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Abstract: This study aims to understand the dynamic changes in the coral reef habitats of Derawan
Island over two decades (2003, 2011, and 2021) using advanced machine learning classification tech-
niques. The motivation stems from the urgent need for accurate, detailed environmental monitoring
to inform conservation strategies, particularly in ecologically sensitive areas like coral reefs. We
employed non-parametric machine learning algorithms, including Random Forest (RF), Support
Vector Machine (SVM), and Classification and Regression Tree (CART), to assess spatial and temporal
changes in coral habitats. Our analysis utilized high-resolution data from Landsat 9, Landsat 7,
Sentinel-2, and Multispectral Aerial Photos. The RF algorithm proved to be the most accurate, achiev-
ing an accuracy of 71.43% with Landsat 9, 73.68% with Sentinel-2, and 78.28% with Multispectral
Aerial Photos. Our findings indicate that the classification accuracy is significantly influenced by
the geographic resolution and the quality of the field and satellite/aerial image data. Over the
two decades, there was a notable decrease in the coral reef area from 2003 to 2011, with a reduction to
16 hectares, followed by a slight increase in area but with more heterogeneous densities between 2011
and 2021. The study underscores the dynamic nature of coral reef habitats and the efficacy of machine
learning in environmental monitoring. The insights gained highlight the importance of advanced
analytical methods in guiding conservation efforts and understanding ecological changes over time.

Keywords: spatial and temporal distribution; coral reef; Random Forest; Support Vector Machine;
Classification and Regression Tree

1. Introduction

A coral reef is an underwater environment where reef-building corals are present in
shallow ocean regions. Coral reefs play a crucial role as ocean ecosystems and serve as a
poignant example of the threats posed by climate change. These reefs contribute signifi-
cantly to Earth’s biodiversity, often being referred to as the “rainforests of the seas” [1,2].
Coral reefs contribute to nutrient recycling, aid in the fixation of carbon and nitrogen,
filter water, and supply crucial nitrogen and essential nutrients to support the diverse
marine life within the food chain [3–5]. Coral reefs offer numerous economic advantages,
such as recreational opportunities, tourism, safeguarding coastlines, serving as habitats for
commercial fisheries, and preserving marine ecosystems. Corals hold significant value for
various reasons, including their practical role in protecting coastlines during storm events
and sustaining fisheries vital to many communities [6,7]. Indonesia plays a crucial role
in maintaining ecological balance, as it hosts 450 out of the 700 globally recognized coral
reef species [8,9]. Derawan Island stands out in Indonesia for having the most extensive
expanse and diverse array of coral reefs among its islands.

Upon observing the current conditions of coral reefs on Derawan Island, a study
is needed to monitor the conditions of coral reef habitats on Derawan Island over time.
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Monitoring is carried out using remote sensing technology through the use of multispectral
imagery. According to [10], sensing is a science that can be used to obtain information on
objects, areas, or phenomena through the analysis of data obtained without making direct
contact with the object being studied. Remote sensing data can be used to identify coastal
typologies, one of which is the coral reef habitat. Multispectral image data can record the
conditions of coral reef habitats because it contains visible light, which has a wavelength
between 0.4 µm and 0.7 µm. Visible light can penetrate the water column to a depth of
20 m so that objects at that depth can be recorded [11].

Satellite images that will be used in the research on the spatial distribution of coral
reef habitats include Landsat 7 and Sentinel-2. Additionally, in assessing the level of
capability of the machine learning classification algorithm for spatial resolution, three
spatial resolutions were used: low resolution from Landsat 9 satellite imagery, medium
resolution from Sentinel-2 satellite imagery [12], and high resolution from Multispectral
Aerial Photography [13]. In the process of monitoring changes in coral reef habitats, a
classification stage is needed to identify benthic habitats in the coastal area of Derawan.
The classification used is a non-parametric classification algorithm, such as Random Forest
(RF), Support Vector Machine (SVM), and Classification and Regression Tree (CART) [14].
This classification algorithm will be used to determine the level of precision and accuracy of
the machine learning classification algorithm for satellite images that have low resolution,
medium resolution, and high resolution. Through these stages, an algorithm will be
selected that has the highest accuracy, which will be used to conduct mapping studies of
the spatial distribution of coral reef habitats.

Remote sensing technologies with machine learning algorithms have been widely
used to study changes in coral reefs. In previous research, i.e., “Benthic Habitat Mapping
Model and Cross Validation Using Machine Learning Classification Algorithm” [15], on the
development of benthic habitat models using machine learning classification and applying
classification models in several research areas, in situ integration data on benthic habitats
and WorldView-2 imagery were used to parameterize machine learning algorithms. The
results obtained in the previous research show that the RF algorithm is more accurate than
other algorithms. Meanwhile, in other research, coral habitat mapping using Sentinel-2 and
Landsat 9 imagery were used [12] and multispectral aerial photography was also used for
habitat mapping. This was possible because Sentinel-2, Landsat 9, and multispectral aerial
photography all have wavelengths between 400 and 700 µm [13].

