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Abstract: Open-source devices are nowadays used in a vast number of research fields like medicine,
education, agriculture, and sports, among others. In this work, an open-source, portable, low-cost pH
logger, appropriate for in situ measurements, was designed and developed to assist in experiments
on agricultural produce manufacturing. The device was calibrated manually using pH buffers for
values of 4.01 and 7.01. Then, it was tested by manually measuring the pH from the juice of citrus
fruits. A waterproof temperature sensor was added to the device for temperature compensation
when measuring the pH. A formal method comparison process between the open-source device
and a Hanna HI9024 Waterproof pH Meter was designed to assess their agreement. We derived
indices of agreement and graphical assessment tools using mixed-effects models. The advantages
and disadvantages of interpreting agreement through the proposed procedure are discussed. In
our illustration, the indices reported mediocre agreement and the subsequent similarity analysis
revealed a fixed bias of 0.22 pH units. After recalibration, agreement between the devices improved
to excellent levels. The process can be followed in general to avoid misleading or over-simplistic
results of studies reporting solely correlation coefficients for formal comparison purposes.

Keywords: open-source logger; open-source software; agreement; similarity; pH

1. Introduction

Open-source devices are becoming very popular and even essential in an increased
number of fields, such as education [1], agriculture [2,3] medicine [4] and biology [5], among
others. The Maker Movement [6] that unfolded after the resurgence of the participatory
Web 2.0 [7], the interfusion of open source, the decreased cost of electronic parts and other
social influences are a few of the examples that contributed to the flourishing of prototype
development. Furthermore, this phenomenon was boosted after the launch of development
boards like Arduino [8,9] and Raspberry-pi [5] that tend to simplify intricate electronic
assemblies by using basic software and programming. Openly accessible tutorials simplify
the technical parts, provide visual aids for the wiring, issue the code in each case, and
allow users with basic or no experience in electronics and coding to replicate or customize
projects according to their needs. Open-source software and hardware solutions can be
used in research and industry. Low acquisition cost and easy customization are two of the
most important advantages of using such devices compared to industrial ones.

Oellermann et al. [10] highlighted three points where open-source electronics aided
the scientific community. First, open-source devices help individual researchers by increas-
ing the customization, the efficiency and scalability of the experiments, while increasing
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data quantity and improving data quality. Second, they assist institutes since the open
access to customizable high-end technologies increased the interdisciplinary collaborative
network potential. Third, they succor the scientific community by improving transparency
and reproducibility. Also, they help detach research capacity from funding and escalate
innovation. Most of the labs worldwide do not have access to vital funding to keep up with
the state-of-the-art lab equipment. Open-source devices contribute to the rapid supply of
equipment for the labs with a low cost and high level of customizability.

Quality assessment of an in-house built open-source device must be validated by com-
paring measurements to these of a reference device such as validated industrial equipment
of a reference standard device, in terms of measurement agreement [11]. The compari-
son is not limited to open-source devices compared to industrial devices but extends to
the comparison of methods in general. “Agreement” measures the “closeness” between
readings. Thus, agreement is a comprehensive term that contains both accuracy and pre-
cision. Typically, one of the devices/methods is treated as the reference, then agreement
concerns a method or measurement comparison study (MCS) of the tested device versus
the reference one.

This article presents the development of an open-source device that measures the pH
of citrus fruit juice and describes the analytical procedure for a method comparison study
between the open-source device and its corresponding industrial. The acidity of fleshy
fruit, as measured by titratable acidity (TA) and/or pH, is an important component of fruit
organoleptic quality. Fruit acidity is associated with the presence of organic acids, with
malic and citric acids as the most abundant in most ripe fruits [12]. There is an interrelated
relationship between pH and TA. Titratable acidity is determined by neutralizing the acid
present in a known quantity of food sample using a standard base, while the endpoint for
titration is usually a target pH (or the color change in a pH-sensitive dye). In addition,
the TA of fruits is used, along with the total soluble solid (TSS) content (sweetness), as a
maturity index (TSS/TA) [13].

Citrus is one of the most important commercial fruit crops in the world that includes
important crops such as oranges, mandarins, lemons, grapefruits and others [14]. Fruit
weight, size, shape, external color, TSS, TA and TSS/TA, juice content, chemical and
nutritional composition are important quality traits for fresh citrus consumption and mar-
ketability [14,15]. In citrus fruit, the content of sugars and organic acids varies according
to the species, varieties, environmental conditions and horticultural practices [15]. More-
over, sugars and organic acids in the fruit contribute to the perceived flavor, while aroma
depends on many volatile organic compounds determining consumer preference [16]. The
TSS/TA ratio has been used worldwide as the main commercial maturity index of citrus
fruit internal quality. A TSS/TA ratio of at least 6 or higher is acceptable for commercial
marketability; however, important differences may exist depending on the citrus species
and varieties, as well as also on the growing regions. In particular, ratios acceptable for
marketability usually range from 7–9:1 for oranges and mandarins to 5–7:1 for grape-
fruits [14]. Thus, TA and pH measurements of citrus fruit juice are of high importance for
the evaluation of fruit organoleptic quality and maturity.

The benefits of using an open-source device interchangeably with a corresponding
industrial device are mostly based on the lower cost and configurability of the former. Thus,
a method comparison study between the constructed open-source device and a reference
industrial one was designed and their agreement and similarity were formally assessed.
Measurement ranges where the difference between the two devices are accepatable are
discussed. When using recalibration methods, the agreement increases.

The paper is organized as follows. The design of the device and its key components
are introduced in Section 2.1. Section 2.2 presents the reference device. Section 2.3 describes
the five steps to implement a formal statistical method comparison study. The application
is discussed in Section 3 and follows the format of Section 2. We end with a discussion and
a conclusion. Methodological and further details are given in the Appendices A and B.
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2. Materials and Methods
2.1. Design of the Device
2.1.1. Hardware

The open-source logger is equipped with two sensors: a pH sensor [17] from Seeed
studio and a temperature sensor DS18B20 [18]. A 16-bit analog to digital converter is added
to the design to improve the precision of the voltage reading since the output of the sensor
is analog. The development board for this device is the Adafruit feather proto 32u4. An
Adafruit Featherwing logger [19] was added for instant capture of the measurement in a
microSD card embedded with a timestamp by pressing a push button. A Nokia 5110 LCD
monitor [20] was added to display the values of voltage, pH, temperature, and battery. A
1200 mAH LiPo battery is the main power source of the device, which can be charged via
micro-USB to USB-A while the device is operating.

The pH sensor

SEN0169 (Figure 1) is an analog pH meter, specifically designed for Arduino and
Arduino-compatible microcontrollers. The electrode is considered industrial. The sensor
has a long life (>0.5 years in long-term monitoring mode), is highly accurate (±0.1 pH
at 25 ◦C), it has fast response (≤1 min), has a measuring range from 0 to 14 pH and
includes a gain adjustment potentiometer (Appendix A, Table A1). The output voltage of
the electrode is linear (Appendix A, Table A5) and is capable of long-term monitoring. The
sensor is built for industrial use and is equipped with a BNC connector and PH2.0 sensor
interface. Appendix A (Table A1) summarizes the technical specifications of the probe. The
communication between the sensor and the Microcontroller Unit (MCU) is one-way since
the sensor transmits data using an analog MCU pin. Since the 32u4 MCU uses a 10-bit
analogue to digital converter (ADC), an ADC1115 16bit ADC and gain amplifier is added
to increase the sensor’s precision.

Figure 1. DFRobot PH meter (SEN0169) (source: DFRobot official website).

