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Abstract: Road dust is a mixture of fine and coarse particles released into the air due to an external
force, such as tire–ground friction or wind, which is harmful to human health when inhaled. Contin-
uous dust emission from the road surfaces is detrimental to the road itself and the road users. Due
to this, multiple dust monitoring and control techniques are currently adopted in the world. The
current dust monitoring methods require expensive equipment and expertise. This study introduces
a novel pragmatic and robust approach to quantifying traffic-induced road dust using a deep learning
method called semantic segmentation. Based on the authors’ previous works, the best-performing
semantic segmentation machine learning models were selected and used to identify dust in an image
pixel-wise. The total number of dust pixels was then correlated with real-world dust measurements
obtained from a research-grade dust monitor. Our method shows that semantic segmentation can
be adopted to quantify traffic-induced dust reasonably. Over 90% of the predictions from both
correlations fall in true positive quadrant, indicating that when dust concentrations are below the
threshold, the segmentation can accurately predict them. The results were validated and extended
for real-time application. Our code implementation is publicly available.

Keywords: dust; dust monitoring; dust quantification; deep learning; machine learning; road dust;
semantic segmentation; traffic-induced dust; unsealed roads

1. Introduction

Dust emissions from unsealed roads occur due to the application of an external force
or combined action of such forces. These external forces can be vehicle tire–ground friction
and shear due to vehicle movement and wind. When road dust is airborne, it is sometimes
referred to as fugitive dust or particulate matter (PM). We use dust and particulate matter
interchangeably in this article. PMx refers to particulate matter with a diameter of x µm or
less [1]. Due to the different sizes of PM causing different types of health issues, this study
focuses on five particle sizes, PM30, PM10, PM4, PM2.5, and PM1. Notably, the inhalable
(PM10) and respirable (PM2.5) PM can induce adverse health effects [2], thus are often
focused on more in dust-related studies [3–5].

Dust emissions can occur due to aerodynamic entrainment, saltation bombardment,
and aggregates disintegration, albeit the aerodynamic entrainment is often assumed to
be negligible [6]. Many questions relating to dust emissions, particularly due to traffic,
remain unanswered as research groups primarily focus on wind-induced erosion events
that cause dust emissions [7–9]. The chaotic nature of dust emissions makes it difficult to
use the empirical relationships [10] derived from field experiments to explain the physics
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involved in the process. This paper approaches the problem by considering recent ad-
vancements in machine learning (ML) to find a more pragmatic solution [11,12]. There are
other unconventional attempts to quantify dust or gravel loss using smartphones [13] and
machine learning algorithms [14], but none have conducted extensive field experiments
and correlated that with outputs from image processing. When dust particles are airborne,
they form a cloud and depending on the intensity, it can be captured in an image or a
video, allowing us to perform semantic segmentation. The segmented images can then be
post-processed to calculate the number of dust pixels in them. In this study, we investigate
if the calculated dust pixels can be correlated with the actual field dust measurements. This
is further elaborated in Section 2. The devised experimental procedures are explained in
Section 3.

1.1. Machine Learning Approach

In machine learning, segmentation refers to the process of dividing an image into
segments and automatically identifying pre-learned objects or characteristics. Semantic
segmentation involves splitting the image down to its smallest component, the pixel,
and assigning a label to each pixel such that pixels with the same label share certain
characteristics. This process effectively enables the model to understand and interpret
every part of the image with detail.

The present study study introduces a novel approach to semantic segmentation,
specifically tailored for the identification and analysis of dust clouds on unsealed road
surfaces. Our methodology encompasses the development and training of machine learning
models, which are optimized for semantic segmentation tasks. The process is outlined
as follows:

1. Data collection: The initial phase involved acquiring high-resolution images of traffic-
induced dust clouds from unsealed roads, exhibiting different levels of dust accu-
mulation. These images constitute the foundational dataset required for training the
semantic segmentation model. The dataset produced is called URDE and has been
published [15].

2. Annotation of dust particles: A critical step in data preparation was the manual
annotation of dust particles in the collected images. Skilled annotators marked areas
of dust accumulation, creating grayscale masks. These masks depicted the intensity
of dust accumulation at the pixel level, thus providing a detailed representation of
dust distribution within the cloud.

