer learning, a technique of transferring 

knowledge between different but related domains [34]. In deep learning, this is accom-

plished by reusing previously trained models for new problems to reduce training time 

and enhance the performance of targeted models. In training, the models take labeled 

images of different resolutions and then change the resolution to the required model in-

put size. 

2.5.1. YOLOv4 

YOLOv4 (You Only Look Once version 4) is a real-time object detection model de-

veloped as a continuation of previous YOLO versions to address their limitations. It is a 

single-stage object detection model trained to analyze the image only once and identify a 

subset of object classes. The YOLO network architecture is renowned for its speed in ob-

ject detection, and YOLOv4 has prioritized real-time detection. 

Figure 3. Labeled dataset split.



Sensors 2024, 24, 514 5 of 19

2.4. Data Augmentation

Since deep learning models rely heavily on extensive data for improved accuracy
and to prevent overfitting, any additional data are valuable. Data augmentation involves
techniques that add slightly modified copies of the existing data to the training set to
enhance the size and quality of training data [33].

The training data were augmented through techniques such as rotation, shearing, blur-
ring, and cropping using an open-source image augmentation library, CLoDSA
(https://github.com/joheras/CLoDSA, accessed on 2 May 2022). This increased the train-
ing set to more than 67,000 images.

2.5. Training

Training was conducted using transfer learning, a technique of transferring knowledge
between different but related domains [34]. In deep learning, this is accomplished by
reusing previously trained models for new problems to reduce training time and enhance
the performance of targeted models. In training, the models take labeled images of different
resolutions and then change the resolution to the required model input size.

2.5.1. YOLOv4

YOLOv4 (You Only Look Once version 4) is a real-time object detection model de-
veloped as a continuation of previous YOLO versions to address their limitations. It is a
single-stage object detection model trained to analyze the image only once and identify a
subset of object classes. The YOLO network architecture is renowned for its speed in object
detection, and YOLOv4 has prioritized real-time detection.

YOLOv4 training was conducted under the darknet environment [35], which is an
open-source neural network framework that supports object detection and image clas-
sification tasks and serves as the basis for the YOLO algorithm. As part of the transfer
learning, YOLOv4 training started with pre-trained weights that were originally trained on
the MS-COCO (Microsoft Common Objects in Context) dataset [36], which contains a wide
range of 80 object classes. Training was conducted on the training set, while evaluation was
performed on the validation set. When the mean average precision of the model evaluated
on the validation set did not increase, the training was stopped, as seen in Figure 4. The
best weights with the highest mean average precision were taken for the designated weed
detection model.

2.5.2. EfficentDet

EfficientDet is a real-time object detection model written in Tensorflow [37] and
Keras [38] that utilizes a weighted bi-directional feature pyramid network (BiFPN) to learn
input features while incorporating multi-scale feature fusing for box/class prediction.

A pre-trained model (EfficientDet D0 512 × 512) from a collection of models pre-
trained on the COCO 2017 dataset provided by Tensorflow 2 Detection Model Zoo [39]
served as the starting point for training the EfficientDet weed detection model. The training
was carried out while monitoring the validation loss (Figure 5), average precision (Figure 6),
and recall (Figure 7) and stopped when the loss did not decrease and the precision and
recall did not increase (around 30 K).

https://github.com/joheras/CLoDSA


Sensors 2024, 24, 514 6 of 19

Sensors 2024, 24, x FOR PEER REVIEW 6 of 22 
 

 

YOLOv4 training was conducted under the darknet environment [35], which is an 

open-source neural network framework that supports object detection and image classi-

fication tasks and serves as the basis for the YOLO algorithm. As part of the transfer 

learning, YOLOv4 training started with pre-trained weights that were originally trained 

on the MS-COCO (Microsoft Common Objects in Context) dataset [36], which contains a 

wide range of 80 object classes. Training was conducted on the training set, while evalua-

tion was performed on the validation set. When the mean average precision of the model 

evaluated on the validation set did not increase, the training was stopped, as seen in 

Figure 4. The best weights with the highest mean average precision were taken for the 

designated weed detection model. 

 

                     

 

Figure 4. YOLOv4 training on darknet platform. 

2.5.2. EfficentDet 

Figure 4. YOLOv4 training on darknet platform.

2.5.3. CenterNet

CenterNet represents objects as a set of keypoints, reducing the need for anchor boxes
and simplifying the process by predicting the bounding boxes directly.

The training of the CenterNet model utilized a pre-trained model (CenterNet Resnet101
V1 FPN 512 × 512) from Tensorflow 2 Detection Model Zoo, which was trained over the
Resnet101 [40] backbone as the starting network. Total validation loss (Figure 8), precision
(Figure 9), and recall (Figure 10) were monitored during the training. Table 1 shows the
architecture differences between the models used in this study.



Sensors 2024, 24, 514 7 of 19

Sensors 2024, 24, x FOR PEER REVIEW 7 of 22 
 

 

EfficientDet is a real-time object detection model written in Tensorflow [37] and 

Keras [38] that utilizes a weighted bi-directional feature pyramid network (BiFPN) to 

learn input features while incorporating multi-scale feature fusing for box/class predic-

tion. 

A pre-trained model (EfficientDet D0 512 × 512) from a collection of models pre-

trained on the COCO 2017 dataset provided by Tensorflow 2 Detection Model Zoo [39] 

served as the starting point for training the EfficientDet weed detection model. The 

training was carried out while monitoring the validation loss (Figure 5), average preci-

sion (Figure 6), and recall (Figure 7) and stopped when the loss did not decrease and the 

precision and recall did not increase (around 30 K). 

                                          

                       

 

Figure 5. EfficientDet: total loss against number of training steps—training loss (orange) and vali-

dation loss (blue). 

                            

 

Figure 6. EfficientDet: precision (mAP@0.5) against number of training steps. 

Figure 5. EfficientDet: total loss against number of training steps—training loss (orange) and
validation loss (blue).

