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Abstract: To meet the demand for rapid bacterial detection in clinical practice, this study proposed
a joint determination model based on spectral database matching combined with a deep learning
model for the determination of positive–negative bacterial infection in directly smeared urine samples.
Based on a dataset of 8124 urine samples, a standard hyperspectral database of common bacteria and
impurities was established. This database, combined with an automated single-target extraction, was
used to perform spectral matching for single bacterial targets in directly smeared data. To address
the multi-scale features and the need for the rapid analysis of directly smeared data, a multi-scale
buffered convolutional neural network, MBNet, was introduced, which included three convolutional
combination units and four buffer units to extract the spectral features of directly smeared data
from different dimensions. The focus was on studying the differences in spectral features between
positive and negative bacterial infection, as well as the temporal correlation between positive–
negative determination and short-term cultivation. The experimental results demonstrate that the
joint determination model achieved an accuracy of 97.29%, a Positive Predictive Value (PPV) of
97.17%, and a Negative Predictive Value (NPV) of 97.60% in the directly smeared urine dataset. This
result outperformed the single MBNet model, indicating the effectiveness of the multi-scale buffered
architecture for global and large-scale features of directly smeared data, as well as the high sensitivity
of spectral database matching for single bacterial targets. The rapid determination solution of the
whole process, which combines directly smeared sample preparation, joint determination model,
and software analysis integration, can provide a preliminary report of bacterial infection within
10 min, and it is expected to become a powerful supplement to the existing technologies of rapid
bacterial detection.

Keywords: micro-hyperspectral technology; bacterial infection; positive–negative determination;
spectral feature; directly smeared urine sample; deep learning

1. Introduction

In recent years, the rampant spread of pathogenic microorganisms has posed signifi-
cant challenges to public health [1]. According to the data released by the World Health
Organization (WHO), deaths from infectious diseases account for 19% of the total global
mortality, with approximately 13 million children succumbing to infectious diseases each
year [2,3]. The experiences of large medical institutions in dealing with infectious diseases
and major epidemics have told us that early detection and diagnosis are the keys to ef-
fectively treating infections and controlling epidemics. It is crucial to detect pathogenic
bacteria more rapidly and accurately in the early stage [4,5].

However, the current bacterial detection techniques have disadvantages such as long
bacterial culture periods and inadequate detection throughput, making it difficult to meet
the clinical demand for rapid detection [6], especially for sterile body fluids with low
bacterial content (such as blood, pleural fluid, cerebrospinal fluid, etc.). These samples
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require processes like bacterial enrichment through blood culture, positive-culturing onto
blood plates, and isolation identification, which collectively results in low overall testing
efficiency [7,8]. For the most time-consuming bacterial culture process (usually taking
1–2 days), a positive result is usually reported when the bacterial suspension concentration
exceeds 105 CFU/mL (Colony Forming Units per milliliter) after blood bottle culture,
while cases with concentrations less than 103 CFU/mL are usually presumed negative
and do not require further testing. In clinical testing, we have observed that during
these processes, specifically before or in the early stages of blood culture, if the infection
status (positive or negative) directly from the samples can be accurately determined, it can
significantly reduce the overall testing time. This means that positive samples can enter
the antimicrobial susceptibility testing phase as soon as possible. For negative samples,
there is no need for subsequent continuous cultivation to save consumables like culture
plates and other medical supplies. In particular, there is a huge demand for urine sample
testing in the emergency department, where the rapid issuance of bacterial test reports is
of great significance [9,10]. In other words, for the test sample, we aim to directly detect
whether it contains bacteria. If bacteria are detected, it is positive, and if there are no
bacteria, it is negative. This process requires eliminating interference from impurities and
other substances in the urine that might affect the bacterial target.

Therefore, we aim to introduce new technology in the determination of bacterial infec-
tion status of directly smeared urine samples to accelerate the detection process and reduce
costs. Hyperspectral imaging (HSI) has developed from multispectral imaging, using imag-
ing spectrometers to continuously image target objects in dozens or hundreds of spectral
bands from ultraviolet to near-infrared (200–2500 nm) [11,12]. HSI has been widely applied
in the field of remote sensing, such as terrain classification [13], agricultural monitoring [14],
and food safety [15]. The micro-hyperspectral imaging technology that has emerged in
recent years is a combination of spectral analysis technology and microscopic imaging
technology. Through the meticulous segmentation of spectral bands, higher-resolution,
continuous, and narrow-band micro-hyperspectral images can be obtained, enabling a
comprehensive analysis of qualitative, quantitative, and localization of microscopic tissue.

