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Abstract: We aimed to improve the detection accuracy of laser methane sensors in expansive temper-
ature application environments. In this paper, a large-scale dataset of the measured concentration of
the sensor at different temperatures is established, and a temperature compensation model based
on the ISSA-BP neural network is proposed. On the data side, a large-scale dataset of 15,810 sets
of laser methane sensors with different temperatures and concentrations was established, and an
Improved Isolation Forest algorithm was used to clean the large-scale data and remove the outliers in
the dataset. On the modeling framework, a temperature compensation model based on the ISSA-BP
neural network is proposed. The quasi-reflective learning, chameleon swarm algorithm, Lévy flight,
and artificial rabbits optimization are utilized to improve the initialization of the sparrow population,
explorer position, anti-predator position, and position of individual sparrows in each generation,
respectively, to improve the global optimization seeking ability of the standard sparrow search
algorithm. The ISSA-BP temperature compensation model far outperforms the four models, SVM, RF,
BP, and PSO-BP, in model evaluation metrics such as MAE, MAPE, RMSE, and R-square for both the
training and test sets. The results show that the algorithm in this paper can significantly improve the
detection accuracy of the laser methane sensor under the wide temperature application environment.

Keywords: laser methane sensors; temperature compensation; isolation forest algorithm; BP neural
network; sparrow search algorithm

1. Introduction

Natural gas is widely used as a clean energy source in various fields, but its main
component, methane (CH4), is flammable and explosive [1,2]. Although methane gas
is colorless, odorless, and non-toxic, its leakage can easily lead to severe combustion
and explosion accidents, resulting in significant casualties and property damage [3,4].
Especially in environments such as coal mines, methane concentrations are often deficient
but sufficient to form explosive mixtures [5]. In emergencies, methane concentrations can
quickly reach even tens of percent. The problem with methane, however, is not only its
combustion and explosion risks but also its greenhouse effect [6]. Since the Industrial
Revolution, global warming has significantly threatened human society and ecosystems.
Methane is not only a greenhouse gas; its greenhouse effect is 22 times greater than carbon
dioxide, making it the second globally warming greenhouse gas in the earth’s atmosphere
after carbon dioxide [7–9]. Therefore, how to detect methane gas concentration more
effectively and accurately in complex application environments has become the target of
attention and research direction for many researchers [10].

Laser methane sensors can be used for real-time online monitoring of natural gas leaks
in complex environments. However, laser methane sensors are sensitive to temperature,
resulting in a significant difference between the detected CH4 concentration and the actual
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value [11]. Commonly used temperature compensation methods include hardware com-
pensation and software algorithm compensation. Since hardware compensation is easily
affected by circuit components and welding accuracy, resulting in the lack of precision of
gas concentration detection results, but also has the defect of high cost, most scientists use
software compensation methods such as the least squares method and polynomial fitting
method. It has the advantages of high programmability, lower price, and scalability [12–14].
Considering that the effect of temperature on the detection results of laser methane sen-
sors includes a variety of factors such as gas molecules, optical components, and circuit
components [15], there is still a significant error between the corrected concentration value
and the actual value by the above method. Some scholars have improved the prediction
effect of laser methane sensors and simplified the temperature compensation process by
establishing a neural network temperature compensation model with higher prediction
accuracy, strong generalization ability, and learning ability [16].

Machine learning algorithms have various applications in various technical aspects
of gas sensors. Xiaonan Liu demonstrated in detail the application of utilizing shallow
neural network (SNN) fitting algorithms for the spectral data processing domain to achieve
denoising. This neural network has the advantages of simple structure and robustness [17].
In addition, among many machine-learning-based methods for temperature compensation,
we cite the following that reflect the state-of-the-art:

SVM [18]: Methane gas temperature compensation using a Support Vector Machine
(SVM) algorithm to train regression models. The sensor detects the temperature and
corresponding concentration values as inputs, and the temperature-compensated predicted
methane concentration is used as an output. However, SVM is sensitive to parameter
tuning and unsuitable for training large data samples. This leads to poor temperature
compensation when a large number of data samples are used for training.

Random Forest [19]: The structure of a random forest consists of multiple decision
trees. In each decision tree, nodes are split by randomly selecting a subset of features and
samples until a certain depth or purity is reached. Random forests can handle complex
nonlinear relationships and are resistant to overfitting. However, random forest models are
more complex and require higher memory and computational resources, which leads to
longer training time on large datasets.

BP Neural Network [20]: The method takes advantage of the fact that BP neural
networks can backpropagate the error to compensate for the nonlinear errors due to tem-
perature variations. However, the BP neural network tends to fall into local optimization,
and the probability of overfitting and underfitting increases.

PSO-BP Neural Network [21]: The primary purpose is to optimize the weights and
biases of the BP neural network using the Particle Swarm Optimization (PSO) algorithm,
which better enables the neural network to perform in predicting methane concentration.
However, the PSO algorithm’s global optimization ability could be more stable under sig-
nificant temperature variations, leading to insufficient prediction accuracy under extreme
temperature conditions or when the temperature range changes too much.