Sensors 2024, 24, x FOR PEER REVIEW 7 of 22 
 

 

EfficientDet is a real-time object detection model written in Tensorflow [37] and 

Keras [38] that utilizes a weighted bi-directional feature pyramid network (BiFPN) to 

learn input features while incorporating multi-scale feature fusing for box/class predic-

tion. 

A pre-trained model (EfficientDet D0 512 × 512) from a collection of models pre-

trained on the COCO 2017 dataset provided by Tensorflow 2 Detection Model Zoo [39] 

served as the starting point for training the EfficientDet weed detection model. The 

training was carried out while monitoring the validation loss (Figure 5), average preci-

sion (Figure 6), and recall (Figure 7) and stopped when the loss did not decrease and the 

precision and recall did not increase (around 30 K). 

                                          

                       

 

Figure 5. EfficientDet: total loss against number of training steps—training loss (orange) and vali-

dation loss (blue). 

                            

 

Figure 6. EfficientDet: precision (mAP@0.5) against number of training steps. 

Figure 6. EfficientDet: precision (mAP@0.5) against number of training steps.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 22 

Figure 7. EfficientDet: recall against number of training steps. 

2.5.3. CenterNet 

CenterNet represents objects as a set of keypoints, reducing the need for anchor 

boxes and simplifying the process by predicting the bounding boxes directly. 

The training of the CenterNet model utilized a pre-trained model (CenterNet Res-

net101 V1 FPN 512 × 512) from Tensorflow 2 Detection Model Zoo, which was trained 

over the Resnet101 [40] backbone as the starting network. Total validation loss (Figure 8), 

precision (Figure 9), and recall (Figure 10) were monitored during the training. Table 1 

shows the architecture differences between the models used in this study. 

Figure 8. CenterNet: total loss against number of training steps—training loss (orange) and valida-

tion loss (blue). 

Figure 7. EfficientDet: recall against number of training steps.

Table 1. Architecture comparisons for the models used in this study.

YOLOv4 EfficientDet CenterNet

Number of stages One-stage One-stage One-stage

Backbone CSPDarknet53 EfficientNetB0 Resnet101

Number of layers 53 237 101

Object detection method Anchor-based Anchor-based Anchor-free

Input size 416 × 416 512 × 512 512 × 512



Sensors 2024, 24, 514 8 of 19

Sensors 2024, 24, x FOR PEER REVIEW 8 of 22 

Figure 7. EfficientDet: recall against number of training steps. 

2.5.3. CenterNet 

CenterNet represents objects as a set of keypoints, reducing the need for anchor 

boxes and simplifying the process by predicting the bounding boxes directly. 

The training of the CenterNet model utilized a pre-trained model (CenterNet Res-

net101 V1 FPN 512 × 512) from Tensorflow 2 Detection Model Zoo, which was trained 

over the Resnet101 [40] backbone as the starting network. Total validation loss (Figure 8), 

precision (Figure 9), and recall (Figure 10) were monitored during the training. Table 1 

shows the architecture differences between the models used in this study. 

Figure 8. CenterNet: total loss against number of training steps—training loss (orange) and valida-

tion loss (blue). 

Figure 8. CenterNet: total loss against number of training steps—training loss (orange) and validation
loss (blue).

Sensors 2024, 24, x FOR PEER REVIEW 8 of 22 
 

 

                             

 

Figure 7. EfficientDet: recall against number of training steps. 

2.5.3. CenterNet 

CenterNet represents objects as a set of keypoints, reducing the need for anchor 

boxes and simplifying the process by predicting the bounding boxes directly. 

The training of the CenterNet model utilized a pre-trained model (CenterNet Res-

net101 V1 FPN 512 × 512) from Tensorflow 2 Detection Model Zoo, which was trained 

over the Resnet101 [40] backbone as the starting network. Total validation loss (Figure 8), 

precision (Figure 9), and recall (Figure 10) were monitored during the training. Table 1 

shows the architecture differences between the models used in this study. 

                      

 

Figure 8. CenterNet: total loss against number of training steps—training loss (orange) and valida-

tion loss (blue). 

                               

Figure 9. CenterNet: precision (mAP@0.5) against number of training steps.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 22 
 

 

 

Figure 9. CenterNet: precision (mAP@0.5) against number of training steps. 

                                         

 

Figure 10. CenterNet: recall against number of training steps. 

  

Figure 10. CenterNet: recall against number of training steps.

2.6. Platforms

The weed detection models were trained on a deep-learning-capable computer equipped
with a 32-core Intel I9 CPU (Intel, Santa Clara, CA, USA, Nvidia RTX 2080 Ti GPUs (4352-
CUDA cores), and 128 GB RAM. Inference speed and accuracy were compared between the
deep learning computer and an artificial intelligence (AI)-embedded computer designed
specifically for autonomous machines, an Nvidia Jetson Xavier AGX (Figure 11) equipped
with an 8-core NVIDIA Carmel Arm®v8.2 64-bit CPU 8 MB L2 + 4 MB L3, 512-core NVIDIA
Volta architecture GPU with 64 Tensor Cores, and 32 GB of RAM.



Sensors 2024, 24, 514 9 of 19

Sensors 2024, 24, x FOR PEER REVIEW 10 of 22 
 

 

Table 1. Architecture comparisons for the models used in this study. 

 YOLOv4 EfficientDet CenterNet 

Number of stages One-stage One-stage One-stage 

Backbone CSPDarknet53 EfficientNetB0 Resnet101 

Number of layers 53 237 101 

Object detection method Anchor-based Anchor-based Anchor-free 

Input size 416 × 416 512 × 512 512 × 512 

2.6. Platforms 

The weed detection models were trained on a deep-learning-capable computer 

equipped with a 32-core Intel I9 CPU (Intel, Santa Clara, CA, USA, Nvidia RTX 2080 Ti 

GPUs (4352-CUDA cores), and 128 GB RAM. Inference speed and accuracy were com-

pared between the deep learning computer and an artificial intelligence (AI)-embedded 

computer designed specifically for autonomous machines, an Nvidia Jetson Xavier AGX 

(Figure 11) equipped with an 8-core NVIDIA Carmel Arm® v8.2 64-bit CPU 8 MB L2 + 4 

MB L3, 512-core NVIDIA Volta architecture GPU with 64 Tensor Cores, and 32 GB of 

RAM. 

