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Abstract: Improvement of wireless power transfer (WPT) systems is necessary to tackle issues of
power transfer efficiency, high costs due to sensor and communication requirements between the
transmitter (Tx) and receiver (Rx), and maintenance problems. Analytical techniques and hardware-
based synchronization research for Rx-sensorless WPT may not always have been available or
accurate. To address these limitations, researchers have recently employed machine learning (ML) to
improve efficiency and accuracy. The objective of this work was to replace Tx–Rx communication with
ML, utilizing Tx-side parameters to predict the load and coupling coefficients on an LC–LC tuned
WPT system. Based on current and voltage features collected on the Tx-side for various load and
coupling coefficient values, we developed two models for each load and coupling prediction. This
study demonstrated that the extra trees regressor effectively predicted the characteristics of LC–LC
tuned WPT systems, with coefficients of determination of 0.967 and 0.996 for load and coupling,
respectively. Additionally, the mean absolute percentage errors were 0.11% and 0.017%.

Keywords: wireless power transfer; impedance matching; machine learning; load resistance estimation;
coupling coefficient estimation

1. Introduction

Wireless power transfer (WPT) is being explored as a substitute for traditional power
transmission methods in various industries, such as biomedical implants [1], wirelessly
powered sensors [2], and electric vehicles [3,4]. Its benefits include cost savings through
reduced use of wires and cables, improved security, increased mobility, ease of installation,
and low maintenance. Resonant WPT, developed at MIT in 2007, is one of the several WPT
techniques implemented for medium-range WPT. Communication is a crucial element
in optimizing power transmission in such a system due to transmitter (Tx) and receiver
(Rx) separation. Sensors are utilized for communication to verify position and alignment,
but if a separate sensor and communication circuit on the Rx side can be separated from
the circuit for WPT, the manufacturing cost of the Rx side can be reduced in the overall
cost. Safety costs can also be reduced by not consuming standby power of the device
being charged by the Rx. Furthermore, sensors may require protection against extreme
temperatures as they can be fragile, and their measurements may also be compromised
due to interference from other sensors or electromagnetic fields.

Research about Rx-side sensorless WPT systems has been undertaken in [5–15]. The
study in [15] proposes a machine learning (ML) assisted method that estimates the power
delivered to the Rx by using only measurements at the Tx-side. A method is proposed
based on the delivered power estimation to identify if the system efficiency is too low,
and the Tx should be turned off. This activation control method can be useful in multi-Tx
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WPT systems. One of the main challenges in WPT devices is the performance degradation
when the receiver’s position and characteristics vary. Therefore, monitoring the load
resistance and receiver position is essential for optimizing power transfer. Additionally,
an ML method is proposed to estimate the load resistance and coupling coefficient [15].
This method accurately predicts the characteristics of an LCC-Series tuned WPT system
by analyzing only the measured root-mean-square and harmonic contents of the input
current. The LCC matching circuit is a commonly utilized circuit in WPT systems due
to its high efficiency, ability to tolerate misalignment, and zero voltage switching. It is
primarily used for high frequency and electric vehicle charging applications. WPT systems
use different matching networks with different characteristics, which have different effects
on the whole circuit. Therefore, conducting a study focused on different matching networks
with different inputs in the ML can provide additional data for using ML in WPT to predict
load and coupling using only Tx-side parameters.

Our study proposes estimating the load and coupling coefficient [15–17] on an LC–LC
matching-based WPT system using artificial intelligence with only Tx-side parameters.
During the charging process, the load value fluctuates [18], affecting the transferred power.
The coupling coefficient evaluates the strength of the coupling between the Tx and Rx and
impacts the power transfer efficiency (PTE) [19,20]. The LC–LC circuit is a symmetrical
matching network that offers a resonance advantage independent of the load [21]. This
eliminates the need for an adaptive impedance matching topology to address power loss
due to mismatches as the load independence varies during charging. LC–LC further
provides a load-independent, constant current. LC matching networks are frequently used
in WPT applications including electric vehicle charging systems [21–25]. In our study, we
selected input current and Tx-side matching circuit capacitor voltage parameters. This
decision was motivated by the goal of diversifying the input data and observing how these
features impact the predicted values.

In this paper, we constructed the equivalent circuit of an LC–LC tuned WPT system to
analyze the WPT circuit. Then, using the equations obtained from the analysis, we collected
the dataset required for ML through calculation, by extracting the features from the input
current and the Tx-side capacitor voltage. With the obtained dataset, we could obtain the
feature importance, and the estimated results using various regression algorithms.