The prediction accuracy for the temperature compensation model based on a neural
network mainly depends on training samples and the network model structure. The aim of
this paper is twofold. Firstly, to deal with the need for large-scale datasets training laser
methane sensors, we created thousands of large-scale data by adding the data cleaning
algorithm based on Improved Isolation Forest [22] to the actual laser methane sensor high
and low-temperature methane concentration detection. Secondly, this paper introduces the
Improved Sparrow Search Algorithm (ISSA) [23] to optimize the BP neural network for
global optimization and better generalization ability. Temperature-compensated prediction
through data cleaning and model training will lead to higher prediction accuracy and
generalization for laser methane sensors. There are different types of Laser methane
sensors. The most commonly used detectors are based on TDLAS technology, including
Direct Absorption Spectroscopy (DAS) and Wavelength Modulated Spectroscopy (WMS).
Photoacoustic Spectroscopy (PAS), although often used in conjunction with TDLAS, works
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differently from TDLAS in that it detects acoustic waves generated by gas molecules
absorbing a modulated laser [24]. In this paper, we utilize the advantages of DAS in
terms of simplicity of operation, cost-effectiveness, and stability to conduct a temperature
compensation study of a laser methane sensor. However, the large-scale dataset cleaning
and temperature compensation methods we designed and studied can also be applied to
various fields and spectroscopic techniques.

2. Establishment of Large-Scale Dataset
2.1. Data Acquisition and Segmentation

The essential equipment employed under laboratory conditions to determine the
influence of temperature on the CH4 gas concentration detected using TDLAS is illustrated
in Figure 1. The laser methane detector mainly includes a DFB laser, an open, reflective
gas chamber, a circuit board, a photodetector, a pressure sensor, and a temperature sensor.
Among them, the laser has a center wavelength of 1653.72 nm, a drive current of 20–50 mA,
and a drive voltage of 3.3 V. The open-reflective gas chamber includes two gold-plated
mirrors. Mounting holes for the laser, photodetector, temperature, and pressure sensors
are provided at the bottom. The top of the circuit board is mounted with an MCU master
control chip, laser temperature control chip, temperature sensor, memory chip, resistor, and
capacitor. The experimental system mainly consists of the gas distribution system, the light
source emission part, the gas absorption cell, the data receiving and processing unit, and
the programmable constant temperature and humidity box. The light source emission part
mainly consists of a distributed feedback (DFB) laser and a semiconductor laser controller.

Sensors 2024, 24, x FOR PEER REVIEW 3 of 21 
 

 

Photoacoustic Spectroscopy (PAS), although often used in conjunction with TDLAS, 

works differently from TDLAS in that it detects acoustic waves generated by gas mole-

cules absorbing a modulated laser [24]. In this paper, we utilize the advantages of DAS in 

terms of simplicity of operation, cost-effectiveness, and stability to conduct a temperature 

compensation study of a laser methane sensor. However, the large-scale dataset cleaning 

and temperature compensation methods we designed and studied can also be applied to 

various fields and spectroscopic techniques. 

2. Establishment of Large-Scale Dataset 

2.1. Data Acquisition and Segmentation 

The essential equipment employed under laboratory conditions to determine the in-

fluence of temperature on the CH4 gas concentration detected using TDLAS is illustrated 

in Figure 1. The laser methane detector mainly includes a DFB laser, an open, reflective 

gas chamber, a circuit board, a photodetector, a pressure sensor, and a temperature sensor. 

Among them, the laser has a center wavelength of 1653.72 nm, a drive current of 20–50 

mA, and a drive voltage of 3.3 V. The open-reflective gas chamber includes two gold-

plated mirrors. Mounting holes for the laser, photodetector, temperature, and pressure 

sensors are provided at the bottom. The top of the circuit board is mounted with an MCU 

master control chip, laser temperature control chip, temperature sensor, memory chip, 

resistor, and capacitor. The experimental system mainly consists of the gas distribution 

system, the light source emission part, the gas absorption cell, the data receiving and pro-

cessing unit, and the programmable constant temperature and humidity box. The light 

source emission part mainly consists of a distributed feedback (DFB) laser and a semicon-

ductor laser controller. 

 

Figure 1. Experimental equipment for testing the effect of temperature on CH4 gas concentration. 

The data collected in this paper are the ambient temperature sensor detections and 

methane concentration values detected by the laser methane sensor in low-temperature 

(−20~0 °C), normal-temperature (10~30 °C), and high-temperature (40~65 °C) environ-

ments. Within each temperature interval, we slowly ramped the temperature from −20 °C, 

taking measurements in 5 °C steps and selecting stable laser methane sensor temperature 

and concentration values during the ramp-up process. Figure 2 shows the photographs of 

the equipment required for the laser methane sensor to collect data for high- and low-

temperature experiments. 

Figure 1. Experimental equipment for testing the effect of temperature on CH4 gas concentration.

The data collected in this paper are the ambient temperature sensor detections and
methane concentration values detected by the laser methane sensor in low-temperature
(−20~0 ◦C), normal-temperature (10~30 ◦C), and high-temperature (40~65 ◦C) environ-
ments. Within each temperature interval, we slowly ramped the temperature from −20 ◦C,
taking measurements in 5 ◦C steps and selecting stable laser methane sensor temperature
and concentration values during the ramp-up process. Figure 2 shows the photographs
of the equipment required for the laser methane sensor to collect data for high- and low-
temperature experiments.
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Figure 2. High and low-temperature experimental equipment of laser methane sensor: (a) Photo of
laser methane sensor; (b) High and low-temperature calibration.

This paper collected 15,810 sets of sensor temperature and concentration data from
laser methane sensors, thus creating large-scale datasets to serve as the base data for
temperature compensation studies. The datasets include data obtained at low, normal,
and high temperatures, with each temperature interval containing CH4 measurements
at standard concentrations of 0.5%, 2%, and 8%. As shown in Table 1, the datasets were
divided into training and test datasets to improve the prediction accuracy of the established
temperature compensation model. To select the temperature compensation model. The
training data set consists of 2800 records of 2% and 8.0% CH4 concentration detection
data, corresponding to different ambient temperatures. The test datasets contain data from
untrained temperatures (−10~0 ◦C, 10~15 ◦C, and 40~55 ◦C) from 0.5%, 2%, and 8% CH4
concentration data.