 

Figure 11. Nvidia Jetson Xavier AGX. 

2.7. Evaluation Metrics 

As the focus lay on the inference of the detection models, several metrics were 

compared when running on the two platforms. Model accuracy metrics such as preci-

sion and recall, which were summarized by the average precision (AP) value and mean 

average precision (mAP) evaluated under different Intersection-over-Union (IoU) 

thresholds, and speed metrics such as inference time and frames per second (fps) were 

considered. 

Precision measures how well the positive predictions match the ground truth. 

Precision =
True positives

True positives + False positives
  

Recall measures how many relevant predictions are made out of all predictions. 

Recall =  
True positives

True positives + False negatives
  

The average precision (AP) represents the weighted average of all precision values 

at each precision–recall curve threshold, where the weight is the increase in recall. This 

value summarizes the precision–recall curve into a single value. 

Figure 11. Nvidia Jetson Xavier AGX.

2.7. Evaluation Metrics

As the focus lay on the inference of the detection models, several metrics were com-
pared when running on the two platforms. Model accuracy metrics such as precision and
recall, which were summarized by the average precision (AP) value and mean average
precision (mAP) evaluated under different Intersection-over-Union (IoU) thresholds, and
speed metrics such as inference time and frames per second (fps) were considered.

Precision measures how well the positive predictions match the ground truth.

Precision =
True positives

True positives + False positives

Recall measures how many relevant predictions are made out of all predictions.

Recall =
True positives

True positives + False negatives

The average precision (AP) represents the weighted average of all precision values at
each precision–recall curve threshold, where the weight is the increase in recall. This value
summarizes the precision–recall curve into a single value.

AP =
k=n−1

∑
k=0

[Recalls(k)− Recalls(k + 1)]× Precisions(k)

Recalls(n) = 0, Precisions(n) = 1, n = Number of thres holds

The Intersection over Union (IoU) indicates the overlap of the predicted bounding box
coordinates with the ground-truth box [41], as shown in Figure 12. When the predicted
bounding box closely resembles the ground-truth box, the IoU is higher. In deep learning
object detection models, multiple bounding boxes are predicted for objects, but only those
with an IoU higher than a certain threshold are considered as positively predicted boxes.

IoU =
Area of Overlap
Area of Union



Sensors 2024, 24, 514 10 of 19

Sensors 2024, 24, x FOR PEER REVIEW 11 of 22 
 

 

AP = ∑ [Recalls(k) − Recalls(k + 1)] × Precisions(k)

k=n−1

k=0

 

Recalls(n) = 0, Precisions(n) = 1, n = Number of thresholds  

 

The Intersection over Union (IoU) indicates the overlap of the predicted bounding 

box coordinates with the ground-truth box [41], as shown in Figure 12. When the pre-

dicted bounding box closely resembles the ground-truth box, the IoU is higher. In deep 

learning object detection models, multiple bounding boxes are predicted for objects, but 

only those with an IoU higher than a certain threshold are considered as positively pre-

dicted boxes. 

IoU =  
Area of Overlap

Area of Union
  

The Mean average precision (mAP) represents the average of the weighted means 

of precision at each IoU threshold. It is calculated by averaging the average precision 

(AP) for each class across a number of classes. 

mAP =
1

N
∑(AP)i

N

i=1

  

 

Figure 12. Precision, recall, and IoU illustration. 

The inference time refers to the time it takes for a model to make a prediction on a 

single image, while the number of frames per second (fps) indicates the frequency at 

which inference is performed on consecutive images in a video stream. For real-time ap-

plications, these are crucial metrics because an excessive inference delay can lead to the 

machine being unable to respond in time. The inference time was calculated by running 

the models on a set of weed images and averaging the time over the number of images. 

On the other hand, fps was obtained by running the models on weed videos while re-

cording the reciprocal of execution time for each frame. These two metrics varied among 

the models as well as platforms, while the other metrics only varied among the models. 

2.8. Mobile Optimized Solution 

The prediction speed is a critical aspect of a real-time detection system, and due to 

the fact that in real scenarios the embedded computer runs other applications for robot 

control in addition to the detection program, the inference speed may be impacted fur-

ther. Other variants of deep learning models optimized for speed have been developed 

by sacrificing some precision through reducing the neural network size. YOLOv4 has a 

lightweight compressed version, YOLOv4-tiny, with a simpler network structure and 

reduced parameters to make it ideal for mobile and embedded devices. YOLOv4-tiny 

can be used for faster training and inference than YOLOv4; however, its accuracy suf-

fers. YOLOv4 was also compared to its lighter version YOLOv4-tiny in terms of its via-

bility for weed detection on the embedded platform. 

  

Figure 12. Precision, recall, and IoU illustration.

The Mean average precision (mAP) represents the average of the weighted means of
precision at each IoU threshold. It is calculated by averaging the average precision (AP) for
each class across a number of classes.

mAP =
1
N

N

∑
i=1

(AP)i

The inference time refers to the time it takes for a model to make a prediction on a
single image, while the number of frames per second (fps) indicates the frequency at which
inference is performed on consecutive images in a video stream. For real-time applications,
these are crucial metrics because an excessive inference delay can lead to the machine being
unable to respond in time. The inference time was calculated by running the models on a
set of weed images and averaging the time over the number of images. On the other hand,
fps was obtained by running the models on weed videos while recording the reciprocal
of execution time for each frame. These two metrics varied among the models as well as
platforms, while the other metrics only varied among the models.