The temperature sensor

DS18B20 is a waterproof digital temperature sensor designed for Arduino or Arduino-
compatible microcontrollers. According to the manufacturer, since the sensor’s signal is
digital, no signal degradation is present even if the distances between the MCU and the
sensor are very long. The sensor provides 9-to-12-bit resolution temperature readings
(configurable via software). The communication protocol between the MCU and the sensor
is 1-Wire. Multiple DS18B20 sensors can connect on the same 1-Wire bus since they are
produced with a unique silicon serial number. Table A2 (Appendix A) summarizes the
technical specifications of the sensor.
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ADS1115 16bit ADC with gain amplifier

This module is a precision module (ADC) with 16 bits of resolution. The first 15 bits
are used for the value and the last bit is used for the sign of the value. It is equipped with
a voltage reference and an oscillator. It uses the I2C communication protocol to interact
with the MCU. Four different slave addresses can be selected allowing four different
ADS1115 [21] modules to be connected in the same bus. Its operating voltage ranges from 2
to 5.5 Volts. Furthermore, it can converge signals at rates up to 860 samples per second. Its
second functionality includes a programmable gain amplifier that provides input ranges
from inputs to as low as ±256 mV with increments of 0.0078125 mV, thus measuring both
small and large signals with high resolution. Moreover, it offers an input multiplexer,
which provides two differential or four single-ended inputs. Last, the module operates
in continuous conversion mode or a single-shot mode. This means that it automatically
powers down in single-shot mode, reducing the power consumption during the measuring
periods. To avoid damaging the module, the gain should be set more than or equal to the
input voltage of the channel.

2.1.2. Software

DFRobot provides a library for the SEN0169 via GitHub [22]. The library includes a
calibration mode. However, the calibration was performed manually due to the MCU’s
incompatibility. Furthermore, the code was developed without using the library.

The code functionality is described as follows. First, the MCU reads the signal of the
pH sensor via the ADS1115 in continuous mode using a single input channel. Second,
in case an instantaneous measurement needs to be taken and stored, the user will press
the push button and the measurement embedded with a time stamp will be stored in the
microSD card. The function button() and store() provide these functionalities. After the
calibration procedure, the equation is stored in the sketch and the measure() function returns
the pH measurement after inserting the input voltage. The function measure() returns the
proper calibration line, depending on the temperature of the liquid. The sketch is available
on GitHub [23].

2.1.3. Calibration Method

The calibration procedure was performed using two pH buffers. Eight measurements
were taken. The first two were taken from 4.01 and 7.01 pH buffers when the liquid’s
temperature was 7.5 ◦C. The same procedure followed for temperatures of 12.5 ◦C, 17.5 ◦C
and 22.5 ◦C. The probe was removed from the solution 1 min after its insertion to reach the
response time according to the sensor’s datasheet. The temperature of the buffer solution
was measured using the DS18B20 temperature sensor. Table A3 summarizes the voltage
and their corresponding pH values. Each temperature interval uses the calibration equation
of the corresponding midpoint temperatures. For example, the first Equation (1) will be
used for the range between 5 ◦C and 10 ◦C. Figure A1 presents the four calibration lines
per temperature range.

y7.5°C = −6.27615x + 16 (1)

y12.5°C = −6.1349695x + 16.2576

y17.5°C = −6.0241x + 16.09036

y22.5°C = −6.04351x + 16.1196615
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Variable y represents the pH measurements and variable x represents the output of the
sensor (in Volts). The subscript in variable y represents the temperature of the pH buffer.
The equations were added to the Arduino sketch in the measure() function. The pH was
automatically calculated depending on the temperature measurement.

2.1.4. Cost of the Device

Table A4 summarizes the cost per component and the total cost. The cost can be
reduced if parts like the development board and the ADS1115 can be replaced by cheaper
equivalents from other brands. Furthermore, the final product does not usually use devel-
opment boards, removing the inessential parts. Thus, the cost and the device’s footprint are
reduced, especially when the PCB is designed and printed with Surface Mounted Discrete
(SMD) electronic parts replacing the through hole equivalents.

2.2. The Reference Device

The reference device is a Hanna Instruments HI9024 Waterproof pH Meter [24]
(Figure 2b). It is a heavy-duty pH meter designed for laboratory use and its accuracy
is sustained even under harsh industrial conditions. It can easily be calibrated and has three
memorized buffer values (4.01, 7.01 and 10.01). The device has automatic buffer recognition,
thus avoiding errors during the calibration procedure. Moreover, it is equipped with a
temperature compensation function. The temperature can be measured using a temperature
sensor probe or can be entered manually. Since there was no temperature sensor available,
the temperature was set manually using the DS18B20 sensor, which was embedded in the
open-source logger. Thanks to its waterproof cylindrical case, the temperature sensor was
inserted in the solution that was intended to be measured during the experiment. The
specific pH meter model is not available in the market since it is considered obsolete. An
equivalent but contemporary model is HANNA HI 99171. Its late 2023 cost in local vendors
is around EUR 585 including shipping costs.

Figure 2. (a) The hand squeezing procedure. (b) Hanna pH meter. (c) DFRobot pH meter probe.

2.3. Designing a Method Comparison Study

To evaluate the open-source device validity, its measurements need to be formally
compared with a reference. In other words, a method comparison study needs to be
designed to assess the novel device’s agreement with the reference device. Five steps can
be defined for such studies:
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1. Establishment of the experimental design.
2. Exploratory analysis.
3. Assessment of the agreement and similarity between the two devices.
4. Identification of possible sources of disagreement using similarity and repeatability

assessment for each device.
5. Recalibration of the novel device to improve the agreement.

2.3.1. Experimental Design

Proper experimental design is of utmost importance for valid results and adequate
reproducibility. Repeated (towards intra-variability estimation) and replicate (towards
inter-variability estimation) measurements are both multiple response measurements taken
at the same combination of factor settings. However, repeated measurements are taken
during the same experimental run or consecutive runs, while replicate measurements
are taken during identical-conditioned but different experimental runs, which are often
randomized. Their differences affect the structure of the dataset and the statistical analysis
applied to process the data. In many situations, researchers mistakenly take for granted the
sample’s independence even though they sample from the same subject. This occurs when
the experimental unit is not defined properly and instead of replicates, the researchers
provide repeated measurements (pseudo-replications).

There are two possible categories of repeated measurements that the present experi-
ment’s data fall into: unlinked and linked data. Following Carstensen et al. [25], unlinked
data refer to repeated measurements that are not paired in the sense that the measurements
of the two methods are obtained separately. Thus, unlinked data are not necessarily mea-
sured concurrently. There is no need for the methods to have the same number of repeated
measurements. However, linked data, in which each subject may experience consecutive
measurements over time, are paired. Unlike the unlinked data, the devices/methods need
to have an equal number of paired repeated measurements per one subject but may vary
between different subjects. The true value does not need to stay constant over time but
there is no systematic effect of time on the paired trajectories beyond the dependence
induced in them by the common measurement time.

A well-designed experiment must include a proper definition of the experimen-
tal design, the type and number of repeated measurements, the sample size calcula-
tion/consideration, and a list of possible covariates. The described methods include
covariate information handling.

2.3.2. Exploratory Analysis

A Bland–Altman plot [26] is typically used to assess the data for heteroscedasticity,
dependency of the difference from the measurement range, outliers and a linear trend that
indicates a correlation between differences and averages. Moreover, a scatterplot can be
used as a supplementary plot to investigate the relationship between the two methods.
Furthermore, a trellis plot is useful for the visualization of the spread of the repeated values
and possible biases of the two methods. A trellis plot [11] is constructed by using the
x-axis as the measurement range and the y-axis as the subjects’ id. The two methods are
differentiated by using two different symbols for each measurement per subject. Interaction
plots between subjects and methods (devices), and subjects and time are useful for the
researcher to graphically assess the category of repeated measurement. In case there is
significant subject x method interaction, an extra term should be added during the modeling
process. In case there is significant subject x time interaction, there is a possibility that
the data are linked. This can be verified formally using criteria such as AIC, BIC and
log-likelihood to assess the model quality.
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2.3.3. Statistical Tools to Assess Agreement and Similarity

Mixed-effects and measurement-error models can be fit to the data and their estimated
coefficients and variance components are used to produce agreement and similarity indices.
These methods go beyond the assessment via standard correlation coefficients given the ca-
pacity of handling repeated measures and covariate information. Furthermore, correlation
does not imply agreement, which is the cornerstone in method comparison studies [11].
Mixed-effects models are a special case of measurement-error models; specifically if there is
evidence in the exploratory analysis that the proportional bias significantly deviates from 1,
measurement-error models must be used instead of their mixed-effects counterparts.