Table 1. Differentiation of training and test data samples.

Datasets Temperature Concentration/% Samples

Training samples
−20~−10 ◦C

Measured values of 2% and 8.0% CH4 concentration
2800

15~30 ◦C 2800
55~65 ◦C 2800

Test samples
−20~0 ◦C

Measured values of 0.5%, 2.0% and 8.0% CH4 concentration
2470

10~30 ◦C 2470
40~65 ◦C 2470

In order to ensure the completeness and randomness of the sample data used for
model training, we obtained 15,810 sets of detection data from 9160 laser methane sensors
in high- and low-temperature experiments at different temperatures and concentrations.
We established a large-scale dataset to ensure its completeness and representativeness.
In addition, data preprocessing cleaning is performed on the collected data to eliminate
as much noise and outliers as possible in the dataset to ensure the quality of the large-
scale measured data. Finally, to ensure the randomness of the data used for temperature
compensation model training, we use random sampling to train the data, which reduces
the potential selection bias and enhances the model’s generalization ability.

2.2. Data Preprocessing with Improved Isolation Forest Outlier Detection Algorithm

When the laser methane sensor collects high- and low-temperature test data and builds
a large-scale dataset before temperature compensation, there may be some anomalous con-
centration data due to different sensor use times and hardware performance differences.
The abnormal data can significantly impact the prediction effect of the temperature com-
pensation model for gas concentration.
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Isolation Forest (IForest) is a typical class of unsupervised anomaly detection algo-
rithms in integrated learning algorithms. High- and low-temperature gas concentration
detection can change significantly with temperature, and the IForest algorithm uses a
random selection of features and segmentation points for the segmentation of the data,
which can lead to inaccurate and meaningless segmentation and limitations in the accuracy
of data cleaning. This paper proposes an Improved Isolation Forest (IIForest) algorithm.
We add the K-Means++ clustering algorithm [25] to the basic IForest algorithm. The steps
of the IIForest-based high- and low-temperature gas concentration detection data cleaning
method are as follows:

Step 1: Data preparation. Experimentation and data sampling of laser methane sensors
at different ambient temperature conditions.

Step 2: Construction of Isolated Forest. A set of decision trees is constructed using the
traditional Isolated Forest algorithm.

Step 3: Automatic selection of the number of clusters. Firstly, the data is clustered
using the K-Means++ algorithm to select an appropriate K value to divide the data into
K clusters. Secondly, the cluster center is calculated as a representative point of the data
subset for each cluster, and the clustering error is calculated. Finally, the location where the
inflection point occurs in the 2D data consisting of the clustering error and the number of
clustered clusters is taken as the optimal number.

Step 4: The K-Means++ algorithm is used in the traditional process of constructing the
tree of an isolation forest to divide the dataset into several optimal clustering clusters, and
each optimal clustering cluster is used as a branch of the isolated forest tree. During the
construction of each decision tree, the dataset is divided into clusters rather than randomly
selecting data division points. This allows for better differentiation between each cluster
and provides more accurate anomaly scores. For each data point x, the membership grade
is calculated based on its path length in the tree and the total path length of the tree.

Step 5: Data Cleaning. Anomaly detection is performed on the dataset using the
IIForest method. The anomaly score is calculated based on each data point’s path length
and cluster size in the decision tree. The formula for calculating the anomaly score S(x, T) is

S(x, T) = 2(−
E(h(x))

c(m)
) (1)

where h(x) is the path length of data point x in tree T, E(h(x)) denotes the expected value of
the path length, and c(m) is a constant given depth m is a constant.

Figure 3 shows a graph of the outlier detection results of the experimental CH4 data
at 2% concentration using the IIForest algorithm. The distribution of data types after the
outlier removal of the training set data by the IIForest algorithm is shown in Table 2.
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Figure 3. IIForest algorithm outlier detection results: (a) 2% CH4 gas concentration data clustering
classification and outlier detection effect map; (b) IIForest algorithm rating scores for 2% CH4 gas
concentration data.
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Table 2. Data distribution of the training set after outlier removal.

Datasets Temperature Concentration/% Samples

Training samples
−20~−10 ◦C

Measured values of 2% and 8.0% CH4 concentration
2653

15~30 ◦C 2694
55~65 ◦C 2660

3. ISSA-BP Temperature Compensation Methods
3.1. ISSA-BP Temperature Compensation Models

Due to the complex mechanisms by which the gas is to be measured, and the various
components in the laser methane sensor are affected by temperature, it is not easy to ensure
stable CH4 concentration output accuracy by a single polynomial fitting model [26–28].
The sensor temperature compensation algorithm based on a neural network model has
good generalization and learning ability, and better compensation results can be obtained
from a large number of training datasets [29]. The neural network training method and
datasets have an essential influence on the prediction accuracy. In this paper, we propose
the ISSA-BP model with global optimization capability to improve the prediction accuracy
of temperature compensation.

Based on the temperature compensation model of ISSA-BP, we set the number of
nodes in the input layer to 2, the number of nodes in the output layer to 1, the number of
hidden layers to 1, and the loss function is defined as Mean Square Error (MSE). As shown
in Table 3, the detection data of 2% standard concentration of CH4 gas in the temperature
range of −20 ◦C to 65 ◦C were selected for the cyclic experiment. At the hidden layer node
number of 5, the MSE is 3.23 × 10−5, and the optimal hidden layer node number can be
determined compared to other node numbers.