2.8. Mobile Optimized Solution

The prediction speed is a critical aspect of a real-time detection system, and due to
the fact that in real scenarios the embedded computer runs other applications for robot
control in addition to the detection program, the inference speed may be impacted further.
Other variants of deep learning models optimized for speed have been developed by
sacrificing some precision through reducing the neural network size. YOLOv4 has a
lightweight compressed version, YOLOv4-tiny, with a simpler network structure and
reduced parameters to make it ideal for mobile and embedded devices. YOLOv4-tiny
can be used for faster training and inference than YOLOv4; however, its accuracy suffers.
YOLOv4 was also compared to its lighter version YOLOv4-tiny in terms of its viability for
weed detection on the embedded platform.

3. Results
3.1. Model Comparisons

The results, as shown in Table 2, obtained when the models were evaluated on
600 labeled test images from the dataset (20% of the dataset) using COCO metrics, in-
dicate that EfficientDet and CenterNet had similar performance, with an overall mean
average precision of 71.3% and 70.6%, respectively, which was better than YOLO, with an
mAP of 61.6% at IoU = 0.5–0.95. This mAP was calculated by taking the average mAP over
IoU thresholds ranging from 0.5 to 0.95 with a step size of 0.05. At IoU = 0.5, EfficientDet
outperformed all the other models (97.4%). However, the other models achieved satisfac-
tory scores of 93.8% (CenterNet) and 93.4% (YOLOv4). Overall, EfficientDet had a slight
edge over the other models in terms of accuracy metrics.



Sensors 2024, 24, 514 11 of 19

Table 2. Model accuracy performance comparisons.

Metric YOLOv4 CenterNet EfficientDet

mAP@ IoU = 0.5–0.95 0.616 0.706 0.713

mAP@ IoU = 0.5 0.934 0.938 0.974

mAP@ IoU = 0.75 0.703 0.809 0.819

Average recall 0.660 0.714 0.708

Visual observation showed no significant difference in detection, except for a few
images where EfficientDet had better predictions; for example, in Figures 13 and 14,
YOLOv4 and CenterNet failed to detect crowfoot grass, but EfficientDet detected it in
Figure 15.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 22 
 

 

3. Results 

3.1. Model Comparisons 

The results, as shown in Table 2, obtained when the models were evaluated on 600 

labeled test images from the dataset (20% of the dataset) using COCO metrics, indicate 

that EfficientDet and CenterNet had similar performance, with an overall mean average 

precision of 71.3% and 70.6%, respectively, which was better than YOLO, with an mAP 

of 61.6% at IoU = 0.5–0.95. This mAP was calculated by taking the average mAP over IoU 

thresholds ranging from 0.5 to 0.95 with a step size of 0.05. At IoU = 0.5, EfficientDet 

outperformed all the other models (97.4%). However, the other models achieved satisfac-

tory scores of 93.8% (CenterNet) and 93.4% (YOLOv4). Overall, EfficientDet had a slight 

edge over the other models in terms of accuracy metrics. 

Table 2. Model accuracy performance comparisons. 

Metric YOLOv4 CenterNet EfficientDet 

mAP@ IoU = 0.5–0.95 0.616 0.706 0.713 

mAP@ IoU = 0.5 0.934 0.938 0.974 

mAP@ IoU = 0.75 0.703 0.809 0.819 

Average recall 0.660 0.714 0.708 

Visual observation showed no significant difference in detection, except for a few 

images where EfficientDet had better predictions; for example, in Figures 13 and 14, 

YOLOv4 and CenterNet failed to detect crowfoot grass, but EfficientDet detected it in 

Figure 15. 

 

Figure 13. YOLOv4 detection—detected 3 weeds. Figure 13. YOLOv4 detection—detected 3 weeds.

Regarding their performance in detecting individual weed species, the models pre-
sented good results for class evaluation using PASCAL VOC mAP @ IoU = 0.5 metrics,
except for CenterNet and EfficientDet when detecting purple nutsedge—they achieved
mAP@0.5 scores of 0.06% and 0.07%, respectively, as shown in Table 3. This could be
attributed to the limited number of training images for purple nutsedge and the similarity
between yellow and purple nutsedge. However, YOLOv4 performed significantly better
on purple nutsedge, with an mAP of 79.4% at IoU = 0.5. This difference is evident even in
the visual inspections in Figures 16 and 17, where the Centernet and EfficientDet models
detected only one of two purple nutsedge plants, but YOLOv4 in Figure 18 successfully
detected both weeds.



Sensors 2024, 24, 514 12 of 19Sensors 2024, 24, x FOR PEER REVIEW 13 of 22 
 

 

 

Figure 14. CenterNet detection—detected 3 weeds. 

 

Figure 15. EfficientDet detection—detected all 4 weeds. 

Regarding their performance in detecting individual weed species, the models pre-

sented good results for class evaluation using PASCAL VOC mAP @ IoU = 0.5 metrics, 

except for CenterNet and EfficientDet when detecting purple nutsedge—they achieved 

mAP@0.5 scores of 0.06% and 0.07%, respectively, as shown in Table 3. This could be at-

tributed to the limited number of training images for purple nutsedge and the similarity 

between yellow and purple nutsedge. However, YOLOv4 performed significantly better 

Figure 14. CenterNet detection—detected 3 weeds.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 22 
 

 

 

Figure 14. CenterNet detection—detected 3 weeds. 

 

Figure 15. EfficientDet detection—detected all 4 weeds. 

Regarding their performance in detecting individual weed species, the models pre-

sented good results for class evaluation using PASCAL VOC mAP @ IoU = 0.5 metrics, 

except for CenterNet and EfficientDet when detecting purple nutsedge—they achieved 

mAP@0.5 scores of 0.06% and 0.07%, respectively, as shown in Table 3. This could be at-

tributed to the limited number of training images for purple nutsedge and the similarity 

between yellow and purple nutsedge. However, YOLOv4 performed significantly better 

Figure 15. EfficientDet detection—detected all 4 weeds.



