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Abstract: As a promising paradigm, mobile crowdsensing (MCS) takes advantage of sensing abilities
and cooperates with multi-agent reinforcement learning technologies to provide services for users
in large sensing areas, such as smart transportation, environment monitoring, etc. In most cases,
strategy training for multi-agent reinforcement learning requires substantial interaction with the
sensing environment, which results in unaffordable costs. Thus, environment reconstruction via
extraction of the causal effect model from past data is an effective way to smoothly accomplish
environment monitoring. However, the sensing environment is often so complex that the observ-
able and unobservable data collected are sparse and heterogeneous, affecting the accuracy of the
reconstruction. In this paper, we focus on developing a robust multi-agent environment monitoring
framework, called self-interested coalitional crowdsensing for multi-agent interactive environment
monitoring (SCC-MIE), including environment reconstruction and worker selection. In SCC-MIE,
we start from a multi-agent generative adversarial imitation learning framework to introduce a new
self-interested coalitional learning strategy, which forges cooperation between a reconstructor and a
discriminator to learn the sensing environment together with the hidden confounder while providing
interpretability on the results of environment monitoring. Based on this, we utilize the secretary
problem to select suitable workers to collect data for accurate environment monitoring in a real-time
manner. It is shown that SCC-MIE realizes a significant performance improvement in environment
monitoring compared to the existing models.

Keywords: multi-agent reinforcement learning; self-interested coalition crowdsensing; environment
monitoring; hidden confounder; worker selection

1. Introduction

With the explosion of wireless communication and portable mobile devices, mobile
crowdsensing (MCS) [1,2] has become a popular paradigm that appeals to workers to imple-
ment various sensing tasks and provide recommendation services [3,4]. However, different
sensing environments and requirements make traditional MCSs very time consuming in
accomplishing sensing tasks. Consequently, a highly effective tool, known as multi-agent
reinforcement learning [5–11], has been developed to handle sequence recommendations
in MCS. This tool demonstrates remarkable potential for addressing decision difficulties
in unfamiliar sensing contexts. However, training in multi-agent reinforcement learning
requires significant interactions and costs, which can lead to a decrease in data efficiency.
Therefore, it is impractical to interact directly with the sensing environment. According to
recent studies [12], environmental reconstruction is a viable technique that utilizes imita-
tive learning to acquire environmental strategies from historical data. This approach not
only increases the efficiency of interacting with virtual environments but also decreases
interaction costs.

However, real-world scenarios exhibit a high level of complexity, so the data col-
lected by workers from different sensory environments is significantly multi-source and
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heterogeneous [8–11]. Figure 1 shows the variability of data collected in different sensing
environments at different times. For example, data collected by workers from the target
area tends to hold more significance compared to data collected from peripheral areas.
Additionally, newly acquired data prove more valuable for environmental reconstruction
than older data collected within the same sensing environment. Therefore, how to judge
the importance of data and utilize it effectively is the first challenge of this paper.
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Note that it is difficult for workers to collect fully observable data in real time [13–16].
Most collected data have hidden confounding factors [17,18]. In addition, the next state
relies on the former state and the action performed during training for multi-agent re-
inforcement learning. In real-world situations, however, the next state is more likely to
be additionally influenced by hidden confounders. Similarly, hidden confounders affect
the agents’ actions and rewards as they interact with the sensing environment, which can
reduce the accuracy of the environment monitoring. Hence, the second challenge is how to
perform environmental monitoring in the presence of confounders.

Furthermore, rather than reactively waiting for given data, we are more interested in
selecting the right workers to proactively sense important data for precise environmental
monitoring. However, it is often complicated to forecast real-time data on workers in
various sensing environments. Thus, the third challenge is how to select a group of workers
to sense essential data in a real-time manner for accurate environmental monitoring.

To address the aforementioned difficulties, we have developed a unique framework
called Self-interested Coalitional Crowdsensing of the Multi-agent Interactive Environment
Monitoring (SCC-MIE). The objective of this framework is to acquire knowledge about the
sensing environment and the underlying confounding factors utilizing partially seen data.
It focuses on environment reconstruction and worker selection based on data confidence. In
particular, we consider a reconstructor that comprises three representative agents: platform
agent πa, worker agent πb, and confounding agent πh, which leverages the available partial
observations and historical data to reconstruct the missing or unobserved information. It
aims to accurately model and understand the underlying structure of the sensing envi-
ronment. Another discriminator is learned as a critic, outputting confidence values and
judging whether the data samples are reliable or not. The reconstructor also uses the
critic’s judgment to improve its performance and challenges the critic by providing as little
information as possible. Finally, we invert the selection of workers based on the confidence
of the data in the environmental reconstruction, which in turn promotes continuous im-
provement in reconstruction accuracy. By forging cooperation between these two tasks,
SCC-MIE could maximize the accuracy and reliability of the environment monitoring:

• We propose an efficient framework, called SCC-MIE, which consists of multi-agent
imitation learning and a secretary-based online worker selection strategy. Based on
data spatiotemporal heterogeneity and confounding effects, the former estimates the
importance of the data and reconstructs the sensing environment. The latter aims
to select workers to proactively sense critical data in an online manner to motivate
environmental reconstruction.
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• Considering confounding effects in real sensing environments, we design an imitation
learning framework that includes confounder-embedded policy and a discriminator
to learn the policy based on their interactions effectively.