In the field of medical spectral research, the current spectral resolution of micro-
hyperspectral imaging systems can reach 3 nm, with spatial resolution exceeding 0.5 µm [16].
With the continuous improvement of various hardware parameters, it is possible to monitor
pathophysiological characteristics and classify bacterial genera and species [17]. Bacteria
are mainly composed of proteins, nucleic acids, lipids, carbohydrates, and coenzymes, and
different components have their own typical wavelength selectivity. The specific absorbers
have strong absorption characteristics for certain specific wavelengths. The variations in the
content of these substances can result in differential degrees of absorption, reflection, and
scattering of light waves, ultimately manifesting as distinctive spectral features between
bacterial genera, which provides a theoretical foundation for hyperspectral research of
bacteria [18,19].

At present, hyperspectral research on bacteria mostly focuses on the classification
and identification of several specific types of bacteria. For example, Matthew employed
micro-hyperspectral imaging to detect Salmonella in chicken rinsate [20]. The hyperspec-
tral data of the Salmonella colony at 100× magnification within the wavelength range of
450–800 nm was obtained. A classification accuracy of 98.5% and specificity of 0.963 was
achieved by using Quadratic Discriminant Analysis (QDA). Through a combination of
micro-hyperspectral imaging and machine learning, Liu achieved a classification accuracy
of 98.06% for two types of bacilli, B. megaterium and B. cereus, based on subtle differences in
absorption peaks [21]. Kang utilized frameworks such as Convolutional Neural Network
(CNN) and Long Short-Term Memory (LSTM) and made significant progress in the clas-
sification of foodborne bacteria [22,23]. The Fusion-net proposed stacked single-analysis
frameworks and completed the synchronous processing of multiple features, improving
the classification accuracy to 98.4%. However, most of his research is confined to a few
specific types of foodborne bacteria. The narrow wavelength and low spectral resolution
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lack enough biological information for more complex multi-class detection of infectious
bacteria [24,25]. Moreover, small-scale datasets make it difficult to accurately reflect the
actual clinical distribution of bacteria [26]. Tao designed an end-to-end deep learning
network by combining micro-hyperspectral imaging systems to extract species-specific
features at the bacterial level as bacterial differentiation fingerprints [27]. A classification
model for common bacteria was established based on a large-scale dataset, and the accuracy
of classification for uncommon bacteria was achieved at 92% via transfer learning.

The above research indicates that bacterial detection technology based on micro-
hyperspectral imaging has the capability to encode the biological characteristics of bacteria
into datacubes via spectral and morphological information representation at the micro-
scopic scale. By employing appropriate preprocessing methods and deep learning models,
more detailed and intricate deep spectral features can be extracted. Compared with existing
bacterial detection methods, micro-hyperspectral technology offers simplicity in operation
and saves a significant amount of cultivation time. Moreover, it does not rely on traditional
morphological observation, which can reduce the influence of human factors. Compared
with similar studies on bacterial hyperspectral analysis, this study has made progress
in the research object, research methods, and application of results. The research scope
extends to a broader range of clinical infectious bacteria. The multi-scale buffered convolu-
tional neural network has powerful capabilities of multi-dimensional feature extraction.
This study has better scalability and higher application efficiency. Micro-hyperspectral
technology is expected to become a reliable means to address the issue of rapid bacterial
detection. However, as for the rapid determination of directly smeared bacterial infection
status proposed in this study, there are currently no relevant research outcomes that have
been observed.

Therefore, this study took a unique perspective on the bacterial infection status of
directly smeared samples. Focusing on the common urine samples in clinical practice, this
study discussed the features of hyperspectral bacteria data in directly smeared conditions,
the differences in spectral features between positive and negative bacterial infection, deep
learning models suitable for multi-scale features and rapid analysis of directly smeared
data, as well as the temporal correlation between positive–negative determination and
short-term cultivation. This study established a standard spectral database for common
bacteria (Escherichia, Enterococcus, Staphylococcus, Candida, etc.) and impurities (crystal,
casts, etc.) in urine samples to eliminate interference from impurities, and realized spectral
matching with single-bacterium targets. Based on the hyperspectral data characteristics of
directly smeared samples, a multi-scale buffered convolutional neural network, the Multi-
BufferNet (abbreviated as MBNet), was established, which included three convolutional
combination units to extract the spectral features of directly smeared data from different
dimensions. Finally, a model was established by combining database matching and MBNet,
called the joint determination model, which achieved rapid and accurate prediction of urine
bacterial infection. To apply this technology to clinical outpatient practice, this study also
combined the front-end rapid preparation method of directly smeared urine samples and
the back-end automated analysis reporting software, exploring a more efficient and feasible
determination solution for the whole process. This study, in conjunction with the genus
identification step [27], has formed a complete and rapid bacterial determination process.