2. LC–LC WPT Circuit Analysis

The LC matching network refers to a circuit designed to provide using an inductor
and a capacitor. However, when the Tx/Rx coil is also taken into consideration, it may
be referred to as LCL. Hence, in some other studies, LCL is used when referring to the
LC network.

Our circuit, depicted in Figure 1, was constructed like any other WPT system. On the
Tx side, the system was comprised of a DC source, followed by an inverter made up of four
switching transistors (S1–S4) arranged in a bridge configuration. This inverter served to
convert the DC to high frequency AC. Next, the Tx-side matching circuit consisted of an
inductor (L1) and capacitor (C1) in series. The circuit continued with the Tx coil (Lp) and the
Rx coil (Ls). On the Rx side, the circuit followed through with the Rx-side matching circuit
consisting of capacitor C2 and inductor L2 after the Rx coil. The rectifier following the
matching circuit consists of a full bridge of diodes (D1−D4) and a filter capacitor (Cf), which
both contribute to the AC–DC conversion. R denotes the battery that is being charged.

Equivalent Circuit Theoretical Analysis

The equivalent circuit can be simplified as in [15,26], as shown in Figure 2. The
inverter circuit can be reduced to a sinusoidal voltage source (1) and the rectifier circuit, in
combination with the load, provides an equivalent load impedance (2). The voltage is then
transmitted through the LC resonant circuit model, from the primary to the secondary, and
eventually to the load.

Vin =
4VDC

π
sin(ω0t) (1)
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where Vin represents the AC voltage source of the circuit, and ω0 = 2π f , where f is the
resonant frequency.

Req =
π2R

8
(2)
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Req stands for the equivalent load value. Our analysis, which employed Kirchhoff’s
laws, yielded the following results:

Vin − ZL1 Iin − ZC1(I in − Ip
)
= 0 (3a)

ZC1(I in − Ip
)
−ZLp Ip − ZM(I p − Is

)
= 0 (3b)

ZM(I p − Is

)
−ZLs Is − ZC2(I s − I2) = 0 (3c)

ZC2(I s − I2)−
(

ZL2 + Req) I2 = 0 (3d)

where ZL1, ZC1, ZLp, ZM, ZLs, ZL2 and ZC2 represent, respectively, the impedance at the
resonant frequency of L1, C1, Lp, mutual inductance (M), Ls, L2 and C2. And, Iin, Ip, Is and
I2 represent input current and current flowing through Lp, Ls and L2.

Vin = Z11 Iin + Z12 I2 (4a)

Vs = Z21 Iin + Z22 I2 (4b)

where Z11, Z12, Z21, Z22 represent the expression of input–output impedance based on the
input and output currents. Equation (5) depicts the expression of the mutual inductance
which is related to the coupling coefficient. The variation of k will proportionally affect the
mutual inductance value.

M = k
√

LpLs (5)
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The complete expressions of Z11, Z12, Z21, Z22 (6) and (7) show that these impedances
are affected by the mutual inductance and the load value.

Z11 = ZL1 + Zc1 (6a)

Z12 = −

(
j

C2∗ω0
− C2 ∗ ω0 ∗

(
R + L2 ∗ ω0 ∗ j − j

C2∗ω0

)
∗
(

Ls ∗ ω0 ∗ j + M ∗ ω0 ∗ j − j
C2∗ω0

)
∗ j

)
C1 ∗ M ∗ ω02 (6b)

Z21 = − M ∗ j
A ∗ B ∗ C1 ∗ C2 ∗ ω0

(6c)

Z22 = −L2 ∗ ω0 ∗ j +
j

C2 ∗ ω0
− 1

B ∗ C22 ∗ ω02 (6d)

where
A = Lp ∗ ω0 ∗ j + M ∗ ω0 ∗ j − j

C1 ∗ ω0
(7a)

B = Ls ∗ ω0 ∗ j + M ∗ ω0 ∗ j − j
C2 ∗ ω0

+
M2 ∗ ω0

2

A
(7b)

Through the analysis of impedance Equation (6), the primary and secondary impedance
resistances were adjusted to attain the resonant state for power transmission. For Im(Z11)
and Im(Z22) both equal to 0 the actual resonant point ω0 was reached [27]:

ω0 =

√
1

L1C1
+

1
LpC1

=

√
1

L2C2
+

1
LsC2

(8)

Equation (8) represents the relationship between the circuit elements to achieve reso-
nance. The parameters Iin (9) and VC1 (10) were used for ML training. The coupling value
was varied to affect the mutual inductance according to Equation (5) in order to simulate
different coupling states between the Tx and Rx. We also varied the load value within
a certain range for each coupling value to imitate battery charging, accounting for load
fluctuations during the charging process. To gather information, we modified the coupling
and load variables, which affected the voltage and current on the transmission side.