• Extensive Evaluation: we conducted an extensive evaluation of the dataset using four
different methods, which verified the validity of SCC-MIE.

2. Related Work

Mobile crowdsensing is a popular pattern that exploits groups of workers to perform
a variety of sensing tasks in large-scale areas. To efficiently collect data, researchers have
proposed numerous MCS schemes. For instance, in reference [19], the method employed
dynamically priced tasks and social network effects to incentivize worker participation in
MCS campaigns. Reference [20] used a set of UAVs to collect data from multiple mobile
users to maximize geographic coverage and reduce the age of information (AoI) for all
workers. Furthermore, crowdsensing platforms utilized polynomial-time greedy algo-
rithms in task assignments to ensure fairness and energy efficiency among participating
workers [4]. However, most existing works have overlooked the fact that the sensing data
submitted by workers is often sparse and incomplete. As research progresses, compressed
perception and matrix completion have emerged as practical options for data supplementa-
tion [10,11]. Compressed perception techniques recover the original data by observing low
dimensional features, whereas matrix completion methods fill in missing values based on
data structure and sample correlation. Applying these methods improves the handling of
sparse and incomplete perceptual data.

Nevertheless, the present research has not thoroughly investigated the spatiotemporal
correlation of perceptual data. In MCS environments, sensing data exhibit spatiotemporal
correlations, wherein data from neighboring points in time and space may interact with
each other. Therefore, considering this spatiotemporal correlation becomes crucial when
performing state estimation to minimize resulting errors.

To address these issues, several recent studies have used reinforcement learning to
establish a direct connection between spatiotemporal regions and their corresponding
accuracy, to estimate their significance. Unfortunately, it is costly to run RL algorithms,
which require much interaction with the environment to improve accuracy. As a result,
environment reconstruction in RL has attracted widespread attention recently. Various
studies have shown that imitation learning [21,22] enables environmental reconstruction
by learning environmental strategies from past data. For instance, generative adversarial
imitation learning (GAIL) [6] and its extension [23], multi-agent imitation learning (MAIL),
simultaneously learn both strategies by defeating the discriminator that discovers the
difference in the generated data from the real data. Furthermore, these workers are not
directly applicable in practical situations. This is because the real world cannot provide a
perfect sensing environment [14]. There is a high likelihood of confounders that affect the
accuracy of the environment reconstruction [17].

Therefore, we present an efficient method that enables real-time environment recon-
struction, keeping the importance estimates up to date, and selecting workers who can
actively sense important data for environment reconstruction. The framework will combine
reinforcement learning and imitation learning approaches to achieve accurate environment
reconstruction in complex and incompletely observable real-world environments. In this
way, we can overcome the challenges posed by the high cost and real-world complexity of
traditional RL algorithms and provide an effective solution to environmental reconstruction
in mobile crowdsensing.

3. Problem Definition and Framework Overview
3.1. Problem Definition

In this section, we define the MCS scenario and the sensing data. Then, our research
question, worker selection, is determined, which leads to the focus of the article, namely
environmental reconstruction. In a typical MCS campaign, each sensing task should
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be executed in m target sensing regions with a duration of T. In this paper, we divide
the duration T into t periods short enough to keep the sensed data stable and real time.
Moreover, the main notations of this paper are listed in Table 1.

Table 1. List of important notations.

Notation Explanation

i, N Index of a worker, total of workers
t, T Index of time slot, total of time slot
Xt

i Sensory data of worker wi at t-time slot
X̂ Reconstructed data for X

O, U Observable data set and unobservable data set
τ = {τ1, τ2, . . . , τn} Sensing the trajectory of workers.

ci Cost of collecting data.
B Budget of collecting data.

P, pi Confidence level, the judgment of the discriminator D

Next, we define the trajectory and sensing data. The research question of this paper is
defined according to them.

Definition 1. (Trajectory) A trajectory is a chronological sequence of spatiotemporal points. In
addition, n workers collect trajectories in time T, denoted as τ = {τ1, τ2, . . . , τn}, where each
point τi = (x, y, t) is made up of positions (x, y) (i.e., longitude and latitude) at the t-time slot.

Definition 2. (Sensing Data) For each sensing task, we consider a set of workers, denoted
as wi = {w1, w2, . . . , wn}, each worker i ∈ N with a cost ci independently determines its
sensory data Xt

i at t-time slot.

We assume a set of tasks with m sensory regions, n time periods, a budget of B,
and a duration of T. In this paper, our primary objective revolves around the precise
reconstruction of the environment while minimizing the discrepancy between the generated
data and real-world data. To achieve this goal, we focus on selecting workers who will
contribute their individual sensing data to the MCS campaign. The decision-making
process for the platform involves assessing the estimated importance of each worker’s data
and considering the remaining budget, denoted as B, to determine whether to include a
worker’s data for the task of environment reconstruction.

minimize
T

∑
t=1

D
(
Xt, X̂t

)
=

(
X − X̂t

)2 (1)

subject to X̂t = G(Xt), w ⊆ W, ∑
wi∈w

ci ≤ B (2)

In our analysis, we assume that the addition of new data leads to a reduction in
error and transforms the objective function into a maximization problem. However, the
challenge lies in the worker selection problem, which essentially involves choosing a subset
of k elements to maximize an ensemble function [24]. Taking into account the intricate
nature of environment reconstruction and the dynamically evolving real-time scenarios,
we recognize that the main problem addressed in this paper falls under the realm of
NP-hard problems.