2. Materials and Methods
2.1. Micro-Hyperspectral Imaging System

The data used in this study were all acquired by the micro-hyperspectral imaging
system, MICROspecim. MICROspecim consists of a spectral imaging system, control
system, and data processing system, as shown in Figure 1. The spectral imaging system
includes a front imaging mirror group, spectral acquisition component, imaging lens group,
and area array detector. The control system includes a camera control unit and a motor
control unit. The data processing system includes a data acquisition unit, a data analysis
unit, and a database unit. A halogen lamp (400–2500 nm, 50 W) provides an active lighting
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source. The glass slide samples on the microscope stage are imaged on the area array
detector through the spectral imaging system to complete two-dimensional information
acquisition. Simultaneously, the control system operates the motor to complete another one-
dimensional spatial information scanning. The control system and data processing system
are uniformly integrated into computer software, responsible for datacube acquisition and
post-processing. As a result, the hyperspectral data of directly smeared bacterial sample is
obtained with a dimension of 226 (λ) × 800 (x) × 800 (y), where 800 × 800, which represents
the image size (physical area size of 0.12 mm × 0.12 mm), and 226 is the number of spectral
channels from 400 nm to 1000 nm. At present, MICROspecim has been applied in clinical
pathology-assisted diagnosis and rapid bacterial analysis research.
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2.2. Experimental Samples Preparation

In this study, urine-smeared slides were used as experimental samples. After obtaining
patients’ urine samples, a portion was taken as the experimental group for directly smeared
urine sample preparation. Another portion served as the control group, and the urine
sample was determined and labeled as either a positive or negative bacterial infection
sample using the traditional culture test process. Moreover, the positive samples also
needed to be labeled with information about the bacterial species they contained. This
information served as the ground truth for training samples. The preparation process of
directly smeared urine samples in the experimental group is shown in Figure 2:

1. Take a clean glass slide, disinfect it with alcohol, and rinse it with distilled water.
Then, bake it with an alcohol lamp to remove wax and cool it for later use.

2. Record detailed information on the urine sample and assign it a unique identifier.
Pour the urine into an anticoagulant tube and balance it (so that the fluid volume in
each tube is approximately the same).

3. Place the urine sample in a centrifuge and spin it at a speed of 3000 r/10 min.
4. Take out the centrifuged urine and use a clean sterile pipette to suck out the super-

natant, leaving urine sediment at the bottom. Then, use a new pipette to suck out
the urine sediment and mix it thoroughly. Smear the urine sediment on a slide and
spread it quickly and evenly by a sterile loop.

5. Place the prepared slide in a biosafety cabinet until it is completely dry. Then, proceed
with Gram-staining in the following order: stain with crystal violet, cover with iodine,
decolorize with 95% ethanol, and counterstain with safranine. Finally, rinse the slide
with water and air-dry it for later use. The Gram-staining process is necessary for
two reasons. First, Gram-staining is an inherent part of the current testing process,



Sensors 2024, 24, 507 5 of 18

which can highlight the morphological information of bacterial targets and facilitate
doctors during observation and determination. It is beneficial for our technology
to adhere to the existing bacterial testing process to the maximum extent possible.
Second, the bacterial profile and detailed information of the unstained sample are
not clear enough without Gram-staining. It is challenging for doctors to label specific
bacteria or impurities.

6. Place the slide on the microscope stage and search for the field of view under a
10× objective. Convert the objective lens to a 100× objective lens and look for a field
of view suspected to contain bacterial distribution. Then, perform a push scanning to
capture hyperspectral images of directly smeared urine samples.

For the urine samples of the control group, after traditional culture, staining, biochemi-
cal molecular diagnosis, and mass spectrometry, the true value of bacterial infection status is
determined. The experimental group is labeled with the corresponding sample identifiers.
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2.3. Experimental Dataset

The urine samples in this study were all from the Clinical Laboratory of Tangdu
Hospital. The experimental dataset was collected by MICROspecim, including 8124 sets
of urine sample data, as shown in Table 1. Among them, 2864 cases are negative (sterile)
samples of bacterial infections and 5260 are positive samples. The largest sample size
among positive samples is E. coli (1442 cases), followed by E. faecalis (720), C. tropicalis (594),
K. pneumoniae (510), C. albicans (460), P. mirabilis (365), S. epidermidis (322), P. aeruginosa
(315), S. aureus (296), and A. baumannii (236). Each set of urine samples includes 0 h
(no cultivation, abbreviated as 0 h) and 3 h (short-term cultivation, abbreviated as 3 h)
samples. The data size of each raw urine sample is 226 × 800 × 800. The first 26 and
last 40 spectral bands of data need to be removed due to the high noise level, retaining
only the visible and near-infrared spectral data from 450–900 nm. The spatial dimension
size (800 × 800) of raw sample data is relatively large, which is not conducive to model
construction and training. Therefore, in this study, a spatial stride of 200 was used to extract
experimental data (160 × 400 × 400) from the raw data as an experimental sample set, as
shown in Figure 3. After three horizontal and vertical displacements, the total amount of
experimental data was expanded to 9 × 8124 = 73,116. Finally, each sample was reviewed,
problematic data were removed, and the truth values (positive or negative) of ultimate
infection status were determined.
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Table 1. The types and numbers of samples in the experimental dataset.