The extended Bland–Altman plot can be used during the exploratory analysis step
to assess this assumption. If there is a linear trend, then there is evidence of violation
of the equal proportional bias assumption of the mixed-effects model. However, this
trend might be due to different precisions of the two methods. In any case, the extended
Bland–Altman plot can be evaluated using the bland_altman_plot() function from “Method-
Compare” [27] package.

The methodology to fit mixed-effects models to the data is described in Appendix B.1.1,
which also covers cases when the data are heteroscedastic and when covariates are added.
All the steps to prepare the data and implement the models along with their diagnostics
are available in an in-house-built R-script [23], which is based on [28].

The methodology to fit measurement-error models to the data is described in Ap-
pendix B.1.2, which also covers cases when the data are heteroscedastic but does not
include covariates. The R-package “MethodCompare” [27] can be used to implement the
relevant methodology [29–31]. The data must be in wide format. The output includes a list
with the estimated bias (differential (fixed) and proportional) including 95% confidence
intervals. Moreover, a list of models along with various variables needed for the estimation
is returned.

Indices and methods to assess agreement and similarity

Indices can quantify the agreement and similarity between two or more devices.
There are two categories of indices: the absolute (or unscaled) and the relative (or scaled)
indices [32]. A detailed review about agreement indices can be found in [33].

Absolute indices report measures according to the magnitudes of the actual data. They
are unscaled and independent of between-sample variation.

The total deviation index (TDI) is used here for the evaluation of the agreement and
similarity between two method/devices (inter-agreement). Specifically, TDI is an index
that captures a predefined proportion (p) of data within a boundary (δ) from target values,
defined by TDI(p) < δ.

Two measurement methods may be considered to have sufficient agreement if a large
proportion of their differences is small. Thus, we define p as the proportion of their
differences and δ as the sufficient difference. Its estimate can be evaluated using (A7).

TDI can be also used for the evaluation of the intra-agreement for each device sepa-
rately. The estimates can be evaluated using (A14, A18).

Relative indices are scaled values on a predefined range and usually lie between
−1 and 1. The concordance correlation coefficient (CCC) is the most popular index for
assessing agreement between quantitative measurements (inter-agreement). There is perfect
agreement when CCC = 1, no agreement when CCC = 0 and perfect negative agreement
when CCC = −1. Its estimate can be evaluated using formulas (A8, A9). CCC can be also
used for the evaluation of the intra-agreement for each device separately. The estimates can
be evaluated using formulas (A15, A19).

Moreover, the 95% limits of agreement produce an interval within which 95% of
differences between measurements made by the methods/devices are expected to lie [26].
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An in-house-built R-script [23] implementing the relevant methods [28] may be used to
evaluate CCC and TDI along with their corresponding bounds. Moreover, TDI evaluation
and its upper bound, based on an alternative formulation of mixed-effects models [34], can
be implemented [35]. CCC evaluation and confidence intervals for inference, instead of
a lower bound, using an alternative formulation of mixed-effects models [36,37] can be
implemented using the “cccrm” package [38]. The limits of agreement can be evaluated
and presented graphically by the “methodCompare” package via the bland_altman_plot()
function along with the corresponding extended Bland–Altman plot. A wide data format
to implement bland_altman_plot() is needed. The package “blandr” [39] can be used to
evaluate the limits of agreement along with their confidence intervals, superimposed on a
Bland–Altman plot.

Moreover, the bias plot (bias_plot() function [27]) from the “methodCompare” package
evaluates the differential (fixed) and proportional bias (described in Appendix B.1.2) and
offers a useful display that quantifies systematic bias (fixed and proportional) along the
measurement range.

2.3.4. Investigating Possible Sources of Disagreement

Assessing Similarity

Early research assessing similarity measures was focused on paired data [40]. Precision
and accuracy via the quantification of fixed and proportional bias, along with the precision
ratio, were proposed as measures of similarity [41].

For mixed-effect models, only the fixed bias can be evaluated since proportional bias
is assumed to be equal to 1. To implement the standard methodology to evaluate the fixed
bias and precision ratio [11], an R-script is available online [23]. The formal methodology
for similarity assessment can be found in Appendix B.2.2.

For measurement-error models, similarity can be evaluated using a bias plot (discussed
in Section 2.3.3) and a precision plot [29–31]. The precision plot can be implemented using
the “methodCompare” [27] package via the precision_plot() function.

Assessing Repeatability

The evaluation of repeatability is essential and can be used to identify possible sources
of disagreement. It is considered as intra-method agreement and is an essential part of
the agreement study. When a method/device has low intra-method agreement it will
most probably have low inter-method agreement suggesting poor overall agreement of the
methods or devices.

For mixed-effect models, CCC, TDI and corresponding 95% limits of agreement can
be used to assess intra-method agreement. These are evaluated for each method/device
separately and assess the agreement between repeated measurements with the same device.
Implementation of relevant methods [11,28] is possible using an online R-script developed
by the first author [23].

For measurement-error models, repeatability can be assessed graphically via a bias
plot (discussed in Section 2.3.3) by investigating the spread of the measurements of each
method/device. Repeatability can also be assessed using a trellis plot.

2.3.5. Recalibration Methods

For the mixed-effects model, a recalibration procedure is performed by subtracting the
fixed-bias. The relevant methodology [28] can be implemented using the R-script available
online [23].

For the measurement-error model, a recalibration procedure is described in [29–31] and
the function compare_plot() from the “MethodCompare” package can be used to implement it.
Appendix B.4 describes the procedure.

Figure 3 summarizes the workflow of a method comparison study.
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Figure 3. The workflow of a method comparison study.

3. Application
3.1. Experimental Design

The solution (juice) was extracted from two varieties of citrus fruits. Each fruit is
considered as an experimental unit. In total, 15 grapefruits and 15 juice oranges (Valencia
variety) were used. Each unit was hand-squeezed (Figure 2a), and its juice was measured
by the open-source device and by a Hanna HI 9024 pH meter (which is defined as the
reference device). The order of measurements was randomized using R’s sample function,
and 10 repeated measurements for each fruit were collected by a single reader/operator
(EB). Repeated measurements were sequentially taken. First, the sample function was used
to define the instrument that will measure first. The other instrument was used next. Nine
more measurements of the same juice were taken by first cleaning each instrument using
deionized water and then taking the measurement.

The data are considered linked since they are paired over the measurement times.
Figure 2c displays the open-source pH sensor and the measurement procedure. Table 1
summarizes the experimental design information. The type of the fruit (grapefruit or juice
orange), temperature, quantity of the juice, and the instruments’ sequence were considered
as covariates. Ionic strength is a factor that can affect pH values but is not considered in the
present study given that it could inherently affect pH measurements for both devices.

Table 1. Summary of the experimental design information.

Experimental Design

Experimental unit Fruit
Repeated measurements Yes, sequentially

Number of repeated measurements 10
Data category Linked data
Sample size 30

Balanced/Unbalanced measurements Balanced
Possible covariates Temperature, juice quantity, instrument turn

3.2. Exploratory Analysis

Exploratory data analysis involved three different depiction approaches. Figure 4a
displays a scatterplot for the pH measurements of the reference versus the open-source
device. To avoid using the same plotting symbol per subject and visualize the repeated
measurements, each subject is represented by a unique ID number and the repeated values
share the same ID subject symbol. Using this approach, a dependence structure is depicted.
A systematic underestimation of the open-source device for pH measurements is apparent.
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There are two clusters formed in the data. The lower left corresponds to the grapefruit pH
while the upper right corresponds to the orange juice.

Figure 4b displays a Bland–Altman plot (averages vs. differences) without the limits
of agreement. For higher values of pH, the differences seem to have slightly higher spread
compared to the lower values of pH. This is a sign of possible heteroscedastic errors. There
is no obvious trend in the Bland–Altman plot suggesting a common scale for the assays,
verifying the common scale assumption for the mixed-effects model. This is also obvious
in the extended Bland–Altman plot, which was produced using the “MethodCompare”
package (Figure 5).