3.2. Framework Overview

In this paper, we propose the SCC-MIE, which consists of two key components: worker
selection and environmental reconstruction. Figure 2 illustrates the overall architecture of
SCC-MIE, showing the interaction between these two key elements.
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Worker Selection: this component determines whether or not to select the worker based
on the quality of the data. Firstly, sampling from historical trajectories. Then, importance
estimation is derived from the spatiotemporal data of the sample (workers). Ultimately, a
secretary strategy is adopted to select suitable workers, aiming to sense important data for
environment reconstruction proactively.

Environment Reconstruction: we develop an online framework for reconstructing
the environment using spatiotemporal input from workers. This framework consists of
a reconstructor and a discriminator. Furthermore, SCC-MIE forges cooperation through
information sharing among agents to boost their performance. First, the reconstructor
extracts the spatiotemporal embedding of the data and then reconstructs the environment
by considering the ignored confounders. The discriminator receives additional information
from the reconstructor and computes confidence measures for the estimation results by
observing the reconstructed data.

4. Online Multi-Agent Environment Reconstruction

Due to the hidden confounding factors in realistic sensing environments, we introduce
a novel online multi-intelligent environment reconstruction method, namely SCC-MIE (self-
interested coalitional crowdsensing for multi-agent interactive environment monitoring).
Our approach aims to tackle two interconnected tasks simultaneously. The first task
involves utilizing a reconstructor G with generative capabilities to perform environmental
reconstruction by generating an approximation X̂ based on partial observations X. The
second task leverages a discriminator D to calculate an interpretable confidence level P,
incorporating information from X and X̂. This parallel undertaking enables us to solve the
complexities of environment monitoring effectively in the presence of hidden confounders.

The two tasks can be formalized as follows:

A : G(X) =
(
X̂
)
,LA = lossA

(
X, X̂

)
(3)

B : D
(
X, X̂

)
=

(
X − X̂

)2
= P (4)

Considering the cooperative and interactive nature of the two tasks defined in
Equations (3) and (4), an intuitive solution is adversarial learning, such as a generative
adversarial network (GAN), which not only enables mutual learning between the generator
and the discriminator but also improves the performance of both tasks. As a result, we
want to minimize the following loss function:

argmin
G

argmaxD∈0,1EX∼pE [log D(x)] + Ez∼pZ [log(1 − D(G(z)))] (5)
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where pz is a distribution, the generator is responsible for generating samples (in our
case, X̂) that approximate the desired data distribution pE. However, it is essential to note
that the training of the primary task heavily relies on the output of the discriminator D,
which can result in the potential loss of essential information. Furthermore, solving the min-
imax optimization problem involved in GAN-style models is inherently more challenging
compared to directly minimizing the loss function.

In addition, we explore an alternative approach called generative adversarial imi-
tation learning (GAIL), which has gained popularity as a method for imitation learning.
Unlike traditional imitation learning, which directly learns policies from expert demon-
strations and has shown practical benefits, GAIL takes a different approach. It leverages
the concept of generative adversarial networks to learn policies by competing against a
discriminator network trained on both expert demonstrations and generated trajectories.
This approach offers a distinct perspective on imitation learning and has shown promise in
various applications.

The problem at hand can be formulated as follows: we aim to train a policy π that
minimizes the loss function l(s,π(s)) under the discounted state distribution of the ex-
pert policy Pπe(s) = (1 − γ)∑T

t=0 γ
t
p(st). The objective of imitation learning is denoted

as π = argminEs∼Pπe
[l(s, π(s))] However, traditional imitation learning approaches have

certain limitations, such as the instability of behavioral cloning and the difficulty of opera-
tionalizing reverse reinforcement learning. To address these drawbacks, studies have shown
that generative adversarial imitation learning (GAIL) can achieve comparable theoretical
and empirical results while being more efficient and avoiding the pitfalls of traditional
imitation learning. GAIL employs a GAN framework, where a policy generator G is guided
by a reward function represented by a discriminator D. The objective function of GAIL is
defined as follows:

argmin
π

argmaxD∈0,1Eπ [log D(s, a)] + EπE [log(1 − D(s, a))]− λH(π) (6)

Here, H(π) ≜ Eπ [−logπ(a | s)] denotes the entropy of the policy π, and pE represents
the joint distribution of experts over state-action pairs. This formulation allows GAIL to
derive a policy from expert examples efficiently.

Indeed, GAIL works to improve similarity from generated trajectories to expert trajec-
tories. In this way, the learned strategy is executed in the environment and the update is
performed using the gradient descent method. The loss function used for policy updating
is as follows:

l(s, π(s)) = E[log D(s, a)]− λH(π) ∼=
Eτi [log πa|sQ(s, a)]− λH(π)

(7)

where Q(s, a) =τi [log(D(s, a))|s0 = s, a0 = a] represents the state-action value function.
It quantifies the expected log-probability assigned by the discriminator to a given

state action pair based on the trajectories τi. In recent developments, GAIL has demon-
strated its effectiveness in environmental reconstruction. This extension leverages the
collaborative efforts of multiple agents, allowing for enhanced performance and improved
reconstruction outcomes.