Infection Status Urine Sample Experimental Sample

Negative 2864 25,776

Positive

E. coli 1442 12,978
K. pneumoniae 510 4590
A. baumannii 236 2124

P. mirabilis 365 3285
E. faecalis 720 6480

S. epidermidis 322 2898
P. aeruginosa 315 2835

S. aureus 296 2664
C. albicans 460 4140
C. tropicalis 594 5346

Total 8124 73,116
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2.4. Database Standardization

The raw hyperspectral data of directly smeared bacteria is susceptible to factors such
as system light source, optical components, and experimental environment, resulting
in some random or systematic errors in the spectral and spatial dimensions. Therefore,
when obtaining raw sample data, it is necessary to perform database standardization
preprocessing to eliminate the impact of the system and external environment [28]. The
main steps include the following:

1. Maintain the light source intensity, focal length, and magnification constant, and
collect hyperspectral image B1 of the blank sample from a blank area on the slide.

2. Calculate the correction coefficient of spectral dimension:

B(i, j) =
∑N

λ=1 B1(i, j, λ)

N
(1)

h1(i, j, λ) =
B(i, j)

B1(i, j, λ)
(2)
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(i, j, λ) represents the coordinates of a pixel on the spectral image of a blank sample;
i, j, and λ represent the coordinates of its spatial two dimension and spectral dimension,
respectively. N is the number of the spectral bands, and B is the average hyperspectral data
of the blank sample in all spectral bands. h1(i, j, λ) is the correction coefficient of spectral
dimension corresponding to the pixel at (i, j, λ).

3. Calculate the correction coefficient of spatial dimension:

h2(i, j, λ) =
∑P

i=1 ∑Q
j=1 B1(i, j, λ)

P × Q
(3)

P and Q are the number of horizontal and vertical pixels in the spectral image of
a blank sample, respectively. h2(i, j, λ) is the correction coefficient of spatial dimension
corresponding to the pixel at (i, j, λ).

4. Joint spatial and spectral dimension correction to obtain standardized hyperspec-
tral data:

S′ =
h1 × h2 × S

B1
(4)

S is the raw hyperspectral data, and S′ is the standardized hyperspectral data obtained
after S is corrected.

2.5. Spectral Angle Matching

Spectral Angle Matching (SAM) is a method used for spectral data analysis and
comparison, commonly employed in tasks such as classification, identification, and change
detection of spectral data [29,30]. SAM performs sample matching and identification by
comparing the spectral angles between a target sample and known samples. Although
SAM is one of the most classic and traditional algorithms, it is also more reliable and offers
higher flexibility and operability in model updates. Furthermore, it is insensitive to changes
in brightness and lighting. Therefore, in this study, SAM was utilized to match the targets
in the directly smeared urine samples with known samples in the database to determine
the presence of bacterial targets in the directly smeared samples. The intuitive results of
SAM make the results of positive–negative determination models easier to understand and
interpret. The specific calculation formula for SAM is as follows:

α =
∑nb

i=1 tiri

(∑nb
i=1 ti

2)
1
2 (∑nb

i=1 ri
2)

1
2

(5)

Among them, nb is the number of spectral bands, t and r represent the reference
spectrum and the test spectrum, respectively. The spectral cosine is used as a similarity
measure, which measures the similarity between the reference spectrum and the test
spectral vector based on the angle between them. A smaller angle indicates a higher
similarity in spectral features, while a larger angle indicates greater dissimilarity.

2.6. MBNet

In the field of medical imaging, most end-to-end models based on three-dimensional
(3D) convolutional networks are proposed for processing stereoscopic imaging modes
such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) [31]. These
imaging modes have the characteristics of relatively simple semantic features and fixed
organ structures, which are somewhat different from the high variability and complexity
of micro-hyperspectral images. In micro-hyperspectral analysis, 3D convolution means
performing convolution operations by sliding the convolution kernel in three directions:
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two spatial directions and one spectral direction [32,33]. The definition of 3D convolution
is shown in Equation (6):

F(i, j, h) = (K ∗ I)(i, j, h) = ∑
m,n,p

I(i, j, h) ∗ K(i − m, j − n, h − p) (6)

In this equation, F(i, j, h) represents the output 3D feature map, I(i, j, h) is the input 3D
vector, and K(i, j, h) is the 3D convolution kernel. i, j, and h represent the coordinates of the
three output directions, namely the positions of spatial dimension, spatial dimension row,
and spectral dimension column. m, n, and p represent the sizes of the convolutional kernel
in these three directions, and these three parameters collectively determine the receptive
field size of that layer. The use of 3D convolution is more suitable for extracting features
from datacubes, as it not only extracts spatial features but also spectral features.