3. Production of binary masks: Since the semantic segmentation model necessitates
binary masks, we utilized Otsu’s thresholding method to transform the detailed
grayscale masks into binary format. Otsu’s method [16], an adaptive thresholding
technique, determines the optimal threshold value for binarization, resulting in binary
masks that categorize each pixel as either ‘dust’ or ‘non-dust’.

4. Model training: The binary masks were then used as ground truths in training our
semantic segmentation models. We employed various deep learning frameworks,
particularly leveraging Convolutional Neural Networks (CNNs), which are highly
effective in image analysis and segmentation tasks. The models were trained to
discern dust-laden areas from dust-free zones, thus learning to identify and segment
dust particles within the environment.

Semantic segmentation has been used to solve road-related problems such as identi-
fying road boundaries for autonomous vehicles [17], preventing pedestrian collision [18],
and detecting road surface damages [19]. Our case of road dust differs from the cases
above in that the boundary of the object of interest, i.e., dust cloud, may not be as clear as a
rigid object. Dust clouds have fuzzy boundaries that are difficult to determine, and current
knowledge distillation methods fail to transfer boundary information, resulting in poor
boundary identification explicitly. Image segmentation could accurately determine the
exact boundary of the objects in the image. In recent years, knowledge distillation for
semantic segmentation has been extensively studied to obtain satisfactory performance
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while reducing computational costs and developing advanced ML models. Ranging from
simple encoder–decoder structures to more densely connected convolutional networks [20],
the machine intelligence has pushed state-of-the-art forward to advanced ML models such
as MobileNetV3 [21], DeeplabV3 with resnet backbone, and fully convolutional network
(FCN) with resnet backbone [22–24]. As our primary goal is to quantify dust in real-time
using semantic segmentation, emphasis was put on video sequences and static images.
However, we were unable to use these image-based segmentation methods directly on a
video sequence to independently segment each frame as the segmentation results will be
inconsistent for different frames due to the lack of temporal coherence limitations. For video
segmentation, spatial and temporal dimensions should be considered [25]. This is further
elaborated in Section 4.

1.2. Objectives

The objectives of this study are to:

1. Employ advanced semantic segmentation algorithms, specifically DeepLabV3, FCN
with ResNet101 backbone, and Lraspp_MobileNetV3_large, to accurately identify and
quantify traffic-induced dust clouds in images of unsealed roads.

2. Establish correlations between the dust pixel features extracted from the semantic
segmentation process and in situ dust measurements, thereby estimating the concen-
tration of dust.

3. Validate the effectiveness of the semantic segmentation approach in dust quantifica-
tion through comprehensive field experiments, ensuring the reliability and practical
applicability of the methodology.

4. Demonstrate the potential of the proposed method in real-world scenarios, particu-
larly in monitoring and managing dust levels on unsealed roads, thereby contributing
to environmental studies.

1.3. Structure of the Paper

Section 2 defines the scope of a problem and formulates the question, “Is the relation-
ship between the pixel representation of the dust cloud in an image and the actual dust
cloud?”, and designs the experiments needed to be conducted to gather data to address said
question. Section 2 also presents the procedure we used to incorporate dust segmentation
for video sequences where dust is accurately segmented in each frame and combined to
form a consistent video sequence. Section 3 presents the field experimental setup and
equipment used. Section 4 develops the correlation between the actual dust measure-
ments and the dust pixel percentage calculated from semantic segmentation. Results and
validation are presented in Section 5, where the effectiveness of the proposed method is
demonstrated by validating the dust segmentation for independent video sequences and
images, illustrating how the findings of this study can be implemented in the real world.
Concluding remarks are presented in Section 6.

2. Problem Formulation

Suppose that a vehicle has produced a visible dust cloud. A camera was used to
capture the dust emission from beginning to end, and a dust monitor was used to measure
the aerosol. The process is illustrated in Figure 1. The problem is formulated based on the
fact that the pictures do not and cannot represent a reality independent of the observer who
sees them; thus, the following assumptions were made. The following boundary ranges
were intentionally selected over discrete limits to introduce data variability.

• The dust cloud captured in the 2D image and the frame average of accumulated
probability densities of dust (ϕ) calculated are representative of the actual dust cloud
(Equation (1)). l is the distance from the camera to the dust cloud.