In this study, we deploy the SCC-MIE framework to construct a virtual environment
incorporating hidden confounders. This is achieved by historical data comprising ob-
servable information as well as unobservable confounding factors. By incorporating both
types of data, we create a comprehensive and realistic virtual environment to capture the
complexity and interactions of the underlying system. We then consider an interactive
system with three agents on the basis of GAIL, representing worker policy πB, platform pol-
icy πA, and confounder policy πh. We find that worker and platform policies are “mutual
environments” from the MDP perspective. The platform’s observations are the workers’
reactions and the platform’s actions are recommendations to the workers. Correspondingly,
the observation data of workers is the platform’s recommendation, and their actions are
the workers’ responses to the platform. In the environment, hidden confounders generate
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dynamic effects that affect actions made by the platform and the worker. In other words,
these agents interact with each other while all are affected by hidden confounding factors.
Specifically, the platform utilizes the workers’ spatiotemporal data to gain the recommen-
dation of workers’ next action via strategy πA. Then, the worker derives a response for
the next temporal state based on the observed data, recommendation, and unobserved
confounders via strategy πB.

Furthermore, we incorporate the dynamic impact of the hidden confounder H by
modeling it as a hidden policy denoted as πh. The main objective of this paper is to
leverage the observed data, specifically the trajectories {x, aA, aB}, to imitate the strategies
employed by agents A and B. The influence of the confounders is captured by inferring the
hidden strategies. The objective function for multi-agent imitation learning is formulated
as follows:

arg min
(πa ,πb ,πb)

Es∼Pτreal
[L(s, aA, aB)] (8)

where aA and aB are dependent on three policies. According to Equation (7), we apply the
GAIL framework to obtain the following:

L(s, aA, aB) = Eπa ,πh ,πb [log Da(s, aA)Dhb(s, aA, aB)−
λ∑π∈{πa ,πh ,πb} H(π)

= Eπa [log Da(s, aA)]− λH(πa)+
Eπh ,πb [log Dhb(s, aA, aB)]− λ∑π∈{πh ,πb} H(π)

= l(s, πa(s)) + l((s, aA), πb ◦ πh((s, aA)))

(9)

which demonstrates that the optimization process can be discretized into two components:
an optimization strategy πa and a joint strategy πhb = πb ◦ πh.

During the collaborative process, when the reconstruction error stops providing
valuable information for the judgment of discriminator D, we then conclude that the re-
constructor achieves a satisfactory data reconstruction performance. Thus, Equation (9)
essentially minimizes l(s, πa(s)) and l((s, aA), πb ◦ πh((s, aA))), respectively, to output
different confidence levels for the data to optimize the reconstruction performance con-
tinuously. However, it can be observed that the process of minimizing the loss function
increases the reconstruction error for observable samples and decreases the reconstruction
error for unobserved confounders. We, therefore, reweight the loss function, i.e., according
to the observable data (O) and the unobservable confounding variables (U), using the
confidence level.

Re − weighting f actor =

{
1 + 1/pi, xi∈O

−1/(1 − pi), xj∈U
(10)

In Equation (10), pi represents the discriminator’s judgment on whether the obser-
vation xi is considered observed or not. This equation highlights the distinct behavior
of reconstruction errors for observed data and unobserved confounders. Notably, if the
discriminator D determines that an observation xi from the set of observed data O is
unobservable or unreliable (indicated by a confidence value pi → 0), the corresponding
reconstruction error will be noticeably larger. This emphasizes the importance of reliable
observations in achieving accurate reconstruction results.

Based on the reweighting function, we materialize the loss function, which is expressed
as follows:

Loss(x) =
{

l(s, πa(s)), xi∈o
l((s, aA), πhb((s, aA))), xj∈U

(11)

where
l(s, πa(s)) ∼= Eτi [log πa(aA | s)Q(s, aA)]− λH(πa) (12)
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and
l((s, aA), πhb((s, aA))) ∼= Eτi [log πhb(aB|s, aA)Q(s, aA, aB)]
−λ∑π∈{πb ,πb} H(π)

(13)

Moreover, Q(s, aA) = Eτi [log(D((s, aA))
∣∣s0 = s, aA0 = aA] and Q(s, aA, aB) = Eτi [log(D

((s, aA), aB))|s0 = s, aA0 = aA, aB0 ] denote the state-action value functions for policy πa and
policy πhb, respectively.

By extending the GAIL framework, we accomplish the objective of imitating the
strategies employed by each agent. This extension leads to the development of SCC-MIE
to address the challenges of hidden confounders in reconstructing the environment using
multi-agent methods.

5. Detailed Model Construction

In the context of environment reconstruction, we address the problem by introducing
a reconstructor and a discriminator, which capture the dependencies within the data to
facilitate the reconstruction process. Figure 3 illustrates the workflow.
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5.1. Confounder Embedded Policy

In our framework, the reconstructor is responsible for inferring the hidden con-
founders and recovering the unobservable data, while the discriminator evaluates the
quality and authenticity of the reconstructed environment. Thus, we assume that the data
of agent A and agent B are observable and transparent. However, the data of agent H is
unobservable, due to the presence of hidden confounders. As a consequence, we design a
joint policy πhb = πh ◦ πb, which incorporates the confounder policy πh and policy πb. In
other words, the joint strategy can be expressed as πhb(oA, aA) = πb(oA, aA, πh(oA, aA)),
where inputs oA, aA, and output aB can be obtained from historical data. To summarize, we
formulate the environmental reconstruction problem as a Markov decision process, using
an imitation learning approach to train both policies by imitating observed interactions.