Therefore, constructing a determination model based on 3D convolution is not a simple
linear combination of 1D and 2D convolutional networks. Due to the inherent difficulty in
obtaining medical samples, overfitting is prone to occur when directly applying deeper
models. The deeper network models have more parameters, higher complexity, and
are more challenging to train, which contradicts the limited sample size of the directly
smeared urine sample in this study. A CNN network with relatively fewer layers and
parameters may be more suitable for this study. Therefore, this study proposed a multi-
scale convolutional neural network, the Multi-BufferNet (abbreviated as MBNet). Its model
architecture is shown in Figure 4.
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Figure 4. Model architecture of MBNet. MBNet mainly includes a convolutional combination unit,
a feature concatenation layer, and four buffer units. The convolutional combination unit consists
of three convolutional kernels with different dimensions, and each buffer unit consists of three
convolutional layers and one downsampling layer. Among them, the yellow square represents the
concatenation layer, the blue squares represent the 3D convolutional layers, and the gray squares
represent the 3D average pooling layers.

The term “multi-scale” refers to using convolutional kernels of different sizes to
process the same layer of feature maps, combining different convolutional kernels in a
parallel manner, and merging the convolutional results. The use of different convolutional
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kernels is to introduce receptive fields of different sizes and extract features at various
scales. To address the characteristics of rich spectral information and varying target sizes in
directly smeared urine data, a convolutional combination unit consisting of three sets of
convolutional kernels was designed. The convolutional combination unit stacks 3 × 1 × 1,
3 × 3 × 3, and 3 × 5 × 5 (spectral dimension λ × spatial dimension row × spatial
dimension column) kernels together. The 3 × 1 × 1 kernel is dedicated to extracting
spectral information, while the 3 × 3 × 3 and 3 × 5 × 5 kernels are used to capture spatial
texture information at different scales. The feature maps obtained from the three sets
of convolutional kernels are concatenated in the feature concatenation layer to produce
the output feature maps. Subsequently, a combined buffer unit of the buffer layer and
the downsampling layer was designed, with a downsampling stride of 2. The stride
of the buffer layer is fixed at 1 to enhance representational power without reducing the
feature map’s resolution. Convolutional kernels are all 3 × 3 × 3 in size to extract detailed
information of datacubes. After the feature concatenation layer, four buffer units are
sequentially connected, and finally, a fully connected layer and a SoftMax layer are passed
to output the determination results.

2.7. Evaluation Metrics

This study employed Accuracy (ACC), Positive Predictive Value (PPV), and nega-
tive predictive value (NPV) as evaluation metrics. ACC is often used as a measure of
classification performance in hyperspectral image analysis, while PPV and NPV are often
applied in the medical field. PPV represents the proportion of true positive results among
those that were determined as positive during diagnosis or testing. NPV represents the
proportion of true negative results among those that were determined as negative. The
specific calculation formulas for these metrics are as follows:

ACC =
TP + TN

TP + TN + FP + FN
(7)

PPV =
TP

TP + FP
(8)

NPV =
TN

TN + FN
(9)

TP, FP, TN, and FN represent the number of samples that are true positives (correctly
predicted positive), false positives (incorrectly predicted positive), true negatives (correctly
predicted negative), and false negatives (incorrectly predicted negative), respectively. The
relationships between these metrics are shown in Figure 5.
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3. Results and Discussion
3.1. Hyperspectral Database Matching of Bacterial Sample
3.1.1. Hyperspectral Database of Directly Smeared Urine Sample

The database standardization process for directly smeared hyperspectral data is shown
in Figure 6. Figure 6a represents the original image of directly smeared bacterial samples,
and Figure 6b represents the image after standardized correction. From Figure 6a, it can be
seen that due to the influence of factors such as system light source, optical components,
and experimental environment, there are a large number of horizontal shadows in the
original image. These shadows not only introduce errors during image processing but also
obscure bacterial features, resulting in the loss of some important bacterial features. After
standardized correction, as shown in Figure 6b, the situation with horizontal shadows is
significantly improved, and each bacterial feature is clearly visible.
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of a directly smeared bacterial sample. (b) Standardized data after standardized correction. (c) Binary
image of target and background. (d) Single-target datacubes after single-target extraction. (e) The
data content contained in the database.

