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Abstract: Line-of-sight (LOS) sensors developed in newer vehicles have the potential to help avoid
crash and near-crash scenarios with advanced driving-assistance systems; furthermore, connected
vehicle technologies (CVT) also have a promising role in advancing vehicle safety. This study used
crash and near-crash events from the Second Strategic Highway Research Program Naturalistic
Driving Study (SHRP2 NDS) to reconstruct crash events so that the applicable benefit of sensors in
LOS systems and CVT can be compared. The benefits of CVT over LOS systems include additional
reaction time before a predicted crash, as well as a lower deceleration value needed to prevent a crash.
This work acts as a baseline effort to determine the potential safety benefits of CVT-enabled systems
over LOS sensors alone.

Keywords: advanced driver assistance systems; naturalistic driving data; automated driving systems;
connected vehicles

1. Introduction

New vehicles are being equipped with a multitude of sensors to be used in advanced
driver assistance systems (ADAS) and/or automated driving systems (ADS) to develop
an understanding of their environment. These environmental sensors can generally be
characterized as line-of-sight (LOS) sensors because they rely on information directly
captured by the sensors’ field of view. However, to increase the amount of information
available and to expand the sensed field of view, it is beneficial to use additional shared
data from other vehicles and the infrastructure. By leveraging evolving communication
systems, data shared over connected vehicle technologies (CVT) may provide a variety of
performance benefits to transportation. This new level of collaborative communication has
the potential to develop a collective perception of a vehicle’s environment, which could
directly improve safety as events unfold.

The purpose of this research is to act as a baseline attempt to measure the potential
safety impact that advanced sensors and communication methods can make in real-world
crashes and near-crashes. Therefore, in this research LOS sensors are used to describe any
sensors that use vision-based technology for object detection (such as cameras, RADAR, or
LiDAR). These sensors are most often used in advanced driver assistance systems (ADAS)
and automated driving systems (ADS). CVT may have additional sensors that are used
in sharing or receiving information with other vehicles or infrastructure. Currently, the
implementation of CVT is mostly found in simulation testing [1].

Previous work has characterized some of the potential advantages of LOS and CVT,
such as increasing traffic speed or flow rate without any negative impact on traffic safety,
improving individual mobility, providing environmental impact reduction benefits through
reduced fuel use and better efficiency, and preventing/mitigating fatal and injury-causing
crashes [2–6]. Although some of these potential advantages can be readily predicted
through macrosimulation techniques, quantifying the actualized safety benefit of LOS
sensors or CVT requires a more nuanced approach. This is because the specific factors
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leading up to a police-reported crash are generally unknown and can vary greatly between
one another [7]. Generally, the prospective safety impact of more advanced vehicle-sensing
technology, like LOS or CVT, is projected by estimating the number or percentage of police-
reported crashes that could have been avoided if the vehicles involved were equipped with
additional sensors. For example, through a meta-analysis model of 73 different studies,
it was found that up to 48.07% of crashes in the US could have been prevented if all of
the vehicles involved had CVT or were automated vehicles [8]. Additionally, through
the analysis of GES crash records from 2005–2008, CVT or LOS sensors could conceivably
have prevented 32.99% of crashes, and 47% of rear-end crashes in the US [9]. According
to a preliminary study by the National Highway Traffic Administration (NHTSA), CVT
could eventually prevent or mitigate about 80% of non-alcohol-related crashes [10]. These
studies use crash aggregates and crash types to assume how many crashes could have been
prevented if there was 100% market penetration of these technologies.

Studies like these provide a general estimate of the types of crashes that could be miti-
gated or avoided with the implementation of these sensors and technologies, but each crash
is unique, and the actual impact of LOS and CVT may be affected by additional factors. It
becomes more difficult to accurately predict the safety impact of these systems on the micro-
scopic scale [11]. One way to do so is to evaluate the performance of current ADAS systems
(which contain LOS sensors). For example, a partnership between automakers and NHTSA
used real-world vehicle data from 47 million ADAS-equipped vehicles to determine that ve-
hicles with automatic emergency braking (AEB) are 49% less likely to strike another vehicle
in a rear-end crash [12]. Another way to do so is by introducing LOS or CVT sensors into
simulation studies. A study in which intersection crashes were re-simulated predicted that
an intersection-specific ADAS could prevent 25–59% of crashes [13]. Another simulation
study using a bottom-up microscopic simulation approach to predict macroscopic statistics
found that 24–87% of fatal crashes could have been avoided in scenarios involving vehicles
with ADAS/ADS systems compared to fully manual driving scenarios [14].