In our coral reef assessment study, we recognized the potential of deep learning, as
evidenced in previous research [16–22]. However, we opted for RF, SVM, and CART due
to several factors specific to our dataset and research objectives. The primary factor was
the size and complexity of our dataset, which did not necessitate the use of deep learning
techniques. Coral reef mapping typically involves smaller datasets, a condition that is not
ideal for deep learning. This is because deep learning methods usually require a large
volume of data to function optimally and to mitigate the risk of overfitting. In the context
of coral reef environments, where collecting extensive data is often challenging, deploying
deep learning models becomes impractical. Our dataset, tailored to the specifics of coral reef
mapping, lacked the volume required to leverage deep learning effectively. Consequently,
we chose RF, SVM, and CART, as these methods have proven to be effective with smaller
datasets, which is often the scenario in coral reef mapping studies. Their ability to produce
reliable results with limited data made them more appropriate for our research goals.

This study not only focuses on the ecological and conservation significance of these
reefs but also introduces innovative methodologies to monitor and analyze their conditions
over an extended period (2003, 2011, and 2021), such as in previous research [23,24] using
remote sensing for spatiotemporal monitoring of coastal areas. Our research leverages
advanced remote sensing technologies and machine learning algorithms to fill a critical
gap in long-term coral reef habitat analysis. While previous studies have demonstrated the
effectiveness of these technologies in habitat mapping, they often concentrate on shorter
time frames or specific coral types. In contrast, our study provides a comprehensive,
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long-term analysis of the spatial distribution and changing patterns of coral reef habitats
in Derawan Island’s coastal area. A key innovation in our approach is the integration
of multispectral image data, which include Landsat 7, Landsat 9, Sentinel-2, and high-
resolution Multispectral Aerial Photography. These data, covering visible light wavelengths,
allow us to penetrate the water column to a depth of 20 m, capturing detailed images of the
coral habitats. We employ non-parametric classification algorithms such as RF, SVM, and
CART to analyze the data. These algorithms help determine the precision and accuracy of
our classifications across various spatial resolutions. Our methodology stands out in its
ability to select the most accurate algorithm for mapping the spatial distribution of coral
reef habitats, thus enhancing the reliability of our results.

In our study, we emphasized the importance of clarity and interpretability of results, as
these aspects are crucial in our research. The methods we employed, particularly the use of
RF, SVM, and CART, were chosen for their ability to provide straightforward insights while
being efficient and pragmatic given our computational resources and time constraints. Our
primary objective was to delineate the spatial distribution patterns and observe changes in
coral reef habitats around Derawan Island, Berau Regency, East Kalimantan, during the
significant years of 2003, 2011, and 2021. Moreover, we aimed to evaluate the influence of
varying spatial resolutions and determine the effectiveness of different machine learning
classification algorithms in accurately mapping these habitats.

While there have been notable advancements in remote sensing technologies and
machine learning algorithms for coral reef studies, a comprehensive, long-term analysis,
especially in the context of Derawan Island, has been lacking. Prior research, including
studies like the ‘Benthic Habitat Mapping Model’ that employed Sentinel-2, Landsat 9,
and multispectral aerial photography, have effectively showcased the potential of these
technologies in habitat mapping. However, these studies often focused on shorter periods
or specific coral types, leaving a gap in long-term, detailed analysis. Our research seeks to
fill this gap by conducting a detailed, long-term study spanning the years 2003, 2011, and
2021. This approach is designed to deepen our understanding of the spatial distribution
and the evolving patterns of coral reef habitats in the coastal area of Derawan Island.
Simultaneously, it assesses the impacts of different spatial resolutions and the efficacy of
varied machine learning classification algorithms, thereby providing a nuanced perspective
on the temporal dynamics of these vital ecosystems and contributing to more effective
conservation strategies.

Indonesia, as the largest archipelagic nation globally, is the custodian of the vibrant
and diverse coral reefs of the Derawan Islands, which hold immense ecological and conser-
vation significance. Our ambitious study ventured into modeling the spatial and temporal
changes of these coral reef habitats over the specified years, harnessing an innovative
blend of remote sensing technologies and machine learning algorithms. The cornerstone
of our methodology was the acquisition and preprocessing of multispectral image data
from Landsat 7, Landsat 9, Sentinel-2, and Multispectral Aerial Photography. This data
was pivotal in penetrating the water column to a depth of 20 m, following rigorous cor-
rection processes for atmospheric disturbances. We anchored our methodology on robust
non-parametric classification algorithms such as RF, SVM, and CART, recognized for their
proficiency in complex environmental studies. The essence of our analysis involved ap-
plying these algorithms to the meticulously preprocessed satellite data, engaging in an
extensive comparative analysis to establish which algorithm yielded the highest accuracy
and precision in classifying and mapping the coral reef habitats. A vital component of our
study was the long-term temporal analysis, where these methodologies were applied to
data spanning across 2003, 2011, and 2021, thereby revealing the dynamic transformations
within these ecosystems. We also explored how different spatial resolutions affected the
accuracy of our habitat mappings, a fundamental aspect in grasping the capabilities and
limitations of our chosen technologies. Ultimately, our study’s methodology was intricately
designed to not only chart the spatial distribution of coral reef habitats but also to decipher
their evolution over time and the impact of spatial resolutions, offering profound insights
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into the dynamics of coral reef ecosystems and establishing a solid groundwork for future
conservation strategies.