Sensors 2024, 24, 514 13 of 19

Table 3. Model mAP@0.5 for individual weed classes.

Weed Species YOLOv4 CenterNet EfficientDet

Smallflower morningglory 0.994 0.998 0.990

Sicklepod 1.000 0.998 1.000

Pitted morningglory 0.899 0.990 1.000

Ivyleaf morningglory 0.998 0.987 1.000

Florida pusley 1.000 1.000 1.000

Florida beggarweed 1.000 1.000 0.998

Texas panicum 0.999 0.999 1.000

Crabgrass 0.997 0.991 0.999

Crowfoot grass 0.808 0.957 1.000

Goosegrass 1.000 0.967 1.000

Palmer amaranth 0.712 0.911 0.926

Yellow nutsedge 0.763 0.653 0.940

Purple nutsedge 0.794 0.0006 0.0007

Sensors 2024, 24, x FOR PEER REVIEW 14 of 22 
 

 

on purple nutsedge, with an mAP of 79.4% at IoU = 0.5. This difference is evident even 

in the visual inspections in Figures 16 and 17, where the Centernet and EfficientDet 

models detected only one of two purple nutsedge plants, but YOLOv4 in Figure 18 suc-

cessfully detected both weeds. 

Table 3. Model mAP@0.5 for individual weed classes. 

Weed Species YOLOv4 CenterNet EfficientDet 

Smallflower morningglory 0.994 0.998 0.990 

Sicklepod 1.000 0.998 1.000 

Pitted morningglory 0.899 0.990 1.000 

Ivyleaf morningglory 0.998 0.987 1.000 

Florida pusley 1.000 1.000 1.000 

Florida beggarweed 1.000 1.000 0.998 

Texas panicum 0.999 0.999 1.000 

Crabgrass 0.997 0.991 0.999 

Crowfoot grass 0.808 0.957 1.000 

Goosegrass 1.000 0.967 1.000 

Palmer amaranth 0.712 0.911 0.926 

Yellow nutsedge 0.763 0.653 0.940 

Purple nutsedge 0.794 0.0006 0.0007 

 

Figure 16. Single purple nutsedge plant detected by CenterNet. Figure 16. Single purple nutsedge plant detected by CenterNet.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 22 
 

 

 

Figure 17. Single purple nutsedge plant detected by EfficientDet. 

 

Figure 18. Two purple nutsedge plants detected by YOLOv4. 

Confusion Matrices 

The confusion matrices for the YOLOv4, EfficientDet, and CenterNet models on the 

test dataset are shown in Figure 19, Figure 20, and Figure 21, respectively. EfficientDet 

performed the best, achieving accuracies of 95% or higher for 9 out of 13 weed classes, 

while YOLOv4 and CenterNet achieved accuracies of 95% or higher for 7 out of 13 weed 

classes. However, YOLOv4 was less accurate in more weed classes than CenterNet; for 

example, YOLOv4 identified crowfoot grass accurately 76% of the time, while CenterNet 

identified crowfoot grass 83% of the time. 

Figure 17. Single purple nutsedge plant detected by EfficientDet.



Sensors 2024, 24, 514 14 of 19

Sensors 2024, 24, x FOR PEER REVIEW 15 of 22 
 

 

 

Figure 17. Single purple nutsedge plant detected by EfficientDet. 

 

Figure 18. Two purple nutsedge plants detected by YOLOv4. 

Confusion Matrices 

The confusion matrices for the YOLOv4, EfficientDet, and CenterNet models on the 

test dataset are shown in Figure 19, Figure 20, and Figure 21, respectively. EfficientDet 

performed the best, achieving accuracies of 95% or higher for 9 out of 13 weed classes, 

while YOLOv4 and CenterNet achieved accuracies of 95% or higher for 7 out of 13 weed 

classes. However, YOLOv4 was less accurate in more weed classes than CenterNet; for 

example, YOLOv4 identified crowfoot grass accurately 76% of the time, while CenterNet 

identified crowfoot grass 83% of the time. 

Figure 18. Two purple nutsedge plants detected by YOLOv4.

Confusion Matrices

The confusion matrices for the YOLOv4, EfficientDet, and CenterNet models on the
test dataset are shown in Figure 19, Figure 20, and Figure 21, respectively. EfficientDet
performed the best, achieving accuracies of 95% or higher for 9 out of 13 weed classes,
while YOLOv4 and CenterNet achieved accuracies of 95% or higher for 7 out of 13 weed
classes. However, YOLOv4 was less accurate in more weed classes than CenterNet; for
example, YOLOv4 identified crowfoot grass accurately 76% of the time, while CenterNet
identified crowfoot grass 83% of the time.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 22 
 

 

 

Figure 19. YOLOv4 confusion matrix on the test dataset. Figure 19. YOLOv4 confusion matrix on the test dataset.



Sensors 2024, 24, 514 15 of 19Sensors 2024, 24, x FOR PEER REVIEW 17 of 22 
 

 

 

Figure 20. EfficientDet confusion matrix on the test dataset. Figure 20. EfficientDet confusion matrix on the test dataset.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 22 
 

 

 

Figure 21. CenterNet confusion matrix on the test dataset. 

3.2. Inference Time 

For real-time robotic applications, the speed of detection is crucial. When the mod-

els were run on 600 images on both the deep learning PC and embedded computer, 

YOLOv4 performed significantly better on both platforms, as shown in Table 4, with an 

average of 18 ms per image on the PC and, importantly, just 80 ms per image on the em-

bedded computer. CenterNet performed better than EfficientDet on the PC, predicting at 

44 ms per image versus 66 ms; however, EfficientDet outperformed CenterNet on the 

embedded computer, achieving 102 ms versus 140 ms. 

Table 4. Inference time (ms). 