Table 3. Cyclic test results of different hidden layer nodes.

Nodes 3 4 5 6 7

MSE 2.95 × 10−3 2.32 × 10−4 3.23 × 10−5 9.61 × 10−5 4.33 × 10−4

As shown in Figure 4, the model structure of ISSA-BP Neural Network in the tem-
perature compensation model, which takes Sensor temperature detection value and CH4
concentration before compensation as the data of the input layer of the model, and the
output is the predicted value of the concentration after temperature compensation.
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3.2. Improved Sparrow Search Algorithm
3.2.1. Quasi-Reflective-Based Learning Strategies Initialize Populations

The standard sparrow search algorithm (SSA) initializes the population using a ran-
dom function. This method results in a lack of diversity of sparrow populations and needs
to improve on problems such as uneven distribution within the search space. This paper
uses the Quasi-reflective-based Learning strategy [30] (QRBL), which can quickly perform
a wide range of searches to initialize the population. Let a feasible solution for the current
population in the j-dimensional search space be Xj =

(
x1, x2, . . . , xj

)
. Its quasi-reflective

solution is Xj =
(

x1, x2, . . . , xj
)
, The position of the quasi-reflective solution is given by

Xj = rand
((

lbj + ubj
)
/2, Xj

)
(2)

where Xj is a sparrow individual in the j-dimensional search space; Xj ∈
[
lbj, ubj

]
; lb and

ub are the lower and upper bounds in the algorithm parameters, and ∀j ∈ 1, 2, ..., j.

3.2.2. Explorer Location Update Strategy Improvements

Since the position update formula for the explorer position in the standard SSA
algorithm when the warning value is less than the safety threshold is

Xt+1
i,j = Xt

i,j·exp
(
− i

α·itermax

)
(3)

where Xt
i,j is the j-dimensional value of the i sparrow at iteration number t; itermax is

the maximum number of iterations. Since the search range of the explorer particles in
this formula gradually decreases and tends to 0, it affects the convergence speed of the
algorithm. It causes the algorithm to fall into the local optimum easily.

To solve the aforementioned problems, this paper introduces the randomized prey
search strategy in the Chameleon Swarm Algorithm [31] (CSA) to improve the explorer
position update. This position update strategy can improve the information exchangeability
between populations and prevent them from falling into local optimality. The improved
sparrow explorer position update formula is

Xt+1
i,j =

{
Xt

i,j + µ
((

ubj − lbj
)
r1 + lbj

)
sgn(rand − 0.5), R2 < ST

Xt
i,j + Q · L, R2 ≥ ST

(4)

where r1 is a random number within (0, 1); µ is the convergence factor, calculated as:

µ = γexp
(
− αt

itermax

)β
, the values of γ, α, and β are taken as 1, 3.5 and 3; rand is a random

number within (0, 1); Q is a normally distributed random number; R2 is a hazard warning
value, ST is an indication of the safety threshold.

3.2.3. Anti-Predator Location Update Strategy Improvements

The global optimal position of the antipredator in the standard SSA algorithm for
the ith sparrow, the antipredator position update formula when it realizes the danger and
escapes is

Xt+1
i,j = Xt

i,j + K ·


∣∣∣Xt

i,j − Xt
worst

∣∣∣
( fi − fw) + ε

 (5)

where Xworst is the current worst position in the world; K denotes a random number in
[−1, 1]; fi is the current fitness value of the individual sparrow; fw is the current global
worst fitness value; ε is a constant that avoids the denominator being zero, ε = 1 × 10−10.

The anti-predator individual in this formulation is at the current global optimum, so
the search range of its particles is reduced, increasing the probability that the algorithm is
premature. To solve the aforementioned problems, this paper introduces the Levy flight
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strategy [32] with a randomized step size, which can achieve a more extensive search area
when searching in an unknown location, thus improving the global search capability of the
anti-predator. The improved anti-predator position update formula is

Xt+1
i,j =

Xt
best + β ·

∣∣∣Xt
i,j − Xt

best

∣∣∣, fi > fg

Xt
i,j + α ·

∣∣∣Xt
i,j − Xt

worst

∣∣∣ · Levy(ξ), f i = fg
(6)

where Xt
best is the location of the current optimal solution; α denotes the randomized step

size after repeated experiments to take the value of 0.55; fg denotes the current global best
fitness value. For Levy(ξ) is usually represented by Mantegna’s algorithm [33], whose
randomized search path is formulated as

Levy(ξ) ∼ u∣∣v|1/2 (7)

u ∼ N
(

0, δ2
u ) , v ∼ N

(
0, δ2

v

)
(8)

δu =


Γ(1 + ξ)·sin

(
πξ
2

)
Γ
[

1+ξ
2

]
ξ·2

(ξ−1)
2


1/ξ

, δv = 1 (9)

where Γ(ξ) is the Gamma function and the ξ affects the Levy flight trajectory value.