For the policies update in the generator, the joint policy πhb utilizes reward rHB, which
receives from discriminator D, to update. The policy πA updates by reward rA. In SCC-
MIE, generating the hidden strategy πh is a byproduct arising as the policy πhb and the
policy πA are continuously optimized. Such a hidden policy better represents the impact
of confounders present in real environments on workers and the platform. Thus, through
these two phases, the concealed policy πh is iteratively and indirectly optimized to restore
the actual confusing impact as much as possible. In order to make the training process
faster and more stable, we adopt PPO, which is more efficient in terms of samples than
other policy optimization algorithms, to update the above policy.

PPO is a widely used reinforcement learning algorithm that belongs to the policy
optimization-based approach. Unlike other algorithms based on policy optimization, its
core idea is to optimize the policy while limiting the difference between the new policy
and the old one to ensure training stability. To encourage strategy improvement while
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penalizing excessive strategy updates, a specific objective function is introduced. PPO
is adept at handling continuous action spaces and performs well in many tasks without
requiring complex tuning parameters. These advantages make PPO an efficient, stable, and
general algorithmic alternative for reinforcement learning.

In this framework, we develop a discriminator compatible with both classification
tasks for πhb and πa. The discriminator takes as inputs the state-action pairs (oA, aA, aB) and
(oA, aA, 0). Firstly, the discriminator classifies the true and generated state-action pairs
from πhb. It then proceeds to classify the state-action pairs from πa. In contrast to typical
generative adversarial learning frameworks where only one task is modeled and learned in
the generator, this paper defines the loss functions for πhb and πa as follows:

Loss =

{
loss(πhb) = Eτ [log(Dσ(oA, aA, aB))] + Eτreal [log(1 − Dσ(oA, aA, aB))]

loss(πa) = Eτ [log(Dσ(oA, aA, 0))] + Eτreal [log(1 − Dσ(oA, aA, 0))]
(14)

The probability that the input pairs come from real data is the output to the discrimi-
nator. This paper labels the true state-action pairs as 1 and the generated false state-action
pairs as 0. The discriminator is trained through supervised learning using these labels. The
discriminator is trained for supervised learning by this conception. It is then used as the
policy reward while simulating the interaction. The reward function of the policy πhb and
the policy πa can be expressed as follows:

Reward =

{
rHB = − log(1 − D(oA, aA, aB))
rA = − log(1 − D(oA, aA, 0))

(15)

The confounder-embedded policy plays a crucial role in capturing the influence of
hidden confounders, enabling the framework to model and reconstruct the environment
accurately. By integrating this policy into the learning process, SCC-MIE aims to achieve
robust and accurate reconstruction results, even in unobservable factors.

During the process of environment reconstruction, we begin by formulating the envi-
ronmental reconfiguration problem as a Markov decision process (MDP) quintuple denoted
by (S, A, P, R, γ). In this quintuple, the symbol S represents the state space and represents
the action space. The function P : S × A 7→ S signifies the state transition probability
model, and R : S × A 7→ R denotes the reward function. Additionally, γ serves as the
discount factor for cumulative reward. Subsequently, a trajectory is randomly sampled
from the observation data, with the initial observation oA assigned as the observation state
for the first time slot. To generate a complete trajectory, the policies πa and πb are employed,
triggered by the initial observation oA

0 . Utilizing the policy πa, the action aA
t is determined

based on the observation oA
t . Similarly, the joint strategy πhb guides the selection of the

action aB
t . Equation (15) represents simulated rewards used for updating the strategy

during the adversarial training phase. Moving forward, given the observation oA
t and

the action aB
t , the subsequent observation oA+1

t can be obtained using predefined transfer
probabilities. This step is repeated until reaching the end state, resulting in the generation
of the pseudo-trajectory.

Algorithm 1 elucidates the process of environment reconstruction, utilizing the genera-
tive adversarial training framework. The generator takes center stage within each iteration
of this algorithm, orchestrating simulated interactions by employing the policy πa and
the policy πhb. These interactions lead to the assembly of a trajectory set denoted as πsim,
encompassing the line 5 to 17 of the algorithm. Subsequently, the policy πa and the pol-
icy πhb undergo iterative updates using the proximal policy optimization (PPO) technique,
utilizing the generated trajectories πsim, as a starting point. This transformative process
unfolds within line 18 of the algorithm. Guided by the passage of K generator steps,
the compatible discriminator assumes its rightful place. In line with the orchestration of
Algorithm 1, the compatible discriminator undergoes a two-step training regimen, un-
folding within line 20. Notably, the predefined transition dynamics, nestled within line
13, are intricately tied to the specific tasks at hand. These dynamics mold each step of
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the reconstruction process. SCC-MIE adeptly emulates the observed interaction policies,
transcending the confines of mere observation to recover the concealed confounder that
lies beyond.