• The dust measurement (µ) is representative of the actual dust cloud when the vehicle
is in the vicinity of the dust monitor.
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• The field of view (FoV) of the video and images was selected so that the road segment
is visible at least 20 m but no more than 200 m.

• The dust monitor and the camera were located approximately 10–15 m (xcd) apart
horizontally from each other.

I1

I2

In-1

In

P1

P2

Pn-1

Pn

Z1

Z2

Zn-1

Zn

(a) (b)

(c)

Figure 1. Problem visualization. (a) Approach to field data collection, (b) correlating visual features
extracted from images with in situ dust measurements from the dust monitor, (c) inference pipeline. I
is the image frame in a video sequence, F is the trained ML model, Ls is the loss function, P is the
prediction from ML model, Z is the Hadamard product between the green channel of I (IG) and the
inversion of the prediction (P̄).

In this study, we use our URDE dataset [15], which was produced by field experiments
conducted on unsealed roads in Victoria, Australia. In the repository, there are two subsets
of data, dataset_100 and dataset_897, which were truncated from the original dataset of
approximately 7000 images. Images were extracted from video sequences which were
recorded at 30 frames per second.

Let V = (Vi)
n
i=0 be a labeled set with n number of samples, where each sample Vi is

a frame in a video with Vi ∈ RH×W×C. Each Vi is of height (H) = 1080, width (W) = 1920
and channel (C) = 3. Let V0 be the first frame. Let the rth pixel of Vi is pr where
r ∈ (h ∈ H, w ∈ W). And pd,r is the probability of dust in pixel pr.

Semantic segmentation of dust from video frames was undertaken from previously
trained machine-learning models from our previous works [26], and the three best-performing
semantic segmentation machine-learning models were considered for the works presented
in this paper. These three models are DeepLabV3_MobileNet_V3 _Large, FCN_Resnet101,
and Lraspp_MobileNet_V3_Large. The selected models were trained for URDE dataset_897.
Dust-segmented masks were then imposed onto each video frame. The accumulated
probabilities of dust in pixels were recorded for each frame, and the average was obtained
for 30 frames. Each original image has a corresponding manually annotated image called
the ground truth. Original images and corresponding ground truths were used to train the
machine learning models. From the processed video, the percentage dust pixel ratio (ψ)
was calculated according to (Equation (2)).

Average accumulated dust probabilities (ϕ) =
∑ pd,i

N
(1)
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Dust pixel ratio (ψ) =
1

30

30

∑
j=0

(ϕ) (2)

where pd,i is the probability of dust in the pi pixel, and N is the total number of pixels
of a video frame. The first Equation (1) calculates static frame dist pixel ratio from each
pixel dust probability obtained from semantic segmentation prediction, and the second
Equation (2) averages over 30 frames (approx 1 s) to reduce uncertainty noise.

3. Experiments
3.1. Instrumentation
3.1.1. Dust Monitor

A research-grade real-time dust monitor, the DustTrak™ DRX Aerosol Monitor 8533 from
TSI, was used in this study. Using the light-scattering laser photometric method, it can
simultaneously measure mass and size fractions continuously every second.

3.1.2. Camera

The images were collected from videos captured by a Canon EOS 200D direct single-
lens reflex (DSLR) camera mounted on a tripod at a fixed focal length and 30 frames per
second (fps). The camera was positioned according to the test set-up shown in Figure 2.

3.1.3. Test Vehicle

The test vehicle used for the experiments was a 2002 Toyota Corolla Sedan with an
overall height of 1470 mm, an overall length of 4365 mm, an overall width of 1695 mm,
a ground clearance (unladen) of 160 mm, a wheelbase of 2600 mm, a kerb weight of 1050 kg,
and gross trailer weight brake of 1300 kg.