Iin =
Vin
Zin

(9)

VC1 = Vin − ZL1 Iin (10)

In this paper, we designed a WPT system to charge mobile devices and low-power
drones. The system is capable of transferring tens to hundreds of watts of power at a
frequency of 6.78 MHz. Figure 3 presents a comparison between the simulated (PSIM
9.0 software environment) and theoretically calculated RMS values of Iin and VC1, which
varied depending on the load and coupling coefficient. Graphs depicting the load variation
in Figure 3a show that while the simulated and calculated values had different numerical
values, they exhibited the same shape. This was the same for the variation in the coupling
factor in Figure 3b, where the graphs also converged in a similar manner. For k ≥ 0.6, the
graphs combined as one.

Since our matching network was symmetrical, the elements on the Tx and Rx sides
were identical in the case of Tx coil = Rx coil, which was applicable to our situation. After
performing the calculation, the values in Table 1 were obtained. To achieve maximum
data harvesting, Iin and VC1 were calculated for the load values ranging from 1 to 150
and with coupling between 0.01 and 1, resulting in 15,000 data points. The structure of
the data is illustrated in Table 2. For low coupling coefficient values, the voltage VC1
was in the kilovolt range due to poor coupling between the Tx and Rx. As the coupling
coefficient increased, the voltage VC1 decreased, making the system more stable. For the
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load, the input current decreased while the voltage VC1 increased, which can be explained
by circuit theory.
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Table 1. Parameter values.

Frequency Input Voltage L1, L2 C1, C2 Lp, Ls RL K

6.78 MHz 50 V 3 µH 206.6 pF 24 µH 1:1:150 1 0.01:0.01:1 2

1 Load value goes from 1 to 150 with 1ohm step. 2 Coupling factor value goes from 0.01 to 1 with 0.01 step.

Table 2. Dataset structure.

Parameters Min. Max. Step

Load 1 150 1
Coupling coefficient 0.01 1 0.01
Number of data sets 15,000
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3. Machine Learning Approach

ML is a field of computer science and artificial intelligence that focuses on using data
and algorithms to enable computers to learn without explicit programming. Our objective
was to train ML models capable of predicting load and coupling coefficient values based
on primary side voltage and current features. The data obtained from the calculations was
used to extract features from signals.

3.1. Data Collection

In the ML model training described in [15], features used consisted of the input
current’s RMS, magnitude, and phase of harmonics one and three. In our own study, we
first calculated the current Iin and voltage VC1 using Matlab code, then extracted features
via different Matlab commands. Both Iin and VC1 are highly responsive to changes in the
load and coupling coefficient. Here are the features we extracted on time domain:

• RMS of Iin and voltage VC1 (RMS(Iin) and RMS(VC1));
• MAX of Iin and voltage VC1 (MAX(Iin) and MAX(VC1)).

Using the Fourier transform on the time domain signals, we switched to the frequency
domain. In the frequency domain, we extracted spectrum amplitude and phase features on
the resonant frequency:

• Amplitude of Iin and voltage VC1 (Iin-amp and VC1-amp);
• Phase of Iin and voltage VC1 (Iin-ph and VC1-ph);
• Phase difference between Iin and voltage VC1 (phdiff(Iin − VC1)).

Figure 4 depicts the changes in various characteristics as load and coupling are ad-
justed. Figure 4a displays the graph of the RMS of VC1 versus the load. With increasing
load values, the RMS of VC1 also increased. The graphs of the RMS of (Iin, amplitude of
Iin and VC1), MAX of (Iin, VC1, amplitude of Iin, and VC1) versus load exhibited a similar
shape to the graph in Figure 4a due to the proportional relationship between Iin and VC1,
following Equations (9) and (10). Figure 4b shows the graph of RMS of VC1 versus coupling.
As the value of k increased, the RMS of VC1 decreased. The presented graphs demonstrate
the relationship of the RMS and MAX values of (Iin, amplitude of Iin, and VC1) versus the
coupling factor, showing the same shape as the graph presented in Figure 4b. In Figure 4c,
the graph displays the VC1 spectrum phase versus the load, which demonstrated a signifi-
cant decrease, followed by a slight increase. Similarly, in Figure 4d, as the coupling factor
increased, the phase angle also increased. As shown in Figure 4e, there was a slight increase
and decrease in the phase of the input current as the load value increased. Figure 4f dis-
plays the VC1 spectrum phase changing significantly by coupling, resulting in increase and
deceleration. Figure 4g,h display graphs that were unstable, which may suggest that the
phase difference feature had the least impact on the prediction of load and coupling. After
examining all the graphs, it is apparent that the phase parameter displayed varying shapes
while the other parameters featured consistent or erratic graphs. Therefore, it is possible to
anticipate that the phase parameter may play a major or minor role in determining the load
and coupling factor.
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3.2. Model Evaluators