Algorithm 1: SCC-MIE algorithm

1: Input: Trajectory data Dreal = {τ1, τ2, ···, τn}.
2: Output: πa, πb, πh.
3: Initialization policies πhb and πa with parameters θhb and θa, and discriminator D with

parameter σ;
4: for i = 1, 2, . . . do
5: for k = 1, 2, . . . , K do
6: τsim = ∅;
7: for j = 1, 2, . . . , N do
8: τj = ∅;
9: Select a random trajectory τr from Dreal
10: Set the first state to the initial observation oA

0 ;
11: for t = 0, 2, . . . , T − 1 do
12: Simulate the actions aA

t , aB
t by the policy πa and the policy πhb, respectively

13: Calculate the rewards rA
t and rHB

t by Equation (15);
14: Derive the next observation oA

t+1
15: Insert

{
oA

t , aA
t , aB

t , rA
t , rHB

t
}

into the trajectory τj
16: end for
17: Integration of the computed data
18: end for
19: Update parameters θhb and θa according to PPO;
20: end for
21: Update the discriminator D by minimizing the losses;
22: end for

5.2. Worker Selection

In the dynamic real world, worker participation is real time and random. Faced
with unknown information, this paper decides whether to select it or not based on the
importance (confidence) of the data, i.e., workers who contribute high-quality data are
selected and workers with low-quality data are discarded. In addition, we simplify the
worker selection problem by viewing it as choosing the best one out of w workers. In
addition, we simplify the worker selection problem by viewing it as choosing the best one
out of w workers. In this case, the worker selection problem is a typical secretarial problem.
To better solve this problem, we first construct a sample set of workers and observe and
eliminate the top 1/e workers to understand their utility distribution. Then, in practice,
we use historical data to learn about this distribution in real time and then select the best
worker from the known distribution.

To streamline the process and harness the potential of forthcoming workers, we intro-
duce a novel sampling methodology, aptly named Algorithm 2. This ingenious approach
enables us to make informed decisions by capitalizing on historical data. The algorithm
begins by extracting a sample set of size j − 1 from the wealth of past records (line 1). Subse-
quently, we meticulously evaluate the utility of each upcoming worker against the pinnacle
of utility, also known as the threshold, within the sample set. This critical assessment
dictates whether a worker is selected for further consideration (line 3). When the current
worker is not chosen, they are gracefully assimilated into the sample set, seamlessly replac-
ing one of its members through a random resampling process (line 5–line 6). Importantly,
it should be noted that the threshold evolves dynamically over time as we progressively
eliminate workers with the highest utility. Consequently, our endeavor entails creating a
sample set comprising j − 1 workers, emulating a near approximation of the discarded
workforce. This astute strategy allows us to gain valuable insights into estimating the
threshold for every new worker, laying the foundation for informed decision making.
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Algorithm 2: Worker selection algorithm

1: Input: selected workers µ, new workers ωi, time: T; budget: B
2: Conduct X from history data according to t and T.
3: while ci <= B do
4: if D(µ,ωi) >= max{X} then

return µ∪ wi;
5: else
6: X ∪ D(µ,ωi);
7: Select z at random from X, X= X | {z} ;
8: ωi ++
9: end if
10: end while

6. Performance Evaluation

The AIMSUN dataset is a virtual collection of vehicle trajectories that has been con-
structed using a microscopic traffic simulation model. The system utilizes a dynamic
traffic assignment method to suggest appropriate routes for individual vehicles [25]. Next,
we analyze five distinct models: binomial, C-logit, proportional, polynomial logit, and
fixed. The several route models in the AIMSUN dataset offer alternative methods for
determining probability and making judgements when selecting routes for vehicles. The
fixed model employs a greedy approach that prioritizes minimizing the trip time for each
origin–destination (OD) pair. By examining these route models, one can assess the per-
formance of SCC-MIE in comparison to various tactics. This evaluation offers valuable
insights into the usefulness of SCC-MIE and allows for a comparison with the baseline
models in addressing route selection difficulties in the AIMSUN dataset.

Table 2 presents a partial set of data, and Figure 4 is a network diagram of three routes
based on the data in Table 2.

Table 2. Simulated traffic network partial data in AIMSUN environment.

OriginID Number SectionID

1 1 252
1 2 247
1 3 275
1 4 329
1 5 398
1 6 442
2 1 252
2 2 249
2 3 326
2 4 329
2 5 398
2 6 442
3 1 252
3 2 249
3 3 326
3 4 327
3 5 371
3 6 442



Sensors 2024, 24, 509 12 of 19

Sensors 2024, 24, x FOR PEER REVIEW 12 of 20 
 

 

traffic assignment method to suggest appropriate routes for individual vehicles [25]. Next, 
we analyze five distinct models: binomial, C-logit, proportional, polynomial logit, and 
fixed. The several route models in the AIMSUN dataset offer alternative methods for de-
termining probability and making judgements when selecting routes for vehicles. The 
fixed model employs a greedy approach that prioritizes minimizing the trip time for each 
origin–destination (OD) pair. By examining these route models, one can assess the perfor-
mance of SCC-MIE in comparison to various tactics. This evaluation offers valuable in-
sights into the usefulness of SCC-MIE and allows for a comparison with the baseline mod-
els in addressing route selection difficulties in the AIMSUN dataset. 

Table 2 presents a partial set of data, and Figure 4 is a network diagram of three routes 
based on the data in Table 2. 

Table 2. Simulated traffic network partial data in AIMSUN environment. 

OriginID Number SectionID 
1 1 252 
1 2 247 
1 3 275 
1 4 329 
1 5 398 
1 6 442 
2 1 252 
2 2 249 
2 3 326 
2 4 329 
2 5 398 
2 6 442 
3 1 252 
3 2 249 
3 3 326 
3 4 327 
3 5 371 
3 6 442 

 
Figure 4. Simulated transport network in an AIMSUN environment. The red line represents the 
trajectory associated with OriginID = 1, the purple color represents the trajectory associated with 
OriginID = 2, and the green color represents the trajectory associated with OriginID = 3. 