Platform YOLOv4 CenterNet EfficientDet 

Deep learning computer 18 44 66 

Jetson Xavier AGX 80 140 102 

3.3. Frames Per Second (fps) 

When the models were run on a video with a resolution 1280 × 720 on both plat-

forms, YOLOv4 outperformed the other models, as shown in Table 5, achieving 51 fps on 

Figure 21. CenterNet confusion matrix on the test dataset.



Sensors 2024, 24, 514 16 of 19

3.2. Inference Time

For real-time robotic applications, the speed of detection is crucial. When the models
were run on 600 images on both the deep learning PC and embedded computer, YOLOv4
performed significantly better on both platforms, as shown in Table 4, with an average of
18 ms per image on the PC and, importantly, just 80 ms per image on the embedded
computer. CenterNet performed better than EfficientDet on the PC, predicting at 44 ms
per image versus 66 ms; however, EfficientDet outperformed CenterNet on the embedded
computer, achieving 102 ms versus 140 ms.

Table 4. Inference time (ms).

Platform YOLOv4 CenterNet EfficientDet

Deep learning computer 18 44 66

Jetson Xavier AGX 80 140 102

3.3. Frames Per Second (fps)

When the models were run on a video with a resolution 1280 × 720 on both platforms,
YOLOv4 outperformed the other models, as shown in Table 5, achieving 51 fps on the PC
and 14 fps on the embedded computer, while EfficientDet performed better than CenterNet
on the embedded computer, reaching 12 fps versus 8 fps.

Table 5. Number of frames per second achieved.

Platform YOLOv4 CenterNet EfficientDet

Deep learning computer 51 40 22

Jetson Xavier AGX 14 8 12

3.4. Improvement with YOLOv4-Tiny

Regarding the balance of accuracy and speed, YOLOv4 performed better than the
other models on the embedded computer. An object detection speed of 14 fps may suffice
for many real-time applications; however, certain applications demand a higher speed.
An ideal model can identify and locate objects in real time with rapid inference while
maintaining a baseline level of accuracy. To assess this, the YOLOv4-tiny model was
trained on the same dataset as YOLOv4. During accuracy testing, YOLOv4-tiny achieved a
precision of 81%, recall of 88%, and reduced mAP at IoU = 0.5 of 89.2%, as shown in Table 6.
Impressively, when tested on the embedded computer, it achieved an inference time of
24.5 ms and 52 frames per second, surpassing YOLOv4.

Table 6. YOLOv4-tiny evaluation results compared to YOLOv4 on embedded computer.

Metric YOLOv4-Tiny YOLOv4

Precision 0.81 0.95

Recall 0.88 0.89

mAP @ IoU = 0.5 0.89 0.934

Inference on Jetson Xavier AGX (ms) 24.5 80

FPS on Jetson Xavier AGX 52 14

4. Discussion

Real-time weed detection is crucial for precision mapping and the removal of weeds
in agricultural fields. To achieve effective precision weed removal, robotic platforms
are commonly employed. As these platforms often use embedded computers for their
portability, it becomes important to evaluate the performance of various weed detection



Sensors 2024, 24, 514 17 of 19

models on these embedded systems and identify the ideal model for real-time weed
detection. Despite the prevalence of research in weed detection, there has been limited
testing of these solutions on embedded computers to assess their practicality. Our approach
involved comparing the performance of three real-time deep learning models—YOLOv4,
EfficientDet, and CenterNet—in detecting 13 different species of weeds. This comparison
focused on the accuracy of the models and their inference speed.

Our weed dataset was meticulously curated, encompassing images captured under
various weather conditions and at different times of the day, growth stages, and camera
angles. Additionally, data augmentation was employed to enhance the diversity of the
training samples, following methodologies outlined in studies such as [42,43].

Each of the three deep learning models achieved a mean average precision greater than
93% at a 50% Intersection over Union (IoU) threshold. The models YOLOv4, EfficientDet,
and CenterNet exhibited COCO mean average precision values of 61.6%, 71.3%, and 70.6%,
respectively. In terms of inference times, the models performed at 18 ms, 66 ms, and
44 ms on a deep learning computer and at 80 ms, 102 ms, and 140 ms on an embedded
computer, respectively.

Comparing our results to other weed detection studies, refs. [14] and [15] achieved
accuracy levels exceeding 87% and 91%, respectively, in weed classification. However, these
studies were conducted in controlled environments, and there was no indication of infer-
ence speed or tests on embedded computers. Conversely, solutions using computer vision
algorithms like [16–18] achieved over 90% accuracy in discriminating weeds from plants.
However, these solutions classified only a few weed species compared to our 13 species,
and there was no indication of inference speed to evaluate their real-time capabilities.

When considering similar solutions utilizing deep learning, the accuracies align closely
with our observations. For example, ref. [22] achieved average precision values ranging
from 75% for the VGG16 network to 97% using the ResNet-50 and Xception networks on
12 different plant species. Another comparable deep learning method [27], evaluating the
performance of 35 models on 15 weed classes, achieved accuracies from 50% for the low-
performing model MnasNet to 98% for the top-performing ResNext101 model. However,
their reported inference times ranging from 188 ms to 338 ms were slower than our models’
inference times.

Considering practical robot usage in the field, embedded computers are preferred.
The authors of [19] attempted to evaluate the performance of segmenting weeds using
customized MobileNet and DenseNet networks on an embedded computer (Raspberry Pi).
The solution achieved an inference time of 50 ms to 100 ms. Although this inference time
was impressively shorter than our best inference time on an embedded computer obtained
through YOLOv4 (80 ms), it is noteworthy that our recommended solution for embedded
systems, YOLOv4-tiny, boasts the best inference time of 24.5 ms. Future studies should
evaluate the real-time performance on a robotic platform in an agricultural field.