3.2. Test Setups

The test vehicle was driven at different unsealed road segments to produce a dust
cloud. The dust cloud was captured from multiple points of view for both travel directions,
as shown in Figure 2. The dust monitor was placed in the wind direction so that the dust
monitor’s inlet sampled a representative portion of the dust cloud.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Camera

Dust monitor

Test vehicle

Test road segment

Field of view

Figure 2. Test setups. Eight different test configurations were used on the same road segment to
cover both travel directions and two fields of view per direction. These configurations are as follows:
(a) Vehicle traveling east with a northwest field of view, (b) Vehicle traveling east with a southwest
field of view, (c) Vehicle traveling east with a northeast field of view, (d) Vehicle traveling east
with a southeast field of view, (e) Vehicle traveling west with a northwest field of view, (f) Vehicle
traveling west with a southwest field of view, (g) Vehicle traveling west with a northeast field of view,
(h) Vehicle traveling west with a southeast field of view.
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4. Methods

In order to develop a relationship between features extracted from the images, i.e., the
percentage of dust pixels and the actual dust concentrations, first, we investigated the
relationship between dust cloud annotation performed by hand and the prediction by an
ML model. As shown in Figure 3, some differences exist between the hand-annotated image
and the prediction. This is further illustrated in Figure 4 for the dataset. Figure 4 shows
differences between machine learning (ML) predictions and manual (hand) annotations
of dust pixels. These differences can be due to human error, as people might not always
agree on what counts as a dust pixel, model limits as our ML model may miss some
nuances in dust patterns, leading to less accurate predictions, limited diversity in data,
differences in image resolution between hand annotations, and measurement mistakes.
Therefore, it was prudent to develop two relationships for actual dust measurements: one
with hand-annotated images and another with ML predictions. The first step encompasses
an analysis of original high-resolution field images that capture diverse dust intensities on
road surfaces. Accompanying these images are manually annotated grayscale masks, where
each pixel’s intensity is indicative of the quantity of dust present. In these masks, darker
shades signify minimal or no dust presence (intensity value = 0), while progressively
lighter shades up to white represent higher dust concentrations (intensity value = 1).
The intermediate shades provide a gradient scale of dust intensity, informing varying
dust levels. Additionally, binary segmentation masks are derived from the grayscale
masks using Otsu’s thresholding method. This binary format, which comprises only
two pixel values (0 or 1), serves as a critical prerequisite for the training of our machine
learning model. It simplifies the dust identification process by categorizing the segments
into distinct classes. The effectiveness of this approach is further demonstrated in the
predicted dust segmentation by the machine learning model Lraspp_MobileNet_V3_Large.
This model showcases a capability in identifying dust-laden areas from the surrounding
environment [16].

The predictions from segmentation are validated by comparing them with respective
field measurements, and air quality thresholds have been imposed on the predictions.
Australia has established dust exposure limits of 10 mg/m3 for workplaces, so that workers’
breathing zone should not cause adverse health effects or cause undue discomfort [27].
The Australian Standard for PM10 is 50 µg/m3, measured over a midnight-to-midnight 24 h
period. However, most states adopt their own, sometimes stricter, PM10 limits. There is
currently no national standard for the average one-hour PM10. For one-hour PM10, Victoria
uses the value 80 µg/m3 to trigger a ‘poor’ air quality category [28]. The disease control
and prevention centers in the United States have set the occupational exposure limit for
total dust in flavoring-related work as 15 mg/m3 over an 8-hour time-weighted average.
Multiple dust threshold levels have been established in various countries and jurisdictions.
For our study, we opted to adhere to the guidelines set by OSHA [29]. OSHA’s legal
airborne permissible exposure limit (PEL) is 15 mg/m3 for total dust and 5 mg/m3 for
respirable dust, averaged over an 8-hour work shift.

Correlation 1 was developed using the percentage of dust pixels obtained from manu-
ally annotated images. Correlation 2 was developed using the percentage of dust pixels
obtained from images segmented with different ML models. The developed correlations
are valid for images and videos obtained when the camera captures more than 20 m of
the road and less than 100 m from its FoV and the total measured particulate matter is
less than 30 mg/m3. These are reasonable limitations, because if the dust measurements
exceed 30 mg/m3 for a prolonged period of time, then the road segment obviously needs
to address the dust emissions. If the image obtained captured the dust cloud too close, then
it would be an error in selecting the control volume.
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(a) (b) (c) (d)

Figure 3. Comparative analysis of dust cloud segmentation methods. (a) Original high-resolution
field image, (b) manually annotated grayscale mask, (c) binary segmentation mask derived from the
grayscale mask using Otsu’s thresholding method, (d) predicted dust segmentation by the machine
learning model Lraspp_MobileNet_V3_Large.
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)

D a t a  p o i n t s
Figure 4. Comparison of dust pixel percentage: machine learning vs. manual annotation.