Figure 4. Simulated transport network in an AIMSUN environment. The red line represents the
trajectory associated with OriginID = 1, the purple color represents the trajectory associated with
OriginID = 2, and the green color represents the trajectory associated with OriginID = 3.

This section provides the training and testing outcomes of SCC-MIE and baseline
models for AIMSUN. The performance review encompasses several facets and diverse
performance criteria. In order to guarantee the ability to replicate the results, the specific
parameters utilized throughout the training procedure are outlined in Table 3.

Table 3. Hyperparameters used for test.

Hyperparameter Value

Number of iterations 10,000
Number of episodes 10,000

Batchsize 2048
Number of hidden neurons 64

Learning rate 0.00003
Discount rate of reward 0.99

Entropy coefficient 0.01

6.1. Baseline

• Mobility Markov Chain [26]: Mobile Markov chain (MMC) is a fundamental model
commonly used to address location prediction problems. MMC models represent a
stochastic process where transitions occur between different states in the state space.
One key characteristic of MMC models is their “memoryless” nature, meaning that
the probability distribution of transitioning to the next state is solely determined by
the current state.

• Recurrent Neural Network [27]: Recurrent neural network (RNN) is a popular and
robust algorithm for location recommendation tasks. RNN models excel at capturing
the spatiotemporal characteristics in data, allowing them to make accurate predictions
for the next location. In this study, we employ long short-term memory (LSTM) for
modeling continuous data.

• Inverse Reinforcement Learning [28]: Inverse reinforcement learning (IRL) aims
to infer unknown reward functions based on observed demonstrations or expert
behaviors in order to train RL agents or guide their decision-making process in new,
unknown environments. In this study, we employ maximum entropy IRL (MaxEnt) to
extend the idea of matching state visits to matching state-action visits.
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• Generative Adversarial Imitation Learning [6]: GAIL is an imitation learning algo-
rithm based on generative adversarial networks (GAN), which allows a learner to
learn strategies to imitate experts by confronting them.

• Deconfounded Multi-agent Environment Reconstruction [17]: DEMER uses a multi-
agent generative adversarial imitation learning framework. It is proposed to introduce a
confounder embedding strategy and train the strategy using a compatible discriminator.

6.2. Result

This section presents the training and testing results of the model. It begins with the
convergence curves for the training results, followed by the accuracy of trajectory similarity.
Next, it compares the accuracy of expert and learner models based on imitation learning.
Finally, it compares the running time of each model.

Convergence Curve: Figure 5 illustrates the convergence curve of the loss functions
(Discrim_loss,Policy_loss,Value_loss) and the causal entropy (H(πθ)) based on the AIM-
SUN dataset. From Figure 5, we find that when the number of iterations is small, both
discrim_loss and Value_loss decrease, while policy_loss increases. For example, when the
number of iterations starts, Discrim_loss is 1.38, Policy_loss is −1.44, and Value_loss is
0.49. When the number of iterations is increased to 20, the changes in each loss function
are more obvious, i.e., Discrim_loss shows a steep drop to 0.53, while Policy_loss decreases
to −0.93, and Value_loss decreases to 0.14. As the number of iterations is 30, Discrim_loss is
0.12, Policy_loss is−0.14, Value_loss is 0.0015. As the number of iterations is 40, Discrim_loss is
0.08, Policy_loss is −0.11, Value_loss is 0.00011. This is because the policy generator and the
discriminator have different design purposes in the framework. The main goal of the policy
generator is to learn to generate action sequences that are similar to the expert’s policy by
maximizing Policy_loss in order to achieve high-quality trajectory generation. In contrast,
the discriminator is designed to minimize the gap between the action sequences generated
by the generator and the real samples so that it can accurately distinguish between the two.
In addition, the framework introduces the concept of confidence level so that the SCC-MIE
discriminator can guide the training process of the generator more effectively. When the
generator returns a high confidence level, the discriminator has a lower probability of
misclassifying the generated action sequences. Thus, the loss function of the discriminator
decreases rapidly, which motivates the generator to generate trajectories closer to the ex-
pert’s strategy. This mechanism accelerates the training process and improves the efficiency
of the algorithm.

However, as training continues, the discriminator begins to discriminate real trajec-
tories from the generated trajectories to the point where the accuracy of the generator
continues to decrease. Therefore, in the middle of iterations, discrim_loss tends to increase,
and policy_loss tends to decrease. For example, when the number of iterations is 200, we
can observe that discrim_loss = 1.07, policy_loss = −0.59. As the number of iterations in-
creases to 500, we find that discrim_loss is 1.32 and policy_loss is −0.63. When the number
of iterations varies to 10,00, we find that discrim_loss is 1.38 and policy_loss is −0.66.

In addition, we find that value_loss is decreasing and almost converges to zero for
the increasing number of iterations. For example, when the number of iterations is 1000,
value_loss = 0.00054. At this point, the entropy Hπθ

converges to the maximum value
of causal entropy. To ensure that the results are correct, we increased the number of
training times to 10,000 and realized that none of the values had changed significantly.
This is because as the number of iterations increases, all the values reach convergence to
the point at which the discriminator is unable to distinguish the real trajectory from the
generated trajectory. Therefore, SCC-MIE achieves the best trajectory generation through
environment reconstruction.