In developing simulations to assess CVT effectiveness, machine learning models have
been used to simulate specific events which can then be tested on the road. One study
developed a long short-term memory model to predict vehicle trajectories to simulate a
cut-in maneuver in a V2V environment, which was superior to traditional collision-warning
models [15]. Another study developed a road safety information system using naturalistic
data from connected vehicles on Korean highways to assess how connected vehicles could
affect traffic safety and flow. However, this study used a macroscopic model for each
section of the highway, and suggests a more microscopic calibration to assess actual crash
risk [16]. Although one study used Doppler shift to assess a collision-avoidance system
that specifically used only wireless communication without any LOS sensors [17], another
study developed a high-level fusion of LOS sensors and wireless vehicle communication
data to predict the trajectories of conflict with vehicles and pedestrians and found that this
fusion enabled higher driver and pedestrian safety [18]. This fusion method is more similar
to how the sensors are viewed within LOS and CVT systems in this research. However,
an important piece of information that is missing from these simulations and could be
beneficial in predicting the actual impact of more advanced vehicle sensors is the actual
vehicle kinematic signatures before and during some of these safety-critical events (SCEs).

In this paper, a physics-based model was developed to simulate real-world crash and
near-crash scenarios using naturalistic data from the Second Strategic Highway Research
Program Naturalistic Driving Study (SHRP2 NDS). Naturalistic driving data provide a
wealth of information before, during, and after SCEs and baseline scenarios. Especially
important for this research, real-time vehicle data of near-crashes were captured, which
enabled us to analyze SCEs that are not found in national crash datasets. These events
were reconstructed so that the benefit of LOS sensors and CVT could be compared to the
baseline scenarios that did not have either of those technological benefits. Four different
crash configurations were studied, and the system activation time and resulting required
deceleration to avoid these crash and near-crash events were calculated. The research in
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this report intends to add to the body of knowledge around the potential quantitative safety
impact of vehicles equipped with LOS sensors (ADAS-equipped vehicles) and the probable
added benefit of CVT systems (vehicle-to-everything (V2X)). This work was part of a larger
Safety Through Disruption (Safe-D) University Transportation Center (UTC) report [19].

2. Materials and Methods

The following section includes a description of the dataset, and how events were
identified to be included in the data extraction. A flowchart of this method can be found
in Appendix B. The data extraction included pulling de-identified data from VTTI’s data
enclave to obtain the Global Positioning System (GPS) positions of the subject vehicle to
generate a map image of the location without the linked GPS coordinates. The subject
vehicle in this research is used to describe the “host vehicle”, or the vehicle containing
the DAS. The target vehicle is used to describe the vehicle that conflicted with the subject
vehicle (i.e., it was the other vehicle in the crash or near-crash). The subject vehicles and
the target vehicles were then manually tracked throughout the event to determine their
trajectories and speed. This information was used to recreate the events and calculate
crash-specific variables that could be used to calculate the impact that ADS technologies
could have had on the outcome of these events.

2.1. Dataset

The Second Strategic Highway Research Program Naturalistic Driving Study (SHRP2
NDS), funded by the U.S. Federal highway Administration (FHWA), is the largest natural-
istic driving study that has been undertaken to date. The SHRP2 database consists of over
5.5 million trips driven by 3542 drivers across 6 collections sites in the continental United
States. These sites hosted from 150 to 450 participants each and included rural sights such
as central Pennsylvania, and more populated urban areas such as Seattle, Washington.
VTTI developed a data acquisition system (DAS) to support the research questions and
objectives of the SHRP2 NDS program, which included compiling a dataset that could
be used to support future data mining activities such as this one [20]. SHRP2 was used
because of the availability of a “breadcrumb” trail of the GPS location, speed, acceleration,
and other timeseries data [21]. The DAS facilitated the collection of the following data of
interest to this study:

• video data of the forward view;
• subject vehicle speed;
• subject vehicle yaw and yaw rate;
• GPS latitude and longitude.

These variables were chosen because they could be used to recreate events of interest
within a simple physics-based model. However, the DAS collected a variety of additional
variables such as multiple video angles, machine vision, accelerometer data in all 3 axes,
driver cell phone use, vehicle network data, and more. The study was conducted in
accordance with the Declaration of Helsinki and approved by the Institutional Review
Board of Virginia Tech (IRB #18-957 23 October 2018).