4.1. Correlation 1

To match a dust cloud with an in situ dust measurement, the generated dust cloud
needs to be captured when it is sampled by the dust monitor. A reference object should be
in the captured video sequence or the image to make the comparison possible. To effectively
solve this problem, we selected a dust monitor as the reference object and designed our
field experiments in a way so that the distance between the dust monitor and the camera
was the same. To keep the experiments consistent, reproducible, and extendable, the depth
data were obtained with respect to a reference image taken beforehand.

Image statistics of the reference object, i.e., the dust monitor, were studied in different
crops or angles within multiple images prior to extracting features from the image for
the correlation. As the annotation of the images was performed by qualified people,
the reference object detection was translation-invariant, viewpoint-invariant, size-invariant
and illumination-invariant [30]. There are multiple ways to compare the similarity of an
object in different images. An image-based, direct similarity metric could be used, such
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as the sum of absolute distances, the sum of squared distances [31] or normalized cross
correlation [32]. These approaches generalize to template matching, where a convolutional
procedure is conducted. For simplicity, in this paper, we use the pixel density resultant
ratio to determine similarity, as described below.

The pixel density resultant of the reference image was calculated according to Equation (3).
The same for all other images was calculated according to Equation (4).

Rre f =

√√√√[
(px)re f

(lx)re f

]2

+

[
(pz)re f

(lz)re f

]2

(3)

where [px]re f , [lx]re f , [pz]re f , and [lz]re f are the number of pixels along the horizontal length
of the dust monitor in the reference image, the horizontal length of the dust monitor
in the reference image, the number of pixels along the vertical length of the dust mon-
itor in the reference image, and the vertical length of the dust monitor in the reference
image, respectively.

Ri =

√[
(px)i
(lx)i

]2

+

[
(pz)i
(lz)i

]2

(4)

where [px]i, [lx]i, [pz]i and [lz]i are the number of pixels along the horizontal length of the
dust monitor in the image of interest, the horizontal length of the dust monitor in the same
image, the vertical length of the dust monitor in the image of interest, and the vertical
length of the dust monitor in the same image, respectively.

To keep the correlation independent of semantic segmentation, the correlation was
developed using ground truths. Each dust pixel percentage obtained using ground truths
(ϕ) is modified using the ratio Ri

Rre f
, as shown in Equation (5).

ϕmod = ϕ × Ri
Rre f

(5)

Actual field dust measurements were then correlated with ϕmod, as shown in Figure 5.
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Figure 5. (a) Linear correlation between PM30, PM10, PM4, PM2.5, and PM1, and their respective
percentage dust pixels from segmentation. (b) Linear correlation between PM10 and percentage dust
pixels from segmentation together with 95% prediction limits.
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4.2. Correlation 2

Correlation 2 (Table 1) was developed using the segmented results from different
video sequences. The dust monitor was turned on in the field experiments before the
vehicle started traveling to capture the background dust concentration. Therefore, each
experiment has a much higher number of data points for background concentration than
the data points for the actual dust event. If all the data points from an experiment were
included in developing a correlation, it would be biased and inaccurate. To avoid that,
dust events were generalized based on measurements obtained from the dust monitor,
as shown in Figure 6a. It is evident that the dust even comprises “outlier” dust readings;
therefore, we identified and isolated the dust event by identifying the origin and conclusion
of a particular experiment through outlier sampling. The method used was similar to the
rule of 1.5(IQR), where IQR is the interquartile range [33]. The first quartile (Q1) and third
quartile (Q3) were calculated, and the IQR was obtained. However, instead of sampling
outliers from the interquartile range from each quartile, we used the interquartile range
directly. This approach was selected to ensure that adequate portions of the background
dust and the dispersion were captured in the event. After dust events had been isolated for
all experiments, the correlation was developed as shown in Figure 6b.

Q1 Q3

1.5(Q3-Q1)

Background 
dust

Dust event

t (s)

D
u
s
t 

(m
g
/m

3
)

(a)

0 2 4 6 8 1 0 1 2 1 4 1 6
0

2

4

6

8

1 0

 P M 1   P M 2 . 5   P M 4   P M 1 0   P M 3 0

PM
x (m

g/m
3 )

D u s t  p i x e l s  ( % )

(b)

Figure 6. (a) Generalized dust event, (b) Correlation 2.