3.2.4. Artificial Rabbit Optimization Perturbation Strategy

During each iteration of the algorithm, to improve the global optimization capability
and convergence speed of the algorithm, this paper uses the mathematical model that
simulates the rabbit’s foraging detour in the Artificial Rabbits Optimization [34] (ARO)
algorithm to perturb and update the position of individual sparrows in each generation.
The formula for correcting the role of individual sparrows in each generation using the
artificial rabbit perturbation strategy is given by

Xt+1
i,j = Xt

best + L·c·
(
Xt

else − Xt
best
)
+ S·n1 (10)

L =

(
e − exp

(
t − 1

itermax

)2
)
·sin(2πr2) (11)

c(k) =
{

1, k = randperm(d)
0, else

k = 1, ..., d (12)

S = round(0.5·(0.05 + r3)) (13)

where Xt
else is the location of the remaining sparrow individuals; n1 is a random number

that follows a standard normal distribution; L is the step factor; r2 and r3 are all random
numbers between (0, 1); round denotes rounding up or down; d is a variable dimension;
randperm(d) is a random integer between 1 and d is returned.

Figure 5 shows the variation of the step length factor L with increasing iterations. The
improved method of updating the perturbation position of sparrow individuals is carried
out from both positive and negative directions, generating a longer step length in the initial
iteration and gradually becoming shorter with the increase in the number of iterations. This
strategy improves the global search ability of sparrow individuals in the early stage and
the convergence speed of the population in the later stage to a greater extent. It can help
the ISSA algorithm escape the local optimum for global exploration and local exploitation.
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3.2.5. ISSA Performance Evaluation

The SSA, particle Swarm Optimization Algorithm (PSO), and Grey Wolf Optimizer
(GWO), which evolved by simulating the information exchange and cooperation behavior
among biological groups, are all swarm intelligence optimization algorithms with better
iterative optimization effects. They are all used in gas monitoring and gas temperature
compensation. To verify the iterative optimization performance of the ISSA algorithm, four
algorithms, PSO, GWO, SSA, and ISSA, are used for performance evaluation. Schwefel’s
Problem single-peak function and Rastrigin multi-peak function are selected among the
test functions. The experimental parameters were set as follows: the population size was
21, the number of iterations was 300, and the algorithms were run 30 times, respectively.
The test results are shown in Figure 6.
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As shown in the test results in Figure 6a, the convergence accuracy and speed are
better than the PSO, GWO, and SSA algorithms when solving Schwefel’s problem function
with the ISSA algorithm. In Figure 6b, when solving the Rastrigin function, the ISSA
algorithm has the fastest convergence speed, which indicates that the ISSA algorithm is
more capable of global search and local evolution.
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4. Model Validation and Discussion
4.1. Realization Details
4.1.1. Temperature Compensation Model Prediction Details

In the model study of this paper, we propose to use the non-saturation and smoothness
of the Mish function as the activation function of the BP neural network and optimize
the BP neural network by combining the ISSA algorithm and the Adam optimizer. As
shown in Figure 7 is the flow chart of using ISSA-BP algorithm to establish the temperature
compensation model of laser methane sensor, and its specific optimization process is
as follows:
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Step 1: The 15,810 data detected by the laser methane sensor at different temperatures
were divided into training and test samples. The IIForest algorithm was utilized to clean
the data of the training samples.

Step 2: The BP neural network hyperparameters are set with the maximum training
number and learning rate set to 100 and 0.1, respectively, and the minimum error set to
1 × 10−5. We propose using the Mish function as the activation function of the BP neural
network and replacing the traditional S-type activation function. The expression for the
Mish activation function is

f (x) = x·tanh(ln(1 + ex)) (14)

Step 3: Initialize the parameters related to ISSA and initialize the coding work for the
weights and thresholds of the BP neural network. The ISSA algorithm sets the population
size to be 21 after iterative round-robin trials, the variable dimensions d = 21, the maximum
number of evolutions to be 150, the population limit popmax = 4, popmin = −4, and 20% of
the population to be the explorers, and the rest to be the followers.
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Step 4: Initialize the Adam optimizer [35]. The learning rate of the Adam optimizer is
set to 0.001, the two moving average coefficients β1 and β2 take the values of 0.9 and 0.999,
and the smallest actual number of positional stability is 1 × 10−8.

Step 5: Calculate the judgment loss function Loss value. When the Loss value shows a
decreasing trend, Step 6~Step 12 is performed, and the parameters are updated using ISSA
global search. When the Loss value is no longer decreasing, jump to Step 13 and update
using Adam optimizer local search.

Step 6: Initializing the population using a quasi-reflective learning strategy.
Step 7: Calculate the fitness of sparrows during foraging and antipredation. Find the

location of the best and worst fitness.
Step 8: Sparrow Explorer performs the position update according to Equation (4).
Step 9: The remaining individuals outside of the explorer are followers that follow the

explorer for foraging, and their positions are iteratively updated by the formula:

Xt+1
i,j =

 Q · exp
(

Xt
worst−Xt

i,j
i2

)
, i > n

2

Xt+1
P +

∣∣∣Xt
i,j − Xt+1

P

∣∣∣ · A+ · L, others
(15)

where Xp and Xworst denote the best and worst adaptation searched by the explorer, respec-
tively; A denotes that each element in a 1 × g matrix is randomly assigned a value of 1 or
−1, and A+ = AT(AAT)−1; L is a 1 × d matrix.

Step 10: The sparrow anti-predator performs position updating according to Equa-
tion (6).

Step 11: All individuals were updated with the current optimal position of sparrow
individuals using the artificial rabbit perturbation Equations (10)–(13).

Step 12: Fitness update. Determine whether the set maximum number of iterations or
the initially set minimum error has been reached. If it is satisfied, then proceed to the next
step. Otherwise, return to Step 7.

Step 13: If the value of the loss function Loss varies smoothly, the Adam optimizer is
used to search locally for each parameter of the improved BP neural network and update
each parameter.