2.2. Event Identification

To correctly compare the potential benefit of CVT over LOS sensors, a subset of the
crash and near-crash events from SHRP2 were identified. These events included ones
where the view of target vehicle was obstructed so that the LOS sensor would not be
able to perceive the target vehicle prior to an imminent potential conflict. Therefore, the
capability of an LOS system would be limited, while a CVT system could provide a benefit
to the operation of the associated safety system. Therefore, the conflict object, or target
vehicle, was out of sight for the majority of the time leading up to the event. Figure 1
illustrates an example of such an event. Although this constitutes a strong selection bias,
these specific events were chosen because they showed the most promise to fulfill the
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purpose of determining how the addition of LOS and CVT systems could mitigate or
prevent real-world crash and near-crash scenarios.
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Figure 1. Example of a visual obstruction event.

From initial data mining, 594 events showed initial promise to be relevant to this
research because there was a view-obstructing object involved within the incident and the
necessary data elements were available. These events were defined by the SHRP2 dataset
and included crashes and near-crashes. A crash was defined as “any contact that the subject
vehicle has with an object” and a near-crash was defined as “any circumstance that requires
a rapid evasive maneuver by the subject vehicle, or any other vehicle, pedestrian, cyclist, or
animal, to avoid a crash” [20].

The candidacy of each event was then rated by its relevancy to the project and its ability
to be reconstructed; those that were not good candidates included events with insufficient
video, unpredictable conflict object maneuvers, host driver error, and more. Insufficient
video included video with heavy precipitation, video with insufficient lighting, or video
that was unavailable. Unpredictable conflict object maneuvers included any vehicles or
animals that made erratic movements that would be difficult to reproduce with a simple
physics-based model. Thus, 18 crashes and 162 near-crashes were identified that promised
a strong ability to be recreated for the purposes of this project.

After these events were determined, they were reviewed once again to classify the
leading cause of conflict. Table 1 provides a summary of the obstruction type for the events
with strong candidacy.

Table 1. Events with strong candidacy by obstruction type.

Obstruction Type Near Crash Crashes

vehicle 126 11
bend in path (lateral or vertical) 9 1

none (small agent) 0 1
fog 0 1

other (e.g., building, vegetation) 27 4
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2.3. Data Extraction

To obtain a better picture of the environment during a crash or near-crash event, a
birds-eye view of the location of the event was created. The corresponding Google map
image was extracted for each event and overlayed with the relative location of the subject
vehicle. To keep the locations anonymous, the actual GPS coordinates of the subject vehicle
were kept in the VTTI data enclave and converted to pixel locations, relative to the map
image. The other data taken from SHRP2 were the instantaneous kinematic details of the
subject vehicle and the front-facing video of the subject vehicle. Together, these four pieces
of data were used to reconstruct the events in a physics-based model.

2.4. Event Reconstruction
2.4.1. Identifying Important Timepoints

The first step in recreating the event was to superimpose the subject vehicle trajectory
over the map image. The accuracy of automotive-grade GPS is not always good enough
to directly overlay on the map. For example, in one case, the subject vehicle appeared to
be offset from the road and driving in the grass a few meters to the side. Therefore, the
relative kinematic information collected from the DAS was used to generate the trajectory
given a set of initial conditions. Points were marked individually on the map for the subject
vehicle’s initial location and the kinematic information from the subject vehicle was used
to recreate its trajectory.

A graphical user interface (GUI) was developed to complete the following two tasks:

1. Determining the impact proximity frame (timestamp) by watching the event video.
This is the approximate timestamp in which the subject vehicle and target vehicle
come into contact (or near contact for near-crash events). This is later referred to as
the conflict time.

2. Then, two frames (timestamps) are identified within the video that correspond to two
locations of the subject vehicle on the map. The frames are chosen based on the ability
to accurately place the concurrent subject vehicle position and heading on the map
(i.e., lane markings, buildings, trees, etc.).

2.4.2. Calculating Subject Vehicle Trajectory

Once two positions, headings, and corresponding timestamps were identified, the
vehicle’s trajectory throughout the event was calculated given the vehicle kinematic data
that were extracted previously from the DAS. This was performed by using the vehicle’s
starting position (xn), heading (θn), and speed (vn) in a basic iterative trajectory formula
shown in Equation (1).

xn+1 = xn + vncos θn (1)

This produced a photo of the event trajectory superimposed on the corresponding map
as shown in Figure 2. These photos were reviewed to determine if it would be beneficial
to modify and repeat earlier steps for any events that had an unexpected trajectory. If the
trajectory was unexpected (Figure 2, right), the associated trace factor and theta shifter were
internally developed to determine more accurate positions and headings for the subject
vehicle in the first step. The trace factor is the ratio between the trajectory distance of the
event (as determined from the DAS) and the distance calculated from the vehicle positions
chosen during the video review. The theta shifter is the difference in heading (degree).