Table 1. Correlation 2 regression data.

Equation y = a0 + a1x + a2x2 + a3x3

Plot PM1 PM2.5 PM4 PM10 PM30

a0 0.207 ± 0.053 0.231 ± 0.056 0.304 ± 0.067 0.543 ± 0.109 0.612 ± 0.126

a1 0.913 ± 0.110 0.970 ± 0.116 1.152 ± 0.138 1.594 ± 0.225 1.868 ± 0.260

a2 −0.084 ± 0.028 −0.089 ± 0.029 −0.106 ± 0.035 −0.134 ± 0.056 −0.179 ± 0.065

a3 0.002 ± 0.002 0.003 ± 0.002 0.003 ± 0.003 0.004 ± 0.003 0.006 ± 0.004

Residual sum of squares 89.10 98.72 139.15 370.99 495.99

R2 0.55 0.55 0.55 0.51 0.51

Adjusted R2 0.54 0.54 0.55 0.50 0.50

4.3. Graphical User Interface (GUI)

A graphical user interface (GUI) was developed to dynamically process video or image
data and produce the above-discussed analysis on dust clouds. The code and software for
this analytical tool are available at https://github.com/RajithaRanasinghe/Dust-Cloud-
Identification (accessed on 14 January 2024). A snapshot of the GUI is shown in Figure 7a.
A snapshot of the GUI when a video is being processed is shown in Figure 7b. All training,
testing and evaluation was performed in a Ryzen 9 5900HX CPU, 32GB RAM, and an
NVIDIA RTX3080 Mobile 16GB GPU test environment. Similar platform specifications will
be needed to run the executable provided in the above link.

https://github.com/RajithaRanasinghe/Dust-Cloud-Identification
https://github.com/RajithaRanasinghe/Dust-Cloud-Identification
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(a) (b)

Figure 7. (a) GUI home page. (b) GUI when it is processing a video sequence.

5. Results and Validation

The developed correlation was validated for an independent set of video sequences.
An example of dust predictions for a video segment obtained from all three ML models
with corresponding field dust measurements is shown in Figure 8. It is evident that all
three ML outcomes are lower than the peak of the actual dust measurement suggesting
the ML outcomes underestimate the maximum dust concentration. However, all three ML
models overestimate the background dust concentration.

The accuracy of the developed correlations was evaluated by sensitivity (true positive)
and specificity (true negative) using the threshold dust concentration (µd) 15 mg/m3.
The true positives (TP) represent the dust predictions lower than (µd) and are actually
lower than (µd) and depicted in quadrant 1. Conversely, the true negatives (TN) are
the dust concentrations outside (µd) both in the segmentation predictions and the actual
ground concentration and are depicted in quadrant 3. The false positives (FP) represent the
dust concentrations that exceed (µd) but are predicted as less than (µd) and are depicted
in quadrant 2. The false negatives (FN) are where actual dust predictions suggest that
(µd) has been exceeded; however, the actual dust concentrations are less than (µd) and are
shown in quadrant 4.

As shown in Figure 9, more than 90% of the data from both correlations fall in quad-
rant 1, meaning when the dust concentrations are less than the threshold, the segmentation
can make an accurate prediction. If a stricter dust threshold is considered, for example,
µd = 5 mg/m3, most of the data in both correlations would still fall in quadrant 1. The num-
ber of data points in quadrant 3 would increase in both correlations, suggesting that the
correlations can adequately predict dust concentrations in both true positive and true
negative cases. In the case of µd = 5 mg/m3, the rise in false negatives can be observed.
This is not non-desirable as a slight overestimation of materials affecting air quality could
be preferred among shrewd practitioners.

For both cases of µd, the number of data points in quadrant 2 does not change signifi-
cantly, suggesting that although receiving a false positive is possible, it is negligible.
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Figure 8. Validation. Field measurement and PM10 prediction by the three ML models (correlation 2):
DeeplabV3_MobileNetV3_Large, FCN_ResNet101, and Lraspp_MobileNetV3_Large, for video se-
quence 1.
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Figure 9. (a) Predicted dust concentration vs. actual dust measurement from dust monitor for
correlation 1 for PM30, PM10, PM4, PM2.5, and PM1. (b) Predicted dust concentration vs. actual
dust measurement from dust monitor for correlation 2 for PM30, PM10, PM4, PM2.5, and PM1.
x = 1, 2.5, 4, 10, and 30.