Figure 6 displays a trellis plot. The vertical axis is divided into rows and each row
displays all the repeated measurements for one subject and both devices using method-
specific colors. Blue color represents the measurements for the reference device while
yellow represents the measurements for the open-source device.

Figure 4. (a) Scatterplot for the pH measurements of the reference versus the open–source device.
Each subject is represented by a unique ID number and the repeated values share the same ID subject
number symbol. (b) Bland–Altman plot (averages vs. differences) without the limits of agreement.

Figure 5. Extended Bland–Altman plot and LOA. There is slight evidence of heteroskedastic errors.
No trend is apparent; thus, a common scale is assumed for the assays.
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Since the repeated measurements are plotted in one row, within-subject variability
is visible and easy to compare with the between-subject variability. The open-source
device shows slightly less within-subject variation compared to the reference. The between-
subject variation ranges between 2.78 and 3.7 and a summary is presented in Table 2. A
consistent bias is also visible in the graph, suggesting a constant fixed bias throughout the
measurement range. The open-source device underestimates the pH measurements by
approximately 0.22 units.

Figure 6. Trellis plot for the pH measurements. The vertical axis is divided into rows and each
row displays all the repeated measurements for one subject using method-specific colors. Blue
represents the measurements for the reference while yellow represents the measurements for the
open-source device.

Table 2. The minimum, 1st quartile, median, mean 3rd quartile, and maximum pH values per device.

Minimum Q1 Median Mean Q3 Max

Open-Source 2.780 2.868 3.045 3.053 3.220 3.410
Reference 2.040 3.110 3.220 3.275 3.460 3.700

Figure A2a,b display the interaction plots for the subject x method and subject x
time, respectively. For the subject x method interaction plot, the average per subject for
every measurement is plotted on the vertical axis and each method on the horizontal
(Figure A2a). There is evidence of a significant subject x method interaction since the lines
intersect. Figure A2b displays the subject x time interaction. The repeated measurements
are averaged per method for each subject (vertical axis) and the time points are displayed
on the horizontal axis. Some lines intersect, providing evidence of possible interaction
between the subjects and time.

3.3. Statistical Tools to Assess Agreement and Similarity

Initially, the data were fit with the homoscedastic model with no covariates for linked
data (A2) and then the corresponding heteroscedastic. However, the additional computa-
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tional burden provided by the subject to occasion interaction for the linked data hindered
the procedure to calculate the confidence bounds for the indices. Thus, the unlinked ho-
moscedastic and heteroscedastic models were chosen to proceed with the analysis. There
is no obvious sign of a fan shape. AIC and BIC were subsequently calculated, and the
heteroscedastic model was chosen (Table 3).

Table 3. AIC, BIC, log-likelihood and degrees of freedom for the homoscedastic and the heteroscedas-
tic model.

AIC BIC Log-Likelihood Degrees of Freedom

Homoscedastic −2945.889 −2919.507 1478.945 6
Heteroscedastic −2999.128 −2963.952 1507.564 8

At a subsequent stage, model (A4) was used to fit the data, which includes the
covariates without interactions. According to the AIC and BIC criteria, the model without
covariates was preferred. Table 4 displays AIC, BIC, log-likelihood and degrees of freedom
for the heteroscedastic models with and without covariates.

Table 4. AIC, BIC, log-likelihood and degrees of freedom for model selection.

Covariates AIC BIC Log-Likelihood Degrees of Freedom

No −2999.128 −2963.952 1507.564 8
Yes −2641.498 −2597.528 1330.749 10

To account for heteroscedasticity, a sequence of 20 values starting from 2.78, which
is the minimum value for the average values of the two methods, and 3.7, which is the
maximum value for the average of the two methods, was created. Then, the variance
function was defined as g(ui, δ) = |ui|δ, where

∼
ui = h(yi1, yi2) =

yi1.+yi2.
2 . The variance

function parameter
∼
ui can also be chosen as the average values per subject of the reference

device. No significant changes were reported regardless of the choice of
∼
ui. The following

values were recorded: parameter δ1 = 4.07 for the reference and δ1 = 3.28 for the open-
source device. The model’s counterparts are displayed in Table 5.

Table 5. Model counterparts.

Parameter Estimate SE 95% CI

β0 −0.22 0.01 [−0.24,−0.20]
µb 3.27 0.04 [3.20, 3.35]

log
(
σ2

b
)

−3.24 0.26 [−3.75,−2.72]
log
(
ψ2) −6.67 0.26 [−7.18,−6.15]

log
(
σ2

ε1

)
−17.46 1.61 [−20.61,−14.31]

log
(
σ2

ε2

)
−16.42 1.61 [−19.58,−13.27]

δ1 4.07 0.70 [2.71, 5.44]
δ2 3.28 0.70 [1.91, 4.65]

Diagnostics for the optimal model (Figure A3, Appendix A) display the standardized
residuals on the horizontal axis vs. the quantiles of the standard normal distribution. The
plot reveals a slight deviation from the normal distribution. The standard errors for the
estimates are reasonable; thus, the agreement and similarity indices’ evaluation proceeds
using this model.

Substituting the ML estimates from Table 5 in (A3) to obtain the fitted distribution (Y1,
Y2) given the pH level ũ yields

N2

(−0.22
3.05

)
,

0.04062325 + 2.615606 × 10−8∼u
4.07

0.03934918

0.03934918 0.04062325 + 7.374885 × 10−8∼u
3.28

,
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while for D, given ũ:

D
∣∣∣∼u ∼ N1

(
−0.22, 0.002548149 + 2.615606 × 10−8∼u

4.07
+ 7.374885 × 10−8∼u

3.28
)

The intra-method difference distribution given
∼
u is produced by substituting the

parameters from Table 5 in (A13):

D1

∣∣∣∼u ∼ N1

(
0, 5.231212 × 10−8∼u

4.07
)

,

D2

∣∣∣∼u ∼ N1

(
0, 1.474977 × 10−8∼u

3.28
)

.

D1 denotes the differences for the reference and D2 denotes the differences for the
open-source device.

Assessment of agreement

Using formula (A6) to calculate the limits of agreement substituting the model’s
counterparts in Table 5 and the variance function, the inter- and intra-device agreement
is displayed in Figure 7. For the inter-agreement of the devices, Table 6 summarizes the
ranges for the 95% limits of agreement for pH data as a function of the magnitude of
measurements. The inter-method limits, based on the distribution of D, are centered at
−0.22. For lower pH values, the LOAs are narrower compared to the higher pH values
and are in the range of [−0.3464,−0.3237] for lower LOA and [−0.1193,−0.0966] for upper
LOA. The intervals reveal a systematic underestimation of the pH measurements from the
open-source device. Figure 8 illustrates the Bland–Altman plot and limits of agreement
along with their corresponding confidence intervals. The “Blandr” R package was used to
produce the plot.

Figure 7. The 95% limits of inter- and intra-method agreement.
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Table 6. Estimates of 95% limits of agreement for the inter-method agreement for pH measurements
as a function of their magnitude.

Limits of Agreement (Inter-Method)

Minimum Q1 Median Mean Q3 Max
Lower −0.3464 −0.3369 −0.3305 −0.3321 −0.3263 −0.3237
Upper −0.1193 −0.1167 −0.1125 −0.1125 −0.1060 −0.0966

Figure 8. Bland–Altman plot using the “blandr” package in R. Apart from the limits of agreement
and the mean difference, their corresponding confidence intervals are plotted. The green and red
confidence intervals correspond to the upper and lower limits of agreement respectively. The purple
confidence interval corresponds to the mean difference.

Table 7 presents CCC and TDI estimates, and lower and upper confidence bounds,
respectively, before and after recalibration. Before recalibration, the estimates for CCC
range between 0.5970 and 0.6032, while the corresponding lower confidence bounds range
between 0.4776 and 0.4839 throughout the pH measurement range. TDI (0.9) estimates
range between 0.2883 and 0.3031 and their corresponding upper confidence bounds range
between 0.3095 and 0.3232 throughout the pH measurement range.
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Table 7. CCC and TDI estimates with their corresponding lower and upper confidence bounds
throughout the pH measurement range before and after recalibration.