5. Conclusions

Three deep learning models—YOLOv4, EfficientDet, and CenterNet—were trained
and tested for their effectiveness in detecting thirteen different species of weed using
two platforms: a deep-learning-capable computer and an embedded computer. The experi-
ment aimed to assess their suitability for real-time robotic applications. It was observed
that, with a mean average precision of 93.4% at an IoU threshold of 50%, an inference speed
of 80 ms, and 14 fps on an embedded computer, YOLOv4 is better suited for real-time
robotic applications due to its balanced performance between accuracy and inference speed.
Furthermore, recognizing that some real-time robotic applications require a higher speed
without compromising the accuracy too much, a lightweight version of YOLOv4, YOLOv4-
tiny, was trained and tested in an embedded system. Despite its smaller size, YOLOv4-tiny
impressively achieved a mean average precision of 89% at a 50% IoU threshold, which
is approximately 4.7% less precise than YOLOv4. The model performed inference very
rapidly on an embedded computer, with a speed of 24.5 ms and 52 fps.



Sensors 2024, 24, 514 18 of 19

Due to its speed of detection in an embedded system and its satisfactory accuracy,
YOLOv4-tiny is recommended for real-time robotic applications that involve weed detection.

Author Contributions: C.M.: investigation, original draft preparation, formal analysis, data curation,
and submission. G.C.R.: project administration, supervision, funding acquisition, draft reviewing,
and editing. E.P.: supervision, draft reviewing, and editing. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was partially funded by US Cotton Incorporated and the US Georgia
Peanut Commission.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Oerke, E.C. Crop Losses to Pests. J. Agric. Sci. 2006, 144, 31–43. [CrossRef]
2. Gianessi, L.P.; Reigner, N.P. The Value of Herbicides in U.S. Crop Production. Weed Technol. 2007, 21, 559–566. [CrossRef]
3. Buhler, D.D.; Liebman, M.; Obrycki, J.J. Theoretical and Practical Challenges to an IPM Approach to Weed Management. Weed Sci.

2000, 48, 274–280. [CrossRef]
4. Rueda-Ayala, V.; Rasmussen, J.; Gerhards, R. Mechanical Weed Control. In Precision Crop Protection—the Challenge and Use of

Heterogeneity; Springer: Dordrecht, The Netherlands, 2010; pp. 279–294.
5. Timmons, F.L. A History of Weed Control in the United States and Canada. Weed Sci. 1970, 18, 294–307. [CrossRef]
6. Hamill, A.S.; Holt, J.S.; Mallory-Smith, C.A. Contributions of Weed Science to Weed Control and Management 1. Weed Technol.

2004, 18, 1563–1565. [CrossRef]
7. Powles, S.B.; Preston, C.; Bryan, I.B.; Jutsum, A.R. Herbicide Resistance: Impact and Management. Adv. Agron. 1996, 58, 57–93.

[CrossRef]
8. Shaner, D.L. Lessons Learned from the History of Herbicide Resistance. Weed Sci. 2014, 62, 427–431. [CrossRef]
9. Culliney, T.W. Benefits of Classical Biological Control for Managing Invasive Plants. Crit. Rev. Plant Sci. 2005, 24, 131–150.

[CrossRef]
10. Gerhards, R.; Oebel, H. Practical Experiences with a System for Site-Specific Weed Control in Arable Crops Using Real-Time

Image Analysis and GPS-Controlled Patch Spraying. Weed Res. 2006, 46, 185–193. [CrossRef]
11. Utstumo, T.; Urdal, F.; Brevik, A.; Dørum, J.; Netland, J.; Overskeid, Ø.; Berge, T.W.; Gravdahl, J.T. Robotic In-Row Weed Control

in Vegetables. Comput. Electron. Agric. 2018, 154, 36–45. [CrossRef]
12. Bawden, O.; Kulk, J.; Russell, R.; McCool, C.; English, A.; Dayoub, F.; Lehnert, C.; Perez, T. Robot for Weed Species Plant-Specific

Management. J. Field Robot. 2017, 34, 1179–1199. [CrossRef]
13. Sori, H.; Inoue, H.; Hatta, H.; Ando, Y. Effect for a Paddy Weeding Robot in Wet Rice Culture. J. Robot. Mechatron. 2018, 30,

198–205. [CrossRef]
14. Shapira, U.; Herrmann, I.; Karnieli, A.; Bonfil, D.J. Field Spectroscopy for Weed Detection in Wheat and Chickpea Fields. Int. J.

Remote Sens. 2013, 34, 6094–6108. [CrossRef]
15. Longchamps, L.; Panneton, B.; Samson, G.; Leroux, G.D.; Thériault, R. Discrimination of Corn, Grasses and Dicot Weeds by Their

UV-Induced Fluorescence Spectral Signature. Precis. Agric. 2010, 11, 181–197. [CrossRef]
16. Zheng, Y.; Zhu, Q.; Huang, M.; Guo, Y.; Qin, J. Maize and Weed Classification Using Color Indices with Support Vector Data

Description in Outdoor Fields. Comput. Electron. Agric. 2017, 141, 215–222. [CrossRef]
17. Nguyen Thanh Le, V.; Apopei, B.; Alameh, K. Effective Plant Discrimination Based on the Combination of Local Binary Pattern

Operators and Multiclass Support Vector Machine Methods. Inf. Process. Agric. 2019, 6, 116–131. [CrossRef]
18. Zhu, W.; Zhu, X. The Application of Support Vector Machine in Weed Classification. In Proceedings of the 2009 IEEE International

Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 20–22 November 2009; Volume 4.
19. Chechliński, Ł.; Siemiątkowska, B.; Majewski, M. A System for Weeds and Crops Identification—Reaching over 10 Fps on

Raspberry Pi with the Usage of Mobilenets, Densenet and Custom Modifications. Sensors 2019, 19, 3787. [CrossRef]
20. dos Santos Ferreira, A.; Matte Freitas, D.; Gonçalves da Silva, G.; Pistori, H.; Theophilo Folhes, M. Weed Detection in Soybean

Crops Using ConvNets. Comput. Electron. Agric. 2017, 143, 314–324. [CrossRef]
21. Asad, M.H.; Bais, A. Weed Detection in Canola Fields Using Maximum Likelihood Classification and Deep Convolutional Neural