Step 14: The optimal individual fitness was assigned to each parameter of the BP
neural network and tested by simulation modeling of the ambient temperature and concen-
tration data, which continued to output the temperature-compensated CH4 concentration
predictions after the inverse normalization process.

4.1.2. Model Performance Evaluation Index

To evaluate the prediction accuracy of temperature compensation models, the com-
monly used model evaluation metrics are Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Root Mean Square Error (RMSE), and Correlation Coefficient
(R2). The evaluation index formulas are

MAE =
1
n

n

∑
i=1

|ŷi − yi| (16)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (17)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (18)

R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − yi)

2 (19)
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where yi and ŷi are the actual value of methane concentration and the predicted output, re-
spectively. yi is the average of the fundamental importance of the experimentally measured
CH4 and the actual values of gas concentration measured in the test. This paper calculates
concentrations in ppm when using MAE, RMSE, and MAPE evaluation indexes.

4.2. Comparison Experiment

To verify the effectiveness of the ISSA-BP model in temperature compensation com-
paratively, we compare and analyze it with existing widely used SVM, Random Forest, BP,
and PSO-BP temperature compensation models, respectively. The results of the compar-
ison experiments are shown in Table 4. The table shows that the neural network-based
temperature compensation model predictions are distributed on both sides of the standard
concentration. The random forest model outperforms the SVM and basic BP neural network
models, but the error is larger than the PSO-BP and ISSA-BP models. The predictions of the
ISSA-BP temperature compensation model are concentrated near the standard values, and
its projections and errors are much better than those of the other models.

Table 4. CH4 concentration output predicted value after temperature compensation.

CH4
Concentration Algorithm

Predicted Value of CH4 Concentration/%

−20~0 ◦C 10~30 ◦C 40~65 ◦C

0.5%

SVM 0.5178~0.5465 0.4911~0.5089 0.4568~0.5141
BP 0.5147~0.5411 0.4863~0.5081 0.4632~0.5125

Random Forest 0.5102~0.5251 0.4931~0.5076 0.4687~0.5098
PSO-BP 0.5067~0.5113 0.4972~0.5041 0.4887~0.5052
ISSA-BP 0.4991~0.5049 0.4996~0.5034 0.4955~0.5025

2.0%

SVM 2.0623~2.1601 1.9963~2.0110 1.8633~2.0953
BP 2.0798~2.1493 1.9981~2.0094 1.8895~2.0866

Random Forest 2.0312~2.1022 1.9961~2.0112 1.9411~2.0791
PSO-BP 2.0192~2.0511 1.9933~2.0098 1.9883~2.0252
ISSA-BP 1.9921~2.0182 1.9992~2.0105 1.9803~2.0098

8.0%

SVM 8.1088~8.5262 7.9813~8.0166 7.5351~8.1211
BP 8.0994~8.4983 7.9877~8.0160 7.6043~8.1088

Random Forest 8.0692~8.3688 7.9828~8.0158 7.7102~8.0868
PSO-BP 8.0594~8.2003 7.9891~8.0136 7.8866~8.0534
ISSA-BP 7.9893~8.0764 7.9916~8.0123 7.9228~8.0398

The model evaluation results in Table 5 show that the MAE, MAPE, and RMSE of
the test samples of SVM, BP, and RF models are much higher than those of the training
samples, while the R2 is significantly lower than that of the training samples. This indicates
that these three models overfit the data during training, resulting in reduced generalization
ability and stability and increased error. In contrast, the prediction results of the training
and test sets of the ISSA-BP neural network-based temperature compensation model are
the same. This indicates that the ISSA-BP model has better learning ability and robustness.

Table 5. Performance evaluation index of five temperature compensation models.

Model
MAE (ppm) MAPE (%) RMSE (ppm) R2 (%)

Training Testing Training Testing Training Testing Training Testing

SVM 15.3743 22.9878 3.4584 7.0947 19.0161 28.2363 0.9789 0.9669
BP 15.1560 21.6888 3.2768 6.6253 18.6892 24.1691 0.9841 0.9722

Random Forest 13.7743 17.1658 2.9276 5.4241 15.6816 19.2636 0.9875 0.9788
PSO-BP 6.7234 9.0197 2.4041 4.4661 9.4515 11.3161 0.9891 0.9872
ISSA-BP 1.2813 1.4525 0.2721 0.2961 2.3101 2.5415 0.9997 0.9996
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4.3. Ablation Experiments
4.3.1. Experimental Results before and after Data Preprocessing

To verify the effect of data preprocessing on the temperature compensation results.
The prediction effect of the model before and after data preprocessing is compared and
experimentally verified. A comparison of the 50 sets of predicted values near the max-
imum relative error for each concentration is shown in Figure 8a–c. It can be seen that
the prediction of the test set has been improved more after using the IIForest algorithm to
remove the outlier data from the training set. Its predicted values are closer to the standard
concentrations. The prediction effect of the ISSA-BP model has been significantly improved
after data preprocessing. The maximum values expected for each concentration before data
preprocessing were 0.5088%, 2.0286%, and 8.1379%, respectively. After data preprocess-
ing, the maximum values predicted by each concentration were 0.5049%, 2.0182%, and
8.0764%, respectively.
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Figure 8. Comparison of model prediction effect before and after data preprocessing: (a) prediction
results of 0.5% CH4 concentration; (b) prediction results of 2% CH4 concentration; (c) prediction
results of 8% CH4 concentration.

The model evaluation index in Table 6 shows that the temperature compensation
based on the ISSA-BP Neural Network has better stability and generalization ability. The
difference between the evaluation indexes of its prediction effect in the test and training sets
is slight. The MAPE values of the training and test sets before and after data preprocessing
were reduced by 0.5890% and 0.6160%.
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Table 6. Indicators for model evaluation before and after data preprocessing.