6. Conclusions

This study provides a novel approach to quantifying traffic-induced dust in unsealed
roads using semantic segmentation. The proposed method was validated by data collected
from multiple field studies, where dust predictions from semantic segmentation were
validated using actual in situ dust measurements. For established dust tolerance levels,
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i.e., 5 and 15 mg/m3, it was shown that the proposed method with reasonable accuracy
predict traffic-induced dust. This study compares predictions from multiple different ML
algorithms as a single algorithm may not make the perfect prediction for a given data set
due to its limitations. The main highlights of this paper are summarized as follows.

1. The actual dust measurements from field experiments and dust concentrations pre-
dicted by the semantic segmentation demonstrate good correlations subjected to
constraints established for field experiments. However, the proposed method is re-
peatable for different environments and testing equipment, as the main principal
hypothesis is validated in this study.

2. Using the user interface we developed, one can go to a road segment of interest
where dust emissions need to be assessed and record traffic-induced dust as a video
sequence and determine if it exceeds relevant dust thresholds.

3. The developed method to quantify dust from images and videos can be used to assess
dust severity with respect to dust exposure limits, thus, can be implemented as a
real-world application.

Advanced semantic segmentation algorithms, namely DeepLabV3_MobileNetV3_Large,
FCN_ResNet101, and Lraspp_MobileNetV3_large, were employed in conjunction with
Otsu’s thresholding method for the identification of dust-laden pixels in this study. This
choice of algorithms and thresholding method, while not explicitly accounting for the
variability in transmittance across the dust cloud, is aligned with our objective of esti-
mating, rather than precisely quantifying, dust concentrations. The potential over or
under-estimation of dust resulting from this approach is deemed acceptable within the
parameters of an estimation-focused study. The robustness of our methodology was vali-
dated through a comparison with ground truths and actual field dust measurements. This
validation process involved capturing images and corresponding dust events in the field
alongside real-time dust measurements.

To quantify the correlation between the segmented dust in images and actual in
situ measurements, the coefficient of determination (R²) was used, further strengthened
by applying a 95% confidence interval. This statistical approach underscores the high
degree of correlation between our image-based dust estimation and actual field measure-
ments, thereby reinforcing the validity of our method. When compared to existing dust
quantification methods, the image segmentation-based approach is recognized as a more
cost-effective alternative. Traditional methods typically depend on either less accurate
empirical models or expensive dust monitors, whereas the method presented in this study
offers a viable solution for dust monitoring, particularly beneficial for applications in envi-
ronmental monitoring, industrial settings, and public health studies. Future enhancements
to the methodology are anticipated, especially in terms of incorporating variability in dust
cloud transmittance. These improvements aim to refine the accuracy of dust concentration
estimations, reducing any overestimation biases. Furthermore, the authors’ future work
will be focused on the automation of scene understanding in unsealed roads in terms of
road dust, soil type and traffic, making the approach wholesome.

7. Future Works

In this study, we have implemented and tested conventional machine learning models
tailored for static image segmentation for dust identification, with each model trained on
individual images. While this approach has yielded valuable insights, we anticipate signifi-
cant enhancements by incorporating cutting-edge machine-learning frameworks capable
of video-based analysis. Particularly, architectures like Convolutional Long Short-Term
Memory (LSTM) networks, which excel in handling sequential data, and 3D Convolutional
Neural Networks (3D CNNs), which extend the capabilities of 2D convolutions by adding
time as a third dimension, could be leveraged. These models are adept at capturing the
spatial-temporal dynamics in video sequences, making them well-suited for analyzing phe-
nomena such as dust clouds exhibiting spatial and temporal variability. Further exploration
into architectures such as Two-Stream Convolutional Networks, which combine spatial and
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temporal network streams for action recognition in videos, and the more recent Inflated 3D
ConvNets (I3D), which inflate filters and pooling kernels into 3D, could provide even more
sophisticated tools for dust cloud characterization.
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