Network. Inf. Process. Agric. 2020, 7, 535–545. [CrossRef]
22. Peteinatos, G.G.; Reichel, P.; Karouta, J.; Andújar, D.; Gerhards, R. Weed Identification in Maize, Sunflower, and Potatoes with the

Aid of Convolutional Neural Networks. Remote Sens. 2020, 12, 4185. [CrossRef]

https://doi.org/10.1017/S0021859605005708
https://doi.org/10.1614/WT-06-130.1
https://doi.org/10.1614/0043-1745(2000)048[0274:TAPCTA]2.0.CO;2
https://doi.org/10.1017/S0043174500079807
https://doi.org/10.1614/0890-037X(2004)018[1563:COWSTW]2.0.CO;2
https://doi.org/10.1016/S0065-2113(08)60253-9
https://doi.org/10.1614/WS-D-13-00109.1
https://doi.org/10.1080/07352680590961649
https://doi.org/10.1111/j.1365-3180.2006.00504.x
https://doi.org/10.1016/j.compag.2018.08.043
https://doi.org/10.1002/rob.21727
https://doi.org/10.20965/jrm.2018.p0198
https://doi.org/10.1080/01431161.2013.793860
https://doi.org/10.1007/s11119-009-9126-0
https://doi.org/10.1016/j.compag.2017.07.028
https://doi.org/10.1016/j.inpa.2018.08.002
https://doi.org/10.3390/s19173787
https://doi.org/10.1016/j.compag.2017.10.027
https://doi.org/10.1016/j.inpa.2019.12.002
https://doi.org/10.3390/rs12244185


Sensors 2024, 24, 514 19 of 19

23. Allmendinger, A.; Spaeth, M.; Saile, M.; Peteinatos, G.G.; Gerhards, R. Precision Chemical Weed Management Strategies: A
Review and a Design of a New CNN-Based Modular Spot Sprayer. Agronomy 2022, 12, 1620. [CrossRef]

24. Sahin, H.; Yalınkılıc, M. Using Electric Current as a Weed Control Method. Eur. J. Eng. Technol. Res. 2017, 2, 59. [CrossRef]
25. Mwitta, C.; Rains, G.C.; Prostko, E. Evaluation of Diode Laser Treatments to Manage Weeds in Row Crops. Agronomy 2022,

12, 2681. [CrossRef]
26. Sivakumar, A.N.V.; Li, J.; Scott, S.; Psota, E.; Jhala, A.J.; Luck, J.D.; Shi, Y. Comparison of Object Detection and Patch-Based

Classification Deep Learning Models on Mid-to Late-Season Weed Detection in UAV Imagery. Remote Sens. 2020, 12, 2136.
[CrossRef]

27. Chen, D.; Lu, Y.; Li, Z.; Young, S. Performance Evaluation of Deep Transfer Learning on Multi-Class Identification of Common
Weed Species in Cotton Production Systems. Comput. Electron. Agric. 2022, 198, 107091. [CrossRef]

28. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934.

29. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 10778–10787.

30. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. CenterNet: Keypoint Triplets for Object Detection. In Proceedings of the IEEE
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6568–6577.

31. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

32. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

33. Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
34. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE

2021, 109, 43–76. [CrossRef]
35. Redmon, J. Darknet: Open Source Neural Networks in C. Available online: https://pjreddie.com/darknet/ (accessed on

4 February 2021).
36. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in

Context. In Proceedings of the 13th European Conference on Computer Vision–ECCV 2014, Zurich, Switzerland, 6–12 September
2014; Volume 8693.

37. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A
System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, 2–4 November 2016.

38. François Chollet Keras, 2015. Available online: https://github.com/keras-team/keras (accessed on 24 November 2022).
39. TensorFlow. TensorFlow 2 Model Zoo. Available online: https://github.com/tensorflow/models/blob/master/research/object_

detection/g3doc/tf2_detection_zoo.md (accessed on 14 March 2022).
40. Rao, Y.; He, L.; Zhu, J. A Residual Convolutional Neural Network for Pan-Shaprening. In Proceedings of the RSIP

2017—International Workshop on Remote Sensing with Intelligent Processing, Shanghai, China, 18–21 May 2017.
41. Padilla, R.; Netto, S.L.; Da Silva, E.A.B.; Netto, S.L. A Survey on Performance Metrics for Object-Detection Algorithms Compres-

sion of Power Systems Signals View Project A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of
the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020.

42. McLaughlin, N.; Del Rincon, J.M.; Miller, P. Data-Augmentation for Reducing Dataset Bias in Person Re-Identification. In
Proceedings of the AVSS 2015—12th IEEE International Conference on Advanced Video and Signal Based Surveillance, Karlsruhe,
Germany, 25–28 August 2015.

43. Jia, Y.; Wang, H.; Chen, W.; Wang, Y.; Yang, B. An Attention-Based Cascade R-CNN Model for Sternum Fracture Detection in
X-ray Images. CAAI Trans. Intell. Technol. 2022, 7, 658–670. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/agronomy12071620
https://doi.org/10.24018/ejers.2017.2.6.379
https://doi.org/10.3390/agronomy12112681
https://doi.org/10.3390/rs12132136
https://doi.org/10.1016/j.compag.2022.107091
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/JPROC.2020.3004555
https://pjreddie.com/darknet/
https://github.com/keras-team/keras
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://doi.org/10.1049/cit2.12072

	Introduction 
	Materials and Methods 
	Data Collection 
	Data Labeling 
	Train–Test Split 
	Data Augmentation 
	Training 
	YOLOv4 
	EfficentDet 
	CenterNet 

	Platforms 
	Evaluation Metrics 
	Mobile Optimized Solution 

	Results 
	Model Comparisons 
	Inference Time 
	Frames Per Second (fps) 
	Improvement with YOLOv4-Tiny 

	Discussion 
	Conclusions 
	References