2.4.3. Determining Locations of Objects of Interest

The GUI generated a .MAT file that contained the positions of the subject vehicle,
view-obstructing objects, and the target vehicle (or conflict object). To generate the locations
of the objects of interest, the subject vehicle front camera and the position of the subject
vehicle on the map were displayed at corresponding timestamps.
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Figure 2. Review step showing an example of correctly calculated trajectory (left) and incorrectly
calculated trajectory (right).

First, the impact proximity frame (conflict time) was brought up and the location of
the target vehicle was identified on the map. Then, the event was reversed by 4 frames
at a time until the frame in which the target vehicle was no longer visible was reached.
At this frame, each object that could be obstructing the view of the subject vehicle was
identified and its location was marked. Then, the event continued 4 frames at a time and
the corresponding locations of each view obstructing object and the target vehicle was
marked. These locations were marked up until the conflict time.

This step went quickly if the position and heading of the subject vehicle was accurate
(as determined by the previous two steps), there was only one target vehicle, and only one
stationary view-obstructing object. This step took considerable effort if there were many
view-obstructing objects that move throughout each frame, there were multiple target
vehicles, or the subject vehicle position was not accurate.

2.5. Physics-Based Model

Each event now had the relative locations and headings on the subject vehicle, the tar-
get vehicle(s), and the view-obstructing object(s) at certain time frames of the event. Linear
interpolation was used to fill in the locations of these objects for the missing timestamps.
This allowed for different parameters to be manipulated to simulate different scenarios that
stem from one event. For the purposes of this project, three scenarios were simulated. The
first scenario acts as the base case, which used the data in the original event reconstruction.
The second scenario acts as though the subject vehicle has line-of-sight (LOS) technology.
For simplicity in calculation, the subject vehicle detects the target vehicle when an uninter-
rupted line can be drawn from the centroid of each vehicle as shown in Figure 3. Since LOS
sensors differ in range and width, this simplification allows for consistent calculation. We
expect that most sensors will need to view much of the vehicle in order to correctly detect
it, and this was a simple way to exemplify this expectation. The third scenario describes
when the subject vehicle and target vehicle are using CVT (i.e., the subject vehicle knows
the location, speed, acceleration, and trajectory of the target vehicle). These assumptions
were used to calculate how environmental sensors (LOS) and information-sharing between
traffic participants and smart infrastructures (CVT) could impact vehicle safety in these
crash and near-crash scenarios. Using these data, two pieces of information were calculated
for each scenario: (1) the activation time in which a potential conflict is identified in both
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CVT and LOS ADS and (2) the required deceleration of the subject vehicle to prevent a
crash in both CVT and LOS ADS.
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around the visual obstruction object (purple), which determines LOS activation.

2.5.1. Activation Time before Conflict Calculation

To calculate these two pieces of information, the relative speed, heading, and locations
of the target vehicle and view-obstructing objects were needed. The instantaneous speed,
vn, was calculated by taking a simple derivative of the pixel location of each object over
time. The pixel distance was converted to distance in meters by using the zoom factor
used to produce the map image (i.e., the zoom factor, zf, was a fraction that correlated the
number of pixels to a distance in meters).

Then, in each frame, the current speed, location, and heading of the subject vehicle and
target vehicle were used to determine the expected trajectory of each vehicle (Equation (1)).
A conflict was identified if the vehicle centroids came within 4 m of each other at some
point within their predicted trajectories.

The first time a potential conflict was identified in the data, defined when the CVT
system would activate. The LOS activation timepoint would occur once the subject vehicle
could “see” the target vehicle (as shown in Figure 3). Therefore, a LOS system would
activate either concurrently, or after a CVT system. By taking the difference between those
two vectors, it could be determined how much earlier a CVT system could notify a driver
of a potential conflict over an LOS system. The system activation time before the conflict
time is essentially the commonly used safety surrogate measure, time-to-collision (TTC).
However, because the real-world conflict time was known, we used this predicted system
activation time relative to the actual conflict time.

2.5.2. Required Deceleration

With the distance between each vehicle (d), the predicted point of collision, the time
until collision (t), and the speed of both vehicles (vS and vT), the minimum required
deceleration (−a) to prevent a crash can be calculated by Equation (2).