Before Recalibration

Grid CCC Lower Confidence Bound

2.78 0.6032 0.4839
3.7 0.5970 0.4776

Grid TDI Upper Confidence Bound

2.78 0.2883 0.3095
3.7 0.3031 0.3232

After Recalibration

Grid CCC Lower Confidence Bound

2.78 0.9666 0.9407
3.7 0.9509 0.9194

Grid TDI Upper Confidence Bound

2.78 0.0857 0.1052
3.7 0.1048 0.1215

Figure 9a presents one-sided 95% pointwise confidence bands for CCC as a function
of the magnitude of the measurements. The solid line represents a lower CCC confidence
bound for the inter-method agreement and ranges between 0.4776 and 0.4839. The lower
CCC band decreases as the pH level increases. Thus, the agreement becomes progressively
worse but only by a small amount. The inter-method agreement is not considered to be
satisfactory. Figure 9b presents the one-sided 95% pointwise upper confidence bands for
inter- and intra-method versions of TDI (0.9) and their reflections over the horizontal line at
zero. For the inter-method agreement TDI (0.9), which is represented by the solid line, upper
confidence bound ranges between 0.3095 and 0.3232. As the pH level increases from 2.78 to
3.7, TDI increases. The bound of 0.3232 shows that 90% of differences in measurements from
the devices fall within ±0.3232 when the true value is 3.7. Such a difference is unacceptably
large for many applications. The bounds of 0.3095 and 0.3232 are, in proportional terms,
8.36 and 8.74% of the true value, respectively. A non-significant difference appears for the
inter-method agreement throughout the pH measurement range. The similarity evaluation
reveals that a difference in the means of the devices is a contributor to disagreement. TDI
and CCC improve after recalibration.

Overall, as the magnitude increases, TDI increases and CCC decreases. This means
that the inter-method agreement becomes worse as the magnitude increases.

Following an alternative approach [35] to calculate TDI (0.9), the estimates are similar
with equivalent conclusions before and after recalibration. The same applies for CCC [36].

Figure 10 displays the bias plot. The proportional bias is 0.965 (95% CI [0.9352, 0.9938])
and the fixed bias is −0.1052 (95% CI [−0.2013,−0.091]). The fixed bias estimate is different
compared to the standard estimate [11] because the parameter estimation method is different.
However, the red solid line that corresponds to the total bias confirms the findings that follow,
presented in Table 8, Section 3.4, since the total bias is in the range of [−0.235, −0.21].
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Figure 9. (a) One-sided 95% pointwise confidence bands for CCC as a function of the magnitude of
the measurements. The solid line represents a lower CCC confidence bound for the inter-method
agreement. (b) One-sided 95% pointwise upper confidence bands for intra-method versions of TDI
(0.9) and their reflections over the horizontal line at zero.

Figure 10. Bias plot of the reference versus the open-source device. The proportional bias is 0.965
(95% CI [0.9352, 0.9938]) and the fixed bias is estimated at −0.1052 (95% CI [−0.2013, −0.091]).
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3.4. Investigating Possible Sources of Disagreement

Similarity Assessment

For the assessment of similarity, fixed bias and precision ratios are estimated. Fixed
bias represents the difference in means of the two devices under the equal scale assumption.
Since the errors are heteroscedastic and the precision is defined as the error variance of
the reference over the error variance of the open-source, the precision as a function of
magnitude of measurement is displayed in Figure 11. Table 8 summarizes the two indices.
The open-source device is twice to three times more precise than the reference. The fixed
bias is −0.22 units for the open-source device compared to the reference. The open-source
device underestimates the pH measurement by 0.22 units since the entire interval is below
zero. The open-source device can be considered as of higher precision. These findings are
consistent with the exploratory analysis.

Figure 11. Precision ratio along with corresponding 95% confidence intervals.

Table 8. Precision ratio estimates as a function of the magnitude of measurement. The fixed bias is
−0.22 units for the open-source device compared to the reference. The open-source device underesti-
mates the pH measurement by 0.22 units.

Similarity Assessment

Grid

Lambda Estimate Confidence Interval
2.78 1.7987 [1.03969, 2.737423]

3.7 2.832176 [1.770244, 5.471250]

Fixed Bias
Estimate Confidence Interval
−0.221497 [−0.239736,−0.203257 ]

Evaluation of Repeatability

CCC, TDI and the limits of agreement are calculated for the intra-agreement of each
device separately. Figure 7 displays the limits of agreement as a function of the magnitude
of measurement. The limits of agreement for the open-source device (dotted lines) are
included in the reference’s LOA (dashed lines). Table 9 summarizes the ranges for the 95%
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limits of agreement for pH data as a function of the magnitude of measurement. The open-
source device LOAs are narrower compared to the reference, suggesting better repeatability.
Based on the distributions of D1 and D2, the intra-method limits are centered at zero. In
Figure 9a, the CCC index is presented for inter- and intra-method agreement. The dashed
and dotted lines represent the intra-method agreement for the reference and open-source
device, respectively. For the reference device, the upper bound ranges between 0.9534 and
0.9955 and for the open-source, it ranges between 0.9830 and 0.9975. The intra-method
agreement for both devices is considered excellent. However, the open-source device has
higher intra-method agreement. This conclusion is expected since the similarity assessment
reported smaller error variation for the open-source device.

Table 9. The 95% limits of agreement for intra-method agreement for pH data as a function of the
magnitude of measurement. The open-source device has narrower LOA compared to the reference
pH meter. Thus, the open-source device has better repeatability. Based on the distributions of D1 and
D2, the intra-method limits are centered at zero.

Limits of Agreement (Intra-Method)

Reference Minimum Q1 Median Mean Q3 Max
Lower −0.0926 −0.0713 −0.0540 −0.0564 −0.0400 −0.0289
Upper 0.0289 −0.0400 0.0540 0.0564 0.0713 0.0926

Open-
Source Minimum Q1 Median Mean Q3 Max

Lower −0.0550 −0.0446 −0.0356 −0.0366 −0.0280 −0.0216
Upper 0.0216 0.0280 0.0356 0.0366 0.0446 0.0550

Figure 9b illustrates TDI (0.9). For the open-source device, which is represented by
the dotted line, the TDI (0.9) lower bound ranges between 0.0213 and 0.0562, while for the
reference, the dashed line, it ranges between 0.028 and 0.0945. The interpretation for TDI
(0.9) is as follows: the bound of 0.0213 implies that 90% of the time, the difference between
two replications of the open-source device on the same subject falls within ±0.0213 when
the true pH value is 2.78. The TDI bounds for both devices are only 0.76–1.03% of the
magnitude of measurement, indicating a high degree on intra-method agreement. Table 10
displays CCC and TDI (0.9) along with their corresponding bounds for the minimum and
maximum range of the measurements. The high intra-method agreement of CCC values
reflect that the within-subject variations for both assays are very small compared to the
between-subject variation.

3.5. Recalibrating the Open-Source Device

The similarity evaluation reveals that the fixed bias (difference in the means) con-
tributes to the disagreement between the two devices. Recalibration of the open-source
devices by subtracting −0.22 from its measurements makes the mean difference zero and
improves the extend of agreement substantially. Table 7 reports CCC and TDI estimates
and confidence bounds after recalibration. CCC improves significantly. The lower confi-
dence bands range from 0.9194 to 0.9407, revealing excellent agreement throughout the
measurement range. TDI also improves and ranges from 0.1052 to 0.1215 throughout the
measurement range. The agreement for this case study is considered acceptable. TDI (0.9)
and CCC were also calculated after recalibration following the work of Escaramis et al. [23]
and Carrasco [36], respectively. They are both close to Table 7 values, with TDI (0.9) and
CCC being lower compared to Table 7 values.
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Table 10. Summary for CCC and TDI (0.9) for the intra-method agreement.