Experiment
MAE (ppm) MAPE (%) RMSE R2 (%)

Training Testing Training Testing Training Testing Training Testing

Before preprocessing 2.6793 2.7655 0.8611 0.9121 3.9123 4.1211 0.9995 0.9993
After preprocessing 1.2813 1.4525 0.2721 0.2961 2.3101 2.5415 0.9997 0.9996

4.3.2. ISSA-BP Ablation Experiments

To further validate the scientific validity of the proposed ISSA-BP temperature com-
pensation model. This section investigates different optimization approaches based on
this model, and ablation experiments are carried out on large-scale datasets with different
temperatures and concentrations, as follows:

Baseline: Directly use the improved BP neural network to build a temperature com-
pensation model to achieve a laser methane sensor’s predicted output with different
temperatures and concentrations.

+Adam optimizer: To solve the BP neural network problem, which has a slow conver-
gence speed and quickly falls into the local optimum, the Adam optimizer is introduced to
improve the BP neural network.

+SSA: Due to the Adam-BP temperature compensation model, the Adam optimizer
cannot optimize the parameters of the BP neural network well when the value of the
loss function Loss is decreasing fast. Therefore, the introduction of SSA is considered for
iterative optimization of the weights and thresholds of the BP neural network when the
Loss value of the temperature compensation model decreases faster.

Our proposed ISSA-BP Neural Network: To address the shortcomings of the standard
SSA algorithm’s global optimization search and local development capabilities. Optimized
BP neural networks using our proposed ISSA and Adam algorithms are used to build
temperature compensation models, and model validation and evaluation are performed on
the established large-scale data.

The comparison of the corrected results of each model with the actual values is shown
in Figure 9. From the figure, it can be seen that the ISSA-BP temperature compensation
model has the best prediction accuracy and stability on the retraining set and the test and
training set.

Table 7 lists the highest and lowest predicted values of the three sets of untrained CH4
experimental test samples at different temperature intervals of the concentration. As can
be seen from the data distribution in the table, there is a slight difference in the prediction
effect of the several groups of temperature compensation models performing ablation
experiments at room temperature conditions. However, there is a significant gap in the
compensation effect for the laser methane sensor’s high- and low-temperature data. With
the step-by-step optimization of the model, the prediction effect of the ISSA-BP temperature
compensation model reaches the best, and the prediction value fluctuates stably between
the standard concentrations.

Table 7. Predicted output of CH4 concentration for ablation experiments.

CH4 Concentration Algorithm
Predicted Value of CH4 Concentration/%

−20~0 ◦C 10~30 ◦C 40~65 ◦C

0.5%

BP 0.5138~0.5356 0.4913~0.5077 0.4682~0.4965
Adam-BP 0.5061~0.5198 0.4975~0.5052 0.4839~0.5093
SSA-BP 0.5022~0.5093 0.4991~0.5058 0.4916~0.4985
ISSA-BP 0.4991~0.5049 0.4996~0.5031 0.4955~0.5025
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Table 7. Cont.

CH4 Concentration Algorithm
Predicted Value of CH4 Concentration/%

−20~0 ◦C 10~30 ◦C 40~65 ◦C

2.0%

BP 2.0541~2.1215 1.9896~2.0104 1.9033~2.0621
Adam-BP 1.9872~2.0813 1.9965~2.0096 1.9104~2.0224
SSA-BP 1.9951~2.0563 1.9988~2.0084 1.9462~2.0156
ISSA-BP 1.9921~2.0182 1.9992~2.0081 1.9803~2.0098

8.0%

BP 8.0681~8.4056 7.9877~8.0143 7.6043~8.0988
Adam-BP 8.0264~8.2603 7.9869~8.0126 7.7565~8.0401
SSA-BP 8.0212~8.1452 7.9901~8.0124 7.8688~8.0416
ISSA-BP 7.9893~8.0764 7.9916~8.0123 7.9228~8.0398Sensors 2024, 24, x FOR PEER REVIEW 15 of 21 
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Figure 9. Comparison of corrected results and actual values for four models and the training and
testing samples: (a) training samples; (b) testing samples.

Figure 10a–c shows the comparison of the results of 50 sets of prediction samples near
the maximum relative error after temperature compensation using four temperature com-
pensation models. The ISSA-BP temperature compensation model results are concentrated
on both sides of the standard concentration, and the predicted values fluctuate steadily on
both sides of the standard value.

Figure 11a shows a histogram of the RMSE for the training and testing samples and
the four models, while Figure 11b shows a histogram of the correlation coefficient R2. As
shown in Table 8, to compare the modified performance of each model, the MAE, MAPE,
RMSE, and R2 of the training and testing samples were calculated for the four models and
original data. The MAE, MAPE, and RMSE of the Adam-BP model were more significant
than those of the SSA-BP model in both the training and testing phases, and the R2 was
smaller than the SSA-BP model, indicating that the nonlinear fitting performance of the
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Adam-BP model was not ideal. In the testing phase, the MAE, MAPE, RMSE, and R2 of
the SSA-BP model differed less from the training phase, but the error was more significant,
and the R2 was relatively small.
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Table 8. Performance evaluation index of four temperature compensation models.