Accuracy of Trajectory Similarity: Figure 6 depicts the precision of the trajectories
produced by each model over the five route models. We employed two widely utilized
assessment metrics in sequence modelling to evaluate the similarity at the trajectory level:
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the BLEU [29] score and the METEOR [30] score. Both ratings have a maximum value of 1,
while higher values indicate superior accuracy.
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The findings indicate that DEMER and SCC-MIE exhibit considerably higher levels of
accuracy across all five route models. As an illustration, DEMER achieves a mean BLEU
score of 0.9931 and a mean METEOR score of 0.9887, whereas SCC-MIE attains a mean
BLEU score of 0.9986 and a mean METEOR score of 0.9985. Conversely, the IRL method has
the poorest performance overall, as seen by its lowest BLEU score of 0.6843 in the C-logit
model and its lowest METEOR score of 0.4724 in the binomial model.

Accuracy of Expert and Learner: Figure 7 exhibits that the accuracy of the expert
and the learner is different for the number of training iterations. In this experiment, we
divide the entire dataset into a training dataset and a test dataset in the ratio of 0.7:0.3.
The number of training iterations is dynamically varied in the range [10, 10,000]. Then, all
models use 1000 sample trajectories to compare the model’s performance properly. Table 3
provides further information regarding the hyperparameters of SCC-MIE. The learner’s
accuracy is shown to improve with an increasing number of training rounds, as depicted in
Figure 7. For example, the number of iterations is 10, the accuracy of the expert is 100%,
and the accuracy of the learner is 51.54%. When the number of iterations is increased to
100, the accuracy of the expert is 85.68%, whereas the accuracy of the learner is 84.43%. The
accuracy of novice learners is expected to be poorer due to their incomplete understanding
of the expert’s method.
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In addition, the learner’s accuracy shows large fluctuations because he/she is still
trying to understand and imitate the expert’s strategy. As the training progresses, the
learner gradually improves his/her strategy, and the accuracy increases. More often than
not, the learner will gradually converge to a strategy that approaches or exceeds the expert’s,
thus stabilizing accuracy and eventually meeting or exceeding it. For instance, the number
of iterations is 10,000, the accuracy of the expert is 96.76%, and the learner’s accuracy is
96.29%. The number of iterations is 100,000, the accuracy of the expert is 98.42%, and the
learner’s accuracy is 99.42%.

Therefore, the model training relies on expert experience at first. Then, as the number
of training sessions increases, the learner gains experience, and the accuracy rate continues
to rise.

Moreover, we can see that the accuracy of learners in GAIL is highly variable from
Figure 7. For example, when the number of iterations is 10, the expert achieves a perfect
accuracy of 100%, whereas the learner’s accuracy is 54.92%. When the number of iterations
increases to 100, the expert’s accuracy is 85.75%, while the learner’s accuracy is 86.26%. Due
to the limitations of real environments in providing complete and observable information,
the reconstruction of the environment is hindered.

DEMER attempts to reconstruct hidden confounding factors to better structure the
environment. The curve of the learner in DEMER follows a similar trend to the curve in the
other models. For example, when the number of iterations is 10, the expert reaches a perfect
accuracy of 100% and the learner’s accuracy is 69.7%. When the number of iterations is
increased to 100, the expert’s accuracy is 85.71% and the learner’s accuracy is 71.88%. The
DEMER model provided inspiration in providing complete and observable information, so
we developed a new approach called SCC-MIE. This approach improves the performance of
GAIL (generative adversarial imitation learning) and DEMER (deconfounded multi-agent
environment reconstruction) and demonstrates the beneficial effects of our confounding
factor setting.

Running time: Figure 8 depicts the computation time, measured on a GPU, required
to generate 10,000 vehicle trajectories using six different models. Interestingly, it is observed
that all six models exhibit the capability to generate the desired 10,000 vehicle trajectories in
less than 2 s. Figure 9 (SCC-MIE) demonstrates that the running times of the six approaches
are relatively similar when the number of iterations reaches 1000.
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In general, when the number of iterations is comparatively lower, the above trajectory
generation algorithm may have a relatively shorter running time. However, virtual environ-
ments in large trajectory recommendation tasks are highly dynamic and hybrid, requiring
a large number of iterations to achieve good results. When the number of iterations keeps
increasing, the running time of algorithms, such as MMC, IRL, GAIL, DEMER, etc., may
show a nonlinear increase because of the complexity of the environment construction and
the high dimensionality of the state space. In contrast, the increase in SCC-MIE is relatively
small and the application value is high.

7. Conclusions

In this paper, we proposed self-interested coalitional crowdsensing for multi-agent in-
teractive environment monitoring (SCC-MIE), based on the generative adversarial training
framework to construct a virtual sensing environment with hidden confounders to conduct
the environment monitoring in real-time. To begin with, we incorporated the confounder-
embedded policy into the generator and ensured compatibility of the discriminator with
various classification tasks, thus facilitating precise optimization of each strategy. After
that, we introduced a novel self-interested coalitional learning scheme that can cooperate
with additional discriminators to provide interpretable confidence. The confidence level
obtained from this module can be utilized for worker selection, ensuring that the chosen
workers contribute more meaningful data for reconstructing the sensing environment.
Finally, we evaluated the framework using an AIMSUN-based trajectory dataset. Extensive
experiments against state-of-the-art baselines have demonstrated the effectiveness and
robustness of our approach.
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