The goal of this study is to determine whether the directly smeared urine sample is
infected with bacteria, that is, whether there are bacteria present in the sample. Therefore,
in order to quickly identify bacteria, we need to obtain a hyperspectral datacube of a
single bacterium (single target). On the basis of standardized data, we used the K-means
clustering algorithm to separate the foreground target and background region in which
the number of clusters, initialization, and iterations were set to 2, 10, and 200, respectively.
Then, a binary image of the target and background was obtained, as shown in Figure 6c.
Combining bacterial morphological parameters, we removed impurities and unknown
bacteria with abnormal parameters in the foreground. Additionally, we excluded targets
(incomplete bacteria and impurities) at the image boundary and retained the remaining
single targets as data samples. Then, we identified connected regions in the binary image
and accurately located and selected single-target samples from the datacube based on their
positions in the binary image. By setting several constraints such as single-target size range,
aspect ratio range, and restrictions on a single connected region, the automatic extraction of
single-target datacubes can be achieved, as shown in Figure 6d. The obtained single-target
samples have the same dimension of spectral band but different spatial dimensions due to
variations in their own spatial sizes.

Finally, a hyperspectral database of directly smeared bacteria was established, as
shown in Figure 6e. On the one hand, the database includes standard strains, genus, and
species information of clinical bacterial samples, microscopic datacubes, standard spectral
curves, typical spectral bands, visual spectral features, medical testing parameters, and
basic patient information. On the other hand, to address the interference from directly
smeared impurities (and others), a hyperspectral database of directly smeared impurities,
including urine cells, casts, and crystals, was established.
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3.1.2. SAM Results of Directly Smeared Bacteria

Figure 7 shows the pseudo-color images and typical spectral curves of common targets
in the directly smeared sample database, including several typical bacterial data and several
representative impurity data. The impurities in Figure 7 contain flaky calcium phosphate
crystal (CaP-Crys for short), magnesium ammonium phosphate crystal (MAPhos-Crys),
ammonium urate crystal (AUr-Crys), calcium oxalate crystal (CaOx-Crys), Cast, and leucine
crystal (Leu-Crys). The bacteria in Figure 7 contain C. tropicalis, S. aureus, K. pneumoniae,
S. epidermidis, E. coli, and P. aeruginosa. Among them, the large images in Figure 7b,c are
pseudo-color images containing the targets. The red boxes represent the locations of the
targets, and the small images in the lower right or left corners are the datacubes extracted
from the corresponding targets. It can be seen that positive samples with higher bacterial
content usually have relatively fewer impurities, while negative samples tend to have a
higher impurity content.
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Figure 7. Pseudo-color images and typical spectral curves of directly smeared samples. (a) Typical
spectral curves of different impurities. (b) Pseudo-color images and datacubes of different impu-
rities. (c) Pseudo-color images and datacubes of different bacteria. (d) Typical spectral curves of
different bacteria.

The images in Figure 7a,d represent the typical spectral curves of the corresponding
target, with the horizontal axis representing the wavelength. Overall, there are significant
differences in the spectral curve features between bacteria and impurities. However, there
are some similar spectral features between several bacteria or impurities. For example,
S. aureus and S. epidermidis both have a clear feature valley at the 60 spectral band (590 nm),
which may be related to the fact that they both belong to the Staphylococcus genus [27].
E. coli and P. aeruginosa show similar trends in their spectral curves. AUr-Crys and Cast also
share a continuous feature peak and valley between 90 and 110 spectral bands (660–705 nm).
In order to have a clearer understanding of the spectral feature similarities between several
common bacteria and impurities in Figure 7, SAM analysis was conducted for the above
targets. The spectral curve of a specific bacterium or impurity was used as the reference
spectrum, and the spectral curves of the other bacteria and impurities were treated as
the test spectra. The typical spectral curve is derived by averaging the spectral curves of
various bacteria in the database. The spectral angles between these spectra were calculated,
and the results are shown in Figure 8. The closer the spectral angle is to 0, the more similar
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the spectral features are. The diagonal has values of 0 because the reference spectrum and
the test spectrum are the same spectral curve.
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Overall, the spectral angle values mostly fall within the range of 0.2 to 0.5. Values
smaller than 0.2 indicate relatively similar spectral features, which mostly occur between
bacteria of the same genus or among impurities, such as between S. aureus and S. epidermidis,
as well as Leu-Crys and CaP-Crys. Values greater than 0.5 indicate significant differences,
mostly occurring between bacteria and impurities. Further analysis reveals that the spectral
angles between similar targets and typical spectral curves in the database were mostly less
than 0.1. Therefore, in order to use SAM to determine similarity and better balance accuracy
and coincidence rate, the determination threshold was set to 0.1; that is, if the spectral angle
between the test target and a known substance is lower than this threshold, the matching
result for this target will be output. If the spectral angle between the test target and a
known substance is higher than this threshold, it is considered as no matching result.