Grid CCC for Repeatability:
Reference Lower Confidence Bound

2.78 0.9973 0.9955
3.7 0.9732 0.9534

Grid CCC for repeatability:
Open-Source Lower Confidence Bound

2.78 0.9985 0.9975
3.7 0.9904 0.9830

Grid TDI for repeatability:
Reference Upper Confidence Bound

2.78 0.0243 0.0286
3.7 0.0777 0.0945

Grid TDI for repeatability:
Open-Source Upper Confidence Bound

2.78 0.0181 0.0213
3.7 0.0462 0.0562

4. Discussion

A portable open-source device that measures the pH of the juice of grapefruits and
oranges was designed and constructed for laboratory experiments and in situ measure-
ments. To evaluate its functionality, a method comparison study between the open-source
device and a corresponding industrial device was designed. The statistical analysis to
assess their agreement was based on indices and graphical methods using mixed-effects
models. The agreement indices evaluated were the Concordance Correlation Coefficient
(CCC) and the Total Deviation Index (TDI). TDI estimates and confidence bounds were
evaluated using (A1) and the methodology described in Section 2.3 [11]. There were small
differences between the two methods probably due to the different formulations of the
mixed-effects models.

Overall, agreement between the two devices is not satisfactory but improves to ex-
cellent levels after recalibration since the main source of disagreement is the fixed bias
(0.22 pH units).

Further experiments can be conducted to investigate the agreement for an extended
range of measurements and a greater variety of fruits or other applications that include
soil pH or substrate pH in soilless cultivations. The ionic strength of the solution can also
be included in the list of covariates in case it is suspected that it might affect the device
measurements in a different way for each device. An R-Script, schematics and Arduino
code for researchers to follow the proposed methodology and develop the open-source
device are available [23].

5. Conclusions

This paper highlights the assessment of open-source devices, regarding their func-
tionality and the validity of their measurements. The most effective way to validate the
measurements of a novel device is to compare them to established commercial/industrial
devices. The official and reliable process to accomplish this task involves the design and
application of a method comparison study that includes proper experimental design and
statistical tools to assess the agreement and similarity between the two devices. This
methodology is applied mostly in medical research [42,43] but not limited to it.
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Parts of the proposed guide are described in the literature [44], but restricted to the
Bland–Altman plot and ICC. The current research proposes a step-by-step procedure to
validate open-source devices, including the experimental design, descriptive statistics and
a variety of formal statistical assessment and encourages the development of a protocol
applied to this highly blooming field.

The incentive behind the design of the present method comparison study is based on
the novel device’s low cost and configurability compared to the reference device and the
possibility of interchangeable use. Specifically, the open-source device cost is around four
times cheaper compared to the reference device (cost of the reference device discussed in
Section 2.2. and the open-source device in Appendix A, Table A4). The accuracy of the
open-source device is ±0.1 pH (at 25 ◦C) and the measuring pH interval is between 0 and
14 pH units as per the manufacturer’s statement.
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Appendix A

Table A1. Technical Specifications of pH sensor SEN0169.

Specifications

Module Power 3.3 or 5 Volts
Measuring Range 0–14 pH

Measuring Temperature 0~60 ◦C
Accuracy ±0.1 pH (25 ◦C)

Response Time ≤ 1 min
Interface Analog Output

Table A2. Waterproof DS18B20 digital temperature sensor specifications.

Specifications

Module Power 3.3 or 5 Volts
Measuring Range −55 ◦C to 125 ◦C

Accuracy ±0.5 ◦C from −10 ◦C to 85 ◦C
Resolution 9 to 12 bits ADC
Interface 1-Wire

Steel Tube Dimensions 6 mm diameter by 35 mm long

https://github.com/kersee112358/Chapter-5----Ph-logger-sensor
https://github.com/kersee112358/Chapter-5----Ph-logger-sensor
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Table A3. Temperature of the pH buffer during the calibration procedure. Eight measurements were
taken: four for 4.01 pH buffer and four for 7.01 pH buffer.

Temperature Temperature Range (◦C) Voltage pH

7.5 ◦C [5, 10] 1.983 4.01
12.5 ◦C (10, 15] 1.505 7.01
17.5 ◦C (15, 20] 1.998 4.01
22.5 ◦C (20, 25] 1.509 7.01
7.5 ◦C [5, 10] 2.007 4.01

12.5 ◦C (10, 15] 1.509 7.01
17.5 ◦C (15, 20] 2.010 4.01
22.5 ◦C (20, 25] 1.514 7.01

Table A4. Device cost (EUR) in late 2023 according to local vendor prices and international ven-
dor Mouser.

Item Cost (EUR)

DFRobot PH meter Pro Kit (SEN0619) 70
Temperature Sensor DS18B20 3
Adafruit Feather proto 32u4 18.75

Adafruit Adalogger FeatherWing 8.41
Adafruit ADS1115 ADC 16bit 18.4

microSD Card 3
Coin Cell Battey 1

IP66 Enclosure Box 5
PCB 1.5

Nokia 5110 module 4.68
Others (Wires, Solder) 2

Total 127.63

Table A5. The output of the pH electrode in Millivolts, and the linear relationship between pH value
and output voltage ( 25 ◦C) according to the manufacturer (DFRobot).

Voltage (mV) pH Value

414.12 0.00
354.96 1.00
295.80 2.00
236.64 3.00
177.48 4.00
118.32 5.00
59.16 6.00

0 7.00
−59.16 8.00
−118.32 9.00
−177.48 10.00
−236.64 11.00
−295.80 12.00
−354.96 13.00
−414.12 14.00
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Figure A1. Calibration curves for 7.5 ◦C, 12.5 ◦C, 17.5 ◦C and 22.5 ◦C.

Figure A2. (a) Interaction plot between method and subjects. There is evidence of subject x method
interaction since the lines intersect. (b) Interaction plot between subjects and time. A few of the lines
intersect, providing evidence of possible, but not strong interaction, between the subjects and time.
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Figure A3. Standardized residuals on the horizontal axis vs. the quantiles of the standard normal
distribution. The plot reveals a slight deviation from the normal distribution.

Appendix B

Appendix B.1. Models

Appendix B.1.1. Mixed-Effects Models

Mixed effects model for unlinked data are described as follows [11]:

Yi1k = bi + bi1 + ei1k, Yi2k =β0 + bi + bi2 + ei2k (A1)

• k = 1, . . . , mij are the repeated measurements.
• i = 1, . . . , n is the subject’s number.
• j = 1, 2 is the method’s number.
• β0 is a fixed effect and represents the difference in the fixed biases of the methods.
• bij follow independent N1

(
0, ψ2) distributions. This is an interaction term. One

interpretation for bij is the effect of method j on subject i. These interactions are
subject-specific biases of the methods. They are a characteristic of the method-subject
combination that remains stable during the measurement period.

• bi follows independent N1
(
µb, σ2

b
)

distributions.

• eijk follow independent N1

(
0, σ2

ej

)
distributions.

• bi, bij and eijk are mutually independent.

To examine the measures of similarity and agreement, we must retrieve the parame-
ters of the assumed model (A1), which produces a bivariate distribution for (Y1, Y2). By
dropping the subscripts for the sake of simplicity, we have:(

Y1
Y2

)
∼ N2

((
µb

β0 + µb

)
,
(

σ2
b + ψ2 + σ2

e1
σ2

b
σ2

b σ2
b + ψ2 + σ2

e2

))
Thus, D = Y2 − Y1 ∼ N1

(
β0, 2ψ2 + σ2

e1
+ σ2

e2

)
.

Then, the model has a total of six unknown parameters
(

β0, µb, σ2
b , ψ2, σ2

e1
, σ2

e2

)
.

Linked data are modeled as in model (A1), except for the addition of the term b∗ik,
which represents the random effect of the common time k on the measurements.

Yi1k = bi + bi1 + b∗ik + ei1k, Yi2k =β0 + bi + bi2 + b∗ik + ei2k (A2)
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(
Y1
Y2

)
∼ N2

((
µb

β0 + µb

)
,
(

σ2
b + ψ2 + σ2

b∗ + σ2
e1

σ2
b + σ2

b∗
σ2

b + σ2
b∗ σ2

b + ψ2 + σ2
b∗ + σ2

e2

))
Thus, D = Y2 − Y1 ∼ N1

(
β0, 2ψ2 + σ2

e1
+ σ2

e2

)
.

Then, the model has a total of seven unknown parameters
(

β0, µb, σ2
b , ψ2, σ2

b∗ , σ2
e1

, σ2
e2

)
.