−a =
d − |vS − vT |t

t2 (2)

The collision avoidance strategy assumes that the subject vehicle does not swerve and
the conflict is avoided with braking only; the driver (or vehicle) does not have to perform
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any other evasive maneuvers. Additionally, a simplifying assumption is made such that
the target vehicle does not accelerate or swerve once a conflict is identified.

3. Results and Discussion

As discussed earlier in Section 2.2 Event Identification, 18 crashes and 162 near-crash
events were reconstructed. After analyzing these 180 events, 68 events still possessed with
usable data. Furthermore, 112 events were excluded due to incorrect satellite images (e.g.,
major construction since the date of the event, incorrect GPS data points in SHRP2) or
missing kinematic data within the time of interest for our project. The resulting 68 events
were separated into four crash configuration categories, and the following two values were
calculated: (1) the difference between CVT and LOS activation time, and (2) the minimum
required deceleration to avoid a collision.

3.1. Crash Configuration Categories

To organize the events and find significance within the values calculated, events were
categorized into four crash configurations. These four categories were based off the General
Estimates System (GES) accident type diagram and can be found in Appendix A, with the
number of events within each configuration shown in Table 2.

Table 2. Crash configuration categories and the number of events analyzed.

Crash Configuration Number of Events

left turn across path 40
perpendicular 8

rear-end 14
turn into same direction 6

Even though rear-end collisions are the most frequent type of crash in the US [22],
the study did not include a proportional number of these events. This is because they
are generally not caused by a visual obstruction, but rather due to driver distraction or
lack of driver awareness. Although the events in this research make up a relatively low
sample size for each crash configuration, it is important to note that the left turn across path
configurations made up a significant number of crash and near-crash events that could be
mitigated by LOS and CVT systems within this sample. Therefore, it could be beneficial to
focus on left turn across path scenarios in future work involved with assessing the safety of
technologically advanced vehicles.

3.2. Activation Time before Conflict

The activation time represents the amount of time between when each system detected
an imminent conflict and the actual time of conflict. This concept somewhat represents
the common safety surrogate measure, time-to-collision (TTC), but is calculated slightly
differently here since the time of the actual conflict is known. Figure 4 shows the difference
in activation time between CVT and LOS sensors. Each dot represents the actual value for
each scenario, the X represents the mean value, the horizontal line represents the median
value, the box encompasses the first and third quartile, and the whiskers extend to the
maximum value that is within 1.5 times the inner quartile range.

Across all scenarios, the CVT system activated 0.51 ± 0.15 s before a LOS sensor detects
the target vehicle on average. This means that CVT could provide an additional ½ second
of reaction time over LOS systems. Additionally, since all crash and near-crash events are
generally classified together as safety-critical events (SCEs), an additional ½ second could
allow for earlier activation of forward collision-warning systems or automated emergency
braking in these scenarios [20].
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Figure 4. Box and whisker plot of the difference in activation time (seconds) between LOS and CVT
systems separated by crash configuration categories. Each circle represents the actual value for each
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encompasses the first and third quartile, and the whiskers extend to the maximum value that is
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3.3. Required Deceleration

The required deceleration is a value calculated to determine the minimum deceleration
necessary to avoid a crash or near-crash if the vehicle began braking at the system activation
time. Figure 5 is a box and whisker plot of the deceleration values required to prevent a
potential conflict. Similar to Figure 4, the X represents the mean value, the horizontal line
represents the median value, the box encompasses the first and third quartile, the whiskers
extend to the maximum value that is within 1.5 times the inner quartile range, and each
dot represents the actual value.
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Figure 5. Box and whisker plot of mean required deceleration (negative acceleration) separated by
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represents the median value, the box encompasses the first and third quartile, the whiskers extend to
the maximum value that is within 1.5 times the inner quartile range, and the circles represents any
values outside of the whisker range.
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Across all four crash configuration categories, the average required deceleration of
CVT systems vs. the LOS systems were 3.79 m/s2 and 6.22 m/s2, respectively. Generally,
a deceleration value over 0.45 g (4.41 m/s2) is considered hard braking [23]. Therefore,
CVT systems could reduce the need for hard braking, and reduce the average deceleration
required by 2.43 m/s2 to avoid the conflict by braking alone.