• The coefficient of determination (R2) in a regression model is a statistical measure that
calculates the portion of the variation in the dependent variable that can be attributed
to the independent variable. As such, it indicates the degree to which the data align
with the regression model. When the coefficient of determination is 0, the model
accounts for none of the variation in the response data around the mean. Conversely,
when the measure is 1, the model accounts for all the variation in the response data
around the mean. Therefore, a coefficient of determination value of approximately 1
signifies that the model provides a strong estimate. The formula to calculate the R2 is
as follows:

R2 =

 ∑ (x i − x)(yi − y)√
∑(xi − x)2∑(yi − y)2

2

(11)

xi = values of the input variable;
x = mean of the value of x-variable;
yi = values of the output variable;
y = mean of the value of y-variable;

• MAPE (mean absolute percentage error) is a metric in regression machine learning
representing the percentage error between the predicted and actual value. A low
MAPE value corresponds to a well-trained model. The formula to calculate the MAPE
value is as follows:

MAPE =
100%

n ∑
∣∣∣∣y − ŷ

y

∣∣∣∣ (12)

y = actual value;
ŷ = predicted value;
n = number of predictions.

3.3. Feature Importances

Based on Figure 5, the input current phase was essential for load estimation, whereas
the voltage VC1 phase was vital for coupling prediction. Additionally, the other features,
aside from the VC1 voltage phase, were insignificantly relevant for the prediction of the
coupling factor, as illustrated in Figure 5b. The most significant feature for load prediction
as depicted in Figure 5a, had a comparatively low value. However, the difference between
this feature and the others was not substantial, which significantly demonstrated that
most variables had a noteworthy impact. Comprehending the importance of variables
enables the selection of suitable inputs that will promise the most precise predictions.
Removing low-ranking features will reduce memory usage, computational costs, boost
model accuracy, and prevent overfitting.
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4. Discussion

Table 3 presents the R2 and MAPE values for the five best-trained model algorithms.
The extra trees regressor algorithm produced the lowest MAPE value for both predictions.
The accuracy of the load prediction model was approximately 99.89%, and the coupling
prediction’s accuracy was around 99.98%. Consistent with the findings in [15], the coupling
prediction was more accurate than the load prediction. The observed discrepancy is
illustrated in Figure 6, where the predicted value which was ŷ, was compared to the actual
value y. Specifically, in Figure 6b, which represents the coupling, the points cluster around
the first bisector, while for the load in Figure 6a, some values deviated from the first bisector.
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Table 3. Data structure.

Algorithms Evaluators Load Coupling

Random Forest
R2 0.954 0.996

MAPE 0.135% 0.02%

Decision Tree
R2 0.921 0.993

MAPE 0.141% 0.021%

Extra Trees Regressor R2 0.969 0.996
MAPE 0.104% 0.017%

XGBoost
R2 0.951 0.995

MAPE 0.179% 0.0258%

Light Gradient Boost R2 0.94 0.996
MAPE 0.2% 0.0296%
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Our decision to approach WPT characteristic estimation for a LC–LC tuned WPT
system has resulted in significant improvements, utilizing ML. The phase of Iin and VC1
is a crucial indicator for predicting both load and coupling. Furthermore, our use of only
Tx-side parameters makes implementing a communication circuit between Tx and Rx
unnecessary. However, our study is purely theoretical; thus, the next step would be to
conduct an experimental study and extend it to a multi-Tx WPT system as well.

5. Conclusions

In WPT, it is crucial to predict the load and coupling coefficients of the receiver
without relying on sensors or communication between the transmitter and receiver. This is
important to reduce the cost of WPT systems and minimize standby power consumption.
This work extends the research on LCC-tuned WPT in Rx-sensorless WPT using ML. ML is
gaining prominence due to its ability to overcome many existing limitations. The goal is to
predict the receiver characteristics of LC–LC tuned WPT, which provides resonance benefits
independent of load. In particular, the Tx-side parameters of input current and voltage of
the matching network capacitor were used to predict the load and coupling coefficients.
Relevant features were extracted, indicating that the phase of Iin and VC1 scored highest in
importance. The extra trees regressor demonstrated the highest accuracy rates of 99.89%
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and 99.98% for the load and coupling factor, respectively. The findings of our study could
lead to the prediction of multi-Tx WPT system characteristics via ML in the future.
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