When the errors of models (A1) and (A2) are heteroscedastic, σ2
e1

and σ2
e2

are replaced

with σ2
e1

g2
1(u, δ1) and σ2

e2
g2

2(u, δ2). For a given ui denoted as
∼
ui (

∼
u for subject i), function

g is the variance function and δ is a vector of heteroscedasticity parameters, where for
δ = 0 corresponds to homoscedasticity. Variance covariate u is defined in advance (

∼
u) and

accounts for heteroscedasticity. Choudhary and Nagaraja [11] set
∼
ui = h(yi1., yi2.) = yi1.

if method 1 is the reference and
∼
ui = h(yi1., yi2.) =

yi1.+yi2.
2 otherwise. For the variance

function g, two simple models are introduced: first, the power model, where g(u, δ) = |u|δ;
second, the exponential model, g(u, δ) = exp(uδ). The parameters δj can be estimated
while fitting the model using ML and the “nlme” package [45]. More details on the choice
of the variance function g can be found in [46]. AIC and BIC can be compared to distinguish
between different candidate models for the variance functions.

The distribution of (Y1, Y2) for unlinked data is the following:

(
Y1
Y2

)
|∼u ∼ N2

( µb
β0 + µb

)
,

σ2
b + ψ2 + σ2

e1
g2

1

(∼
u, δ1

)
σ2

b

σ2
b σ2

b + ψ2 + σ2
e2

g2
2

(∼
u, δ2

) (A3)

For the linked data:

(
Y1
Y2

)
|∼u ∼ N2

( µb
β0 + µb

)
,

σ2
b + ψ2 + σ2

b∗ + σ2
e1

g2
1

(∼
u, δ1

)
σ2

b + σ2
b∗

σ2
b + σ2

b∗ σ2
b + ψ2 + σ2

b∗ + σ2
e2

g2
2

(∼
u, δ2

)
Based on the model parameters the heteroscedastic difference distribution is the

following both for the unliked and linked data:

D|∼u ∼ N1

(
β0, 2ψ2 + σ2

e1
g2

1

(∼
u, δ1

)
+ σ2

e2
g2

2

(∼
u, δ2

))
Models with covariates

Other factors might affect the agreement between the two methods. Covariates might
affect the means of the methods (mean covariates), explaining part of the variability in the
measurements. Covariates might also interact with the method or affect the error variance
(variance covariates). In any case, the extend of the agreement is affected by the covariates.
The mixed-effects models (A1) and (A2) can be extended as follows:

For unlinked data:

Yijk = µj(x1i, . . . , xri) + vi + bij + eijk (A4)

For linked data:

Yijk = µj(x1i, . . . , xri) + vi + b∗ik + bij + eijk

• x1, . . . , xr are the mean covariates.
• vi ∼ independent N1

(
0, σ2

b
)

is defined as vi = bi − µb

• eijk ∼ indepentent N1

(
0, σ2

ej
gj

2(u, δj
))

accounts for possible heteroscedasticity

• bij ∼ independent N1
(
0, ψ2)

• b∗ik ∼ independent N1
(
0, σ2

b∗
)

Choudhary and Nagaraha [11] describe the detailed methodology for defining mean
and variance-specific covariates.
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Appendix B.1.2. Measurement-Error Models

Taffé [29,30] and Taffé et al. [31] proposed various graphical tools to assess the bias
and precision of measurement methods in method comparison studies by following the
measurement error model proposed by [47] but using an alternative estimation procedure
based on an empirical Bayes approach. The model is as follows:

Y1ij = a1 + β1xij + ε1ij, ε1ij
∣∣xij ∼ N

(
0, σ2

ε1

(
xij, θ1

))
(A5)

Y2ij = +xij + ε2ij, ε2ij
∣∣xij ∼ N

(
0, σ2

ε2

(
xij, θ2

))
xij ∼ fx

(
µx, σ2

x

)
• Ykij is the jth replicate measurement by method k using individual i, j = 1, . . . , ni,

i = 1, . . . , N, k = 1, 2.
• ni denotes the number or repeated measurements per subject.
• xij is a latent trait variable with density fx representing the true latent trait.
• εkij represents measurement errors by method k.
• The variances of these methods σ2

εk

(
xij, θk

)
are heteroscedastic and increase with the

level of the true latent trait xij, which depends on the vectors of unknown parameters
θk [29].

• The mean value of the latent trait is µx and the variance is σ2
x .

• It is assumed that the latent variable represents the true unknown but constant value
of the trait for individual i and therefore xij ≡ xi.

• The parameters a1 and β1 are considered fixed and the error produced by them is
called systematic. Their values depend on the measurement method. Parameter a1
is defined as the fixed bias (or differential bias) of the method, while β1 is defined as
the proportional bias. Fixed bias is the added constant that the measurement method
adds to the true value for every measurement. Proportional bias is based on the
measured quantity and is the slope of Equation (A5). The true value is multiplied by
the proportional bias and is interpreted as the amount of change in the measurement
method if the true value changes by 1 unit.

This modification of the classical measurement error model considers that heteroscedas-
ticity depends on the latent trait and not on the observed average, compared to Choudhary’s
and Nagaraja’s methodology [11]). The model is assumed to be linear even though non-
linear functions of xi can be used and easily interpreted. To visually assess the plausibility
of the straight-line model, a graphical representation of

∣∣∣ ˆε∗2ij

∣∣∣ versus x̂i provides a good

start. Term
∣∣∣ ˆε∗2ij

∣∣∣ is the regression of the absolute values of the residuals ˆε∗2ij from the linear
regression model y2ij = α∗2 + β∗

2 x̂ + ε∗2ij on x̂i (the estimate of the latent trait) by ordinary
least squares.

Appendix B.2. Indices to Assess Agreement and Similarity

Appendix B.2.1. Assessing Agreement

To evaluate the agreement and similarity between the reference and the open-source
device, CCC and TDI were calculated using both (A1) and (A2) [11] and methodologies
provided by [34,36].

The limits of agreement [26,44,48] for both unlinked and linked data were calculated
using the parameters in models (A1) and (A2) via the following formulas provided by [11]:

LOA = β0 ± 1.96·
√

2ψ̂2 + σ̂2
e1
+ σ̂2

e2
, j = 1, 2 (A6)

For heteroscedastic data, σ2
e1

and σ2
e2

are replaced with σ2
e1

g2
1(u, δ1) and σ2

e2
g2

2(u, δ2).
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For unlinked and linked data, using models (A1, A2) and following the aproach
described by [11], TDI can be calculated using the following formula:

TDI(p) =

√√√√{(2ψ2 + σ2
e1
+ σ2

e2

)
χ2

1,p

(
β2

0{
2ψ2 + σ2

e1
+ σ2

e2

})} (A7)

For unlinked data, under model (A1), [11] proposed the following formula to calcu-
late CCC:

CCC =
2σ2

b
β2

0 + 2
(
σ2

b + ψ2
)
+ σ2

e1
+ σ2

e2

(A8)

While for the linked data under model (A2):

CCC =
2
(
σ2

b + σ2
b∗
)

β2
0 + 2

(
σ2

b + ψ2 + σ2
b∗
)
+ σ2

e1
+ σ2

e2

(A9)

Inference for TDI

Escaramis et al. [34] proposed tolerance intervals for TDI. The value kp is obtained
by replacing µD and σD by their REML estimate counterparts derived from mixed-effects
models (available in [34]) in the expression k̂p = µ̂D + zp1 σ̂D. For inference, a one-sided
tolerance interval is computed that covers the p1-percent of the population from D with a
stated confidence.

Let T be the studentized variable of µ̂D + zp1 σ̂D. T follows a non-central Student-t

distribution with the non-centrality parameter zp1

√
N, T ∼ tν

(
zp1

√
N
)

, where N = 2·n·m
is the total possible paired-measurement differences between the two method/devices
and the degrees of freedom v are derived from the residual degrees of freedom. For the
case of using individual–device interaction or discarding it, [34] described different cases
for obtaining ν. An upper bound for the TDI estimate can be constructed by using the
following (1 − α)·100% one-sided tolerance interval, where a is the type I error rate:

UB(1 − α)·100%
(

k̂p

)
= µ̂D + tν

(
1 − α, zp1

√
N
) σ̂D√

N

It corresponds to the exact one-sided tolerance interval for at least the p1 proportion
of the population [49,50].