Some events required excessive deceleration values. Figure 6 shows the number of
events binned by their respective required deceleration to avoid a conflict (anything above
14 m/s2 is shown as 14+). In general, a deceleration value of less than 1 g (9.8 m/s2) is
reasonable for most modern light vehicles equipped with crash-avoidance systems [24].
This figure shows that more LOS events (than CVT events) require an acceleration value of
more than 1g as depicted by the black dashed line. Additionally, 91.2% of the CVT events
and 75.0% of the LOS events analyzed required a deceleration value less than 1g, implying
that a vehicle equipped with LOS features alone could prevent 75.0% of conflicts within
this dataset, while a connected vehicle could prevent 91.2% of conflicts.
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Figure 6. Count of events binned by required acceleration to avoid the crash or near-crash separated
by sensor type.

4. Conclusions

In this research, crash and near-crash scenarios from the Second Strategic Highway
Research Program Naturalistic Driving Study (SHRP2 NDS) were simulated via a physics-
based model to calculate the potential safety benefit of line-of-sight (LOS) sensors and
connected vehicle technology (CVT). Previous work has predicated the potential safety
impacts of LOS and CVT through an estimation of the types of police-recorded crashes
that could have been avoided if these sensors and systems were in place, or by simulating
different crash scenarios with these technologies in place. A missing piece has been the use
of real-time kinematic data of vehicles during a crash, as well as using other safety-critical
events, such as near-crashes, to analyze how additional LOS or CVT could perform in
these scenarios. This research acts as a baseline attempt to measure the potential safety
impact that advanced sensors and communication methods can provide in real-world
safety-critical events (SCEs).

This project looked at four different crash configurations, including left turn across
path, rear-end, perpendicular, and turn into same direction. The turn across left path
configurations contained the largest number of crash and near-crash scenarios that could
be addressed through LOS sensors or CVT systems. Therefore, it could be beneficial to
focus more attention on the accuracy of these sensors specifically for left-turn maneuvers.

On average, the CVT system would activate 0.51 ± 0.15 s before a LOS sensor detects
the target vehicle. This means that CVT could provide about an additional half-second of
reaction time over LOS systems. In future research, determining how this calculated value
might change at different speeds could greatly affect the added safety benefit of some of
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these sensors. On average, the required deceleration of CVT systems vs. the LOS systems
to avoid a conflict were 3.79 m/s2 and 6.22 m/s2, respectively. Additionally, 91.2% of the
CVT events and 75.0% of the LOS events analyzed required a deceleration value less than 1 g.

From the required deceleration interpretation, it is expected that any event which re-
quired a deceleration value greater than 9.8 m/s2 could have resulted in a crash. However,
only 4.4% of the actual events that were analyzed resulted in a collision; the remaining
95.6% were near-crashes. This is because one or more of the vehicles involved performed
an evasive maneuver in addition to braking, which is often how near-crashes are catego-
rized [25]. The simulated event then calculated a required deceleration that was higher than
the baseline event to avoid the collision because it did not include a swerving maneuver.
These near-crashes were used for this research to increase the sample size and they can
be used as a potential surrogate measure to crashes in similar scenarios [26]. Although
the near-crashes did not result in an actual police-reported crash, these are important to
use in determining the potential safety impact of automated driving systems since these
were events in which the driver performed a successful evasive maneuver. However, since
the results from the simulated LOS and CVT systems only included braking as an evasive
maneuver, further research could look into how swerving could be used to avoid some
of these conflicts. This would be especially beneficial for ADS development. Most of
the drivers in these near-crash events were able to avoid the crash with a combination
of swerving and braking, so it would also be beneficial to see if vehicles with additional
sensors and more advanced driving assistance systems could do the same.

Although this research includes only a small sample of SCEs, this work demonstrates
how certain safety-surrogate measures can be used to measure the potential safety impact
of more advanced sensors and communication methods. It would also be beneficial to
calculate these same surrogate measures with a larger dataset for use in different baseline
scenarios without a visual obstruction to compare the results. The events analyzed were
specifically chosen because CVT is most likely to have an impact in scenarios in which LOS
sensors are blocked. However, many SCEs occur when there are no visual obstructions,
and CVT has the potential for also avoiding or mitigating these events.

Finally, these simulations assumed that the sensors would have 100% accuracy in de-
termining an imminent conflict. More conservative estimates could be made to account for
sensor inaccuracies or additional reaction time within technological systems. This research
acts as a baseline sample of how to use real SCEs to predict the potential safety benefit of
advanced vehicle sensors, and which events should be focused on for future research.
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Appendix A

This appendix contains Figure A1, which shows the crash configurations used for
this research as they compare to the crash configuration from the accident glossary of the
1988-2015 General Estimates System (GES) Analytical User Manual [27].
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