3.2. Determination of Positive–Negative Bacterial Infection Based on MBNet

MBNet takes hyperspectral data of directly smeared urine samples (160 × 400 × 400)
as the model input. First, the convolution combination unit is set with strides of (2, 2, 2), and
the 6 resulting feature maps are pooled and concatenated into 18 feature maps (39 × 99 × 9).
The spectral dimension is downsampled to compress the spectral information. The output
consists of 64 feature maps with a size of 98 × 9 × 9. Then, it proceeds through four buffer
combination units in sequence, and the output feature maps with sizes of 20 × 50 × 50,
10 × 25 × 25, 5 × 13 × 13, and 3 × 7 × 7. The number of output feature maps is 32, 64,
128, and 256, respectively. During model training, 40% of the total samples are used as
the training set, with 30% being the test set and 30% being the validation set. The training
samples are shuffled in each iteration. The training batch is set to 64, the learning rate is
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set to 0.001, and the stochastic gradient descent is used as the optimizer. After passing
through the four buffer combination units, the model outputs 256 feature maps with a size
of 3 × 7 × 7. Finally, a fully connected layer is used to output two probability values for
bacterial infection status, either positive or negative. After 80 iterations of the training, the
model parameters were determined. The validation set data were input into the model for
validation, and the results are shown in Figure 9a.
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The validation set consists of 21,935 samples, with results of 13,610 TP, 7338 TN, 395 FP,
and 592 FN. The performance of the model was evaluated by calculating accuracy, PPV,
and NPV, as shown in Table 2. MBNet achieved an average accuracy of 95.50%, indicating
that MBNet’s multi-scale buffer architecture is suitable for the analysis and determination
of 3D datacubes. The four-layer buffered structure enhances the feature representation
capability with limited downsampling. The combination of three parallel convolutional
kernels, while balancing model complexity and accuracy, extracts spectral features of
directly smeared data from different dimensions, playing a positive role in extracting
multi-scale positive–negative features of bacterial samples. PPV and NPV reached 97.18%
and 92.54%, respectively. Due to a relatively higher proportion of negative samples being
misclassified as positive, the NPV value is relatively lower. Considering the model’s
advancement, uniqueness, and versatility, VGGNet [34], ResNet [35], DenseNet [36], and
Vision Transformers (ViT) [37] models were selected for training to further demonstrate the
performance of MBNet. For all comparison methods, the training and testing data were set
to be the same. The results are shown in Table 2. MBNet achieved superior results while its
model was lighter, which is more conducive to practical application.

Table 2. Comparison of metrics for the validation results of different determination models.

Model ACC/% PPV/% NPV/%

MBNet-0 h 95.50 97.18 92.54
VGGNet 91.54 93.00 88.77
ResNet 91.30 92.61 88.79

DenseNet 92.71 94.12 90.08
ViT 94.74 96.16 92.18

MBNet-3 h 95.62 97.13 92.93
Joint Model 97.29 97.17 97.60

To test the impact of short-term cultivation on the positive–negative determination
and further validate the model performance, the 0 h samples used in the above experiments
were replaced with 3 h samples for model training and validation. The 3 h and 0 h samples



Sensors 2024, 24, 507 14 of 18

remained consistent in terms of data collection, preprocessing, model architecture, and
training mode. The difference is that the 3 h samples were prepared from the original
samples after a 3 h short-term culture, rather than being directly smeared. The results of
MBNet-3 h are shown in Figure 9b and Table 2. Compared with the results of MBNet-0 h,
MBNet-3 h showed a slight improvement in both ACC and NPV, while PPV decreased
slightly. This may be related to the increase in bacterial counts after short-term cultivation,
which corrected some of the previously misclassified positive samples. However, overall,
the improvement in each metric was not significant. Considering the time and labor costs
associated with the 3 h cultivation, the feasibility of selecting 0 h samples is higher in
practical applications. On the other hand, whether 0 h or 3 h samples are used, their
NPV values are relatively low. NPV provides the probability of correctly identifying
true negatives under negative results and is a metric for evaluating diagnostic or testing
accuracy. A higher negative coincidence rate means that there is a higher level of confidence
in correctly identifying true negatives under a negative diagnosis, which is relatively more
important in clinical practice.

3.3. Joint Determination of Positive–Negative Bacterial Infection

In order to further enhance the NPV of positive–negative determination and improve
clinical applicability, this section combines MBNet-based determination with bacterial
spectral database matching to propose a more efficient model for the joint determination of
positive–negative bacterial infection. The determination process of the joint model is shown
in Figure 10b, mainly including MBNet classification, single-target automatic extraction,
and spectral database matching. Firstly, the standardized bacterial hyperspectral data
are divided into four 160 × 400 × 400-sized sample data, which are input into MBNet
for positive–negative classification. For samples classified as positive, the results are
directly output, while for those classified as negative, single-target automatic extraction
is performed. In the connected regions of the binary image, impurities with abnormal
parameters, unknown targets, and targets at the image boundary (incomplete bacteria or
impurities) are excluded, while retaining the datacubes of other single targets. Then, the
average spectral curve of the single target is extracted, and it is matched with the standard
spectral curves of each substance in the database. That is, if the spectral angle between the
test target A and a substance B in the database is lower than the set threshold, the target A
will be determined as B. If B belongs to a known bacterial species, it is determined to be
bacterial. If B belongs to impurities or other substances, it is determined to be non-bacterial.
If the spectral angle between test target A and all known substances in the database is
above the threshold, it is determined as a no-match result, meaning non-bacterial. Once a
bacterial determination (Y for Yes in Figure 10b) occurs during the single-target matching
process, the output is classified as positive. If no bacterial determination (N for No in
Figure 10b) occurs, the output is classified as negative.