To perform a hypothesis test if the interest is to ensure that at least p-percent of the
absolute differences between paired measurements are less than a predefined constant κ0,
Lin’ s form of hypothesis can be followed [32].

H0 : kp ≥ k0, H1 : kp < k0

H0 is rejected at level α if:

UB(1 − α)·100%
(

k̂p

)
= µ̂D + tν

(
1 − α, zp1

√
N
) σ̂D√

N
< k0

Choudhary and Nagaraja [11] use the large-sample theory of ML estimators to com-
pute standard errors, confidence bounds and tolerance intervals. When the sample is not
large enough, bootstrap confidence intervals are produced. The estimators of the model-
based counterparts are obtained from models (A1, A2), depending on the nature of the
data (unlinked or linked, respectively). To compute simultaneous confidence intervals
and bounds, the percentiles of appropriate functions of multivariate normally distributed
pivots are needed. Following [51], the R-package “multcomp” [52] can be used. Choudhary
and Nagaraja [11] proposed a Bootstrap-t UCB and a modified nearly unbiased estima-
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tor (MNUT approximation) for computing the critical value, the p-value and the upper
confidence bound (UCB) [11].

Inference for CCC

Asymptotic distribution of the estimated CCCs can be used for inference if the data
are modeled via a large sample size [53]. Choudhary and Nagaraja [11] use an asymptotic
distribution of the estimated CCCs to produce an upper confidence bound when the sample
is large and bootstrap methods when the sample is small. Since the concordance correlation
coefficient is related to the intraclass correlation coefficient (ICC), inference methods for
ICC can be used for CCC [53].

Appendix B.2.2. Assessing Similarity

Following Choudhary and Nagaraja [11], to evaluate the similarity, the marginal
distributions of Y1 and Y2 are examined via estimates and two-sided confidence intervals.
Their distributions are given by Equations (A1) and (A2) for unlinked and linked data. The
fixed bias and the precision ratio are the two measures of similarity that will be evaluated
using mixed-effects model. Last, fixed bias, proportional bias and precisions are evaluated
under measurement-error models.

Fixed bias will be estimated via the model’s counterparts. According to models (A1,
A2), the fixed bias is estimated using µ1 − µ2 for unlinked and linked data.

The precision ratio is evaluated in two different cases.
First, for models that ignore subject x method interactions:

λ =
σ2

e1

σ2
e2

Second, for models that include subject x method interactions:

λ =
σ2

e1
+ ψ2

σ2
e2
+ψ2

The precision ratios are assumed to be estimated when the errors are homoscedastic.
For heteroscedastic data, we replace σ2

e1
and σ2

e2
with σ2

e1
σ2

1 (ui, δ1) and σ2
e2

σ2
2 (ui, δ2); thus,

the fixed bias remains the same, but the precision ratio is given by:

λ =
σ2

e1
σ2

1 (ui, δ1)

σ2
e2

σ2
2 (ui, δ2)

For inference, the method described by [47] is used for heteroscedastic data. Specif-
ically, if θ is a vector of the model’s counterparts, then the measure of similarity is a
function of θ. Denoting the measure of similarity as φ, and b∗ a value in the measurement
range, then φ(b∗) is any measure of similarity in a specific value (the measure is assumed
to be scalar). Substituting θ with its corresponding ML estimate, θ̂, in its expression
gives its ML estimator φ̂(b∗). Using the delta method [54], when the sample size is large,
φ̂(b∗) ∼ N1

(
φ(b∗), G′(b∗)I−1G(b∗)

)
, where G(b∗) =

(
∂
∂θ

)
φ(b∗)|θ=θ̂ , can be computed

numerically. Thus, an approximate 100(1 − α)% two-sided pointwise confidence interval
for φ(b∗) on a grid of values of the measurement range can be computed as

φ̂(b∗)± z1− a
2

{
G′(b∗)I−1G(b∗)

} 1
2 .

Appendix B.3. Assessing Repeatability

Following [11] and mixed-effect models, for unlinked data, repeated measurements
are replications of the same underlying measurement. Instead of using the bivariate
distributions (Y1, Y2) for measurements of the two methods on a randomly selected subject
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from a population, Y∗
j is defined as a replication of Yj, where j = 1, 2 denote the two

methods/devices. By definition, Yj and Y∗
j have the same distribution. CCC and TDI are

modified and are calculated. By dropping the subscripts for model (A1), for unlinked data:

Y∗
1 = b + b1 + e∗1 ,Y∗

2 = b + b2 + e∗2 (A10)

is induced, similar to (A1) by dropping the subscripts.

Then, for method 1 :
(

Y1
Y∗

1

)
∼ N2

((
µb
µb

)
,
(

σ2
b + ψ2 + σ2

e1
σ2

b + ψ2

σ2
b + ψ2 σ2

b + ψ2 + σ2
e1

))
(A11)

For method 2 :
(

Y2
Y∗

2

)
∼ N2

((
β0 + µb
β0 + µb

)
,
(

σ2
b + ψ2 + σ2

e2
σ2

b + ψ2

σ2
b + ψ2 σ2

b + ψ2 + σ2
e2

))
(A12)

where e∗1 and e∗2 are independent copies of e1 and e2 as defined in (A1).
In addition, Dj = Yj − Y∗

j can be defined as the difference in two replications of
method j. From Equations (A10) and (A11), it can be calculated that:

Dj ∼ N1

(
0, 2σ2

ej

)
, j = 1, 2. (A13)

Thus,

CCCj =
σ2

b + ψ2

σ2
b + ψ2 + σ2

ej

(A14)

TDI j =
{

2σ2
ej

χ2
1,p(0)

} 1
2 for j = 1, 2. (A15)

By dropping the subscripts for model (A2) for linked data:

Y∗
1 = b + b1 + b∗∗ + e∗1 , Y∗

2 = b + b2 + b∗∗ + e∗2

For method 1 :
(

Y1
Y∗

1

)
∼ N2

((
µb
µb

)
,
(

σ2
b + ψ2 + σ2

b∗ + σ2
e1

σ2
b + ψ2

σ2
b + ψ2 σ2

b + ψ2 ++σ2
b∗ + σ2

e1

))
(A16)

For method 2 :
(

Y2
Y∗

2

)
∼ N2

((
β0 + µb
β0 + µb

)
,
(

σ2
b + ψ2 + σ2

b∗ + σ2
e2

σ2
b + ψ2

σ2
b + ψ2 σ2

b + ψ2 + σ2
b∗ + σ2

e2

))
(A17)

In the above expression, b∗∗, e∗1 and e∗2 are independent copies of b∗, e1 and e2 as
defined in (A2).

In addition, Dj = Yj − Y∗
j can be defined as the difference in two replications of

method j. From Equations (A16) and (A17), it can be calculated that:

Dj ∼ N1

(
0, 2
(

σ2
b∗ + σ2

ej

))
, j = 1, 2.

Thus,

CCCj =
σ2

b + ψ2

σ2
b + ψ2 + σ2

b∗ + σ2
ej

(A18)

TDI j =
{

2
(

σ2
ej
+ σ2

b∗

)
χ2

1,p(0)
} 1

2 for j = 1, 2. (A19)

Appendix B.4. Recalibration Methods

For measurement-error models, a recalibration procedure is performed by computing:

y∗1ij =
Y1ij − â∗1

β̂∗
1
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where α̂∗1 is the estimate of the proportional bias and β̂∗
1 is the estimate of the fixed bias and

Y∗
1ij is the recalibrated value. The method performs well, according to simulations, with a

sample size of 100 subjects and 10 to 15 repeated measurements per individual from the
reference method and only 1 from the new. It is possible that after the recalibration proce-
dure, the novel method turns out to be more precise than the reference. The recalibration
procedure can be implemented using the compare_plot() function from the “methodCompare”
package [27].
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