Model
MAE (ppm) MAPE (%) RMSE R2 (%)

Training Testing Training Testing Training Testing Training Testing

Original 53.3457 53.4697 15.4184 15.8496 63.9074 65.1288 0.8733 0.8769
BP 10.0317 13.7018 3.8455 4.7069 18.9156 19.9067 0.9891 0.9876

Adam-BP 6.3808 7.7659 2.4442 3.5784 10.4963 11.6771 0.9913 0.9890
SSA-BP 3.3656 3.538 1.1638 1.2093 5.9081 6.5166 0.9983 0.9952
ISSA-BP 1.2813 1.4525 0.2721 0.2961 2.3101 2.5415 0.9997 0.9996

However, the deviations of MAE, MAPE, and RMSE of the ISSA-BP temperature
compensation model in the test phase were all less different from the results of the training
phase, and no large overfitting was found. Compared with the original measurement errors,
the training samples predicted results with 52.0644 ppm lower MAE, 15.1463% lower MAPE,
61.5973 lower RMSE, and 0.1264 higher R2. The test samples indicated effects with 52.0172
ppm lower MAE, 15.5535% lower MAPE, 62.5873 lower RMSE, and 0.1227 higher R2. From
the overall performance, the ISSA-BP model has a low error, stable model output, high
generalization, and high stability. Therefore, the ISSA-BP temperature compensation model
has higher prediction accuracy and better equilibrium. The system meets the requirement of
compensating for detecting CH4 gas concentration under significant temperature variations.

Figure 12a shows the histogram of the distribution of relative errors predicted by
the ISSA-BP model. Figure 12b compares experimental data and relative errors of the
above four models after compensation for 0.5% standard CH4 concentration under different
temperature conditions. The experimental results show that the relative error between the
predicted value and the standard concentration value of the temperature compensation
model using ISSA-BP is significantly reduced, and the gas concentration fluctuates within
a small range. Based on the above comparison and analysis, the ISSA-BP model is suitable
for temperature compensation of CH4 gas detection based on TDLAS technology, and the
reliability of the system measurement is significantly improved.
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4.4. Algorithm Utility Analysis

In order to further explore the practical application capability of the temperature com-
pensation model algorithm proposed in the article, we chose the BP neural network, which
is suitable for embedded hardware implementation, as the basis and analyzed in detail the
performance of the ISSA-BP neural network model in practical applications. Considering
the importance of the number of parameters, operational complexity, and inference speed of
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the established temperature compensation model for practical applications, we conducted
the following comprehensive analysis as follows:

1. Number of operational parameters. According to the analysis in Section 3.1, the
ISSA-BP neural network temperature compensation model contains two input layer
neurons, five hidden layer neurons, and one output layer neuron. Every two con-
nected neurons have operational parameters for weights, and neurons in the remote
and output layers contain operational threshold parameters. A smaller number of
parameters means lower model complexity and faster training speed, which helps
reduce the risk of model overfitting and facilitates deployment in environments with
limited hardware computing resources.

2. Number of model operations. In the neural network model structure, each connected
neuron node performs a multiplication operation with the neural network weights and
an addition operation with the threshold value. Therefore, our proposed temperature
compensation model requires 15 multiplication operations, six addition operations,
and six operations of the activation function during forward propagation. This
indicates that the model can enhance its nonlinear fitting ability by activating the
function in the operation and showing high computational efficiency, which is suitable
for scenarios requiring fast response.

3. Inference speed and practical application. The hardware temperature compensation
based on the ISSA-BP model structure takes only about 40 milliseconds to compute the
prediction process on an MCU chip running at 8 MHz. This short prediction inference
time is suitable for real-time application environments, and different hardware devices
will also exhibit different inference speeds.

4. Hardware compatibility. The model’s simplicity implies lower hardware requirements,
making it easier to deploy on various devices, including in environments such as
embedded systems.

As shown in Table 9, the above analysis concludes that the temperature compensation
model based on the ISSA-BP neural network architecture has good practical advantages
regarding the number of parameters, computational efficiency, hardware compatibility,
and so on. The model is suitable for application scenarios requiring fast response, such as
real-time temperature compensation or pressure compensation of laser methane sensors.

Table 9. Analysis of parameter operations based on ISSA-BP neural network model architecture.

Practicality Analysis Descriptions Value

Number of parameters Total number of weights and bias values in the model 21

Additive and multiplicative operations Total number of multiplication and addition operations during
forward propagation 21

Activation function operation Number of operations using the activation function 6

Forecasted time Time taken to complete one temperature compensation
prediction 40 ms

5. Discussion and Conclusions

This paper proposes a temperature compensation method based on the ISSA-BP
Neural Network model and a large-scale measured high- and low-temperature methane
gas dataset. The prediction accuracy of the temperature compensation of the laser methane
sensor under a wide range of temperature application conditions is improved. Firstly, the
improved isolation forest algorithm is used to eliminate the outliers in the laser methane
sensor data training set under high- and low-temperature conditions to reduce the influence
of data noise on the training effect of the temperature compensation model. Secondly, the
BP neural network is improved regarding the weight updating method. The original
S-type activation function is replaced with the Mish activation function, and the improved
BP neural network is optimized using the ISSA and Adam algorithms. The prediction
performance and generalization ability of temperature compensation are greatly improved.
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Finally, the model’s applicability in the field of temperature compensation of laser methane
sensors is verified by the established 15,810 sets of experimental data. The experimental
results show that the linear regression coefficients of the temperature compensation model
selected based on IIForest outlier detection and ISSA-BP neural network for the training
and test sets reach 0.9997 and 0.9996, respectively. Compared with other temperature
compensation models, the proposed method achieves higher prediction accuracy and more
vital generalization ability, illustrating its effectiveness.
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