The validation results for the joint model are shown in Figure 9c and Table 2. Com-
pared with MBNet-0 h, the joint model demonstrated a significant improvement in accuracy,
reaching 97.29%, and NPV improved by 5.06% to reach 97.60%. This substantial improve-
ment is attributed to the effective combination of MBNet with spectral database matching.
For MBNet, its model architecture focuses more on global or large-sized features, which
may overlook scattered single bacterial targets in some regions. Spectral database matching
focuses more on the characteristics of small targets. The combination of single-target extrac-
tion and spectral angle matching is beneficial in improving the sensitivity of the original
model to small targets. After spectral angle matching, single bacterial targets that were
previously overlooked were discovered, resulting in the correction of a large number of
positive samples that were misclassified as negative. The number of FN samples decreased
from 592 to 186, leading to a significant improvement in NPV.
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As a result, we were able to establish a rapid determination solution of the whole
process for positive–negative bacterial infection. As shown in Figure 10a, the entire solution
starts with the preparation of directly smeared (urine) samples and ends with the issuance
of a test report (including basic database information and test results). The specific steps
are as follows:

1. Prepare the directly smeared samples as described in Section 2.2.
2. Observe the entire field of view under the microscope and locate the appropriate area.
3. Collect the hyperspectral data of urine samples potentially infected with bacte-

rial/fungal via MICROspecim.
4. Standardize hyperspectral data as described in Section 2.4.
5. Input data into the joint model to determine the bacterial infection (positive or negative).
6. If the result is negative, issue a detection report stating “No bacteria detected in this

sample.” If the result is positive, issue a detection report stating “Bacteria detected in
this sample.”

The entire process, except for the sample centrifugation, takes approximately 5–10 min.
The software operation can be completed within 3–5 min, where the data collection process
(Step 2) takes 2 min, and the data analysis process (Step 3, Step 4, and Step 5) takes
1–3 min. During the joint determination, if MBNet is determined to be positive, the result
will be directly generated. If it is negative, further database matching is required, which
relatively takes more time. Except for Step 1, all other software operations are completed
in the micro-hyperspectral acquisition system. The overall acquisition system is primarily
developed in C#. In addition to the main functions of data collection, functions such as
data standardization preprocessing, database integration, joint model determination, and
result visualization are all uniformly implemented through Python. This part packages the
relevant models and the trained weight files developed in Python as dynamic link library
(.exe) files. Subsequent upgrades and updates can be quickly achieved by replacing the
.exe files. This determination solution has been put into clinical practice, and we have
found that laboratory doctors attach more importance to the metric of NPV. If NPV can be
further improved on the existing basis, it will allow clinical laboratories to exclude samples
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determined as negative by the system, focusing only on samples determined as positive,
which can greatly shorten the time required to issue the final report.

4. Conclusions

This study addressed the rapid determination of positive–negative infection in directly
smeared bacterial samples by proposing a novel solution that combines micro-hyperspectral
imaging with deep learning models. First, a standard hyperspectral database of common
bacteria and impurities in urine samples was established. To extract the spectral features
of directly smeared data from different dimensions, MBNet with a multi-scale buffered
network was proposed. MBNet achieved an average accuracy of 95.50%, indicating that the
combination of multiple parallel convolutional kernels and buffered architecture is suitable
for the analysis of bacterial directly smeared data. In order to improve the sensitivity of
MBNet to small targets in bacterial samples, a joint determination model was developed
by combining a spectral database matching algorithm. This joint model achieved an
accuracy of 97.29%, a PPV of 97.17%, and a NPV of 97.60%. Finally, this study established
a rapid determination solution by combining the directly smeared samples preparation
and software analysis reports, which is also an exploration of more efficient and feasible
bacterial rapid detection technologies. In addition, through the continuous accumulation of
directly smeared data at present, we plan to extend this technology to the rapid testing of
sterile body fluids, such as pleural effusion and ascites. Furthermore, for positive samples,
we plan to conduct targeted model training on their two-dimensional spatial features to
determine the content of bacteria on the sample carrier, thereby inferring their infection
degree, which is also the focus of our future research.
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