2. Materials and Methods
2.1. Study Area

Indonesia, recognized as the largest archipelagic country in the world, is home to over
17,000 islands and a coastline extending over 99,093 km², making it a key region for marine
biodiversity, particularly coral reefs [25,26]. These ecosystems, accounting for 450 out of
the 700 known coral reef species globally, are not only crucial for ecological balance but
also for the economic and tourism sectors [8,9]. The coral reefs of the Derawan Islands are
famous, and one of the islands stands out for this notable characteristic.

The Derawan Islands, situated in the Berau Regency of East Kalimantan, Indonesia,
consist of several islands, including Derawan, Maratua, and Biduk Biduk. This archipelago
is renowned for its stunning natural beauty, particularly Derawan Island, which was
recognized as a UNESCO World Heritage site in 2005 [27]. The island’s breathtaking
beaches and mesmerizing underwater vistas have captivated diving enthusiasts worldwide,
earning it the moniker “Pristine Island” due to its unspoiled natural splendor [28].

The allure of coral reefs stems from their natural beauty. The significance of coral reefs,
particularly in regions like Derawan, is multifaceted. Ecologically, they offer habitats for a
diverse range of marine life and play a critical role in coastal protection. However, they
are increasingly under threat due to environmental changes and anthropogenic activities,
such as pollution, overfishing, and climate change, which have led to substantial reef
degradation [29–34] This alarming trend underscores the necessity for effective monitoring
and conservation strategies. Figure 1a illustrates the location of the Derawan Islands within
Indonesia, while Figure 1b specifically highlights Derawan Island.

Referring to East Kalimantan Governor Regulation Number 60 of 2019 concerning
RZWP3K for the Derawan Islands and Surrounding Waters, Derawan Island is the area
with the greatest damage to coral reefs compared to other areas in the Derawan Islands
region [35] according to the results of the 2011–2012 Manta Tow survey on the coral around
the island. Derawan has HCL cover ranges of 11–25% and 26–50%, and HCL cover of
<10% is found mainly on coral reefs near Derawan Island. Based on the data described, it
is known that the role of coral reefs is very important in maintaining coastal ecosystems.
Based on data from the NOAA Satellite and Information Service, it appears that sea
surface temperatures in East Kalimantan in 2002–2003 ranged between 15°C and 17°C, with
bleaching warning conditions in April, June, and November 2002, as well as in April and
November 2003. Then, from 2010 to 2011, the sea surface temperature ranged between
15 and 25 degrees Celsius, with a significant change in temperature from 15 degrees in
April to 25 degrees in July, which lasted for 10 months, resulting in a level 2 coral bleaching
warning; however, in 2011, sea surface temperatures tended to be stable. Furthermore, in
2021–2022, the sea surface temperature ranged between 15°C and 21°C, whereas in 2020
there was a coral bleaching warning in May–July, with a temperature range of 18°C to
21°C. Meanwhile, in 2021, sea surface temperature conditions only received coral bleaching
warnings in April, June, and October–November [36].

2.2. Data

Table 1 presents a comprehensive overview of the datasets utilized in our study,
showcasing a range of spatial resolutions and the respective years of data collection, and
thereby illustrating the diverse applications of remote sensing technology in our research.
It includes data from Landsat 7 and Landsat 9, both offering 30 m resolution imagery from
2003, 2007, and 2022, which underscores the enduring utility of the Landsat program in
providing consistent, long-term Earth observations (Figure 1c–e). Additionally, the Sentinel-
2 dataset, with a more detailed 10 m resolution, includes data from 2021 and 2022, reflecting
our use of the latest satellite imagery available from the European Space Agency for high-
resolution analysis (Figure 1f). The table also details Multispectral Aerial Photography data
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from 2021, featuring a high 8 cm resolution obtained from aerial surveys, essential for our
manuscript’s focus on fine-scale, localized studies (Figure 1g). Significantly, the Underwater
Photo Transects (UPT) data from 2021, represented on a 50 × 50 cm grid, offer a unique and
valuable perspective for our marine environmental assessments, allowing detailed analysis
of underwater habitats and ecosystems (Figure 1h,i). Together, these datasets form the
foundation of our manuscript’s analytical approach, demonstrating how varying scales and
types of remote sensing data can be integrated for comprehensive environmental research.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 23 
 

 

 
Figure 1. Research Area: (a). Indonesia; (b). Derawan Archipelago; (c). Landsat 7 2003; (d). Landsat 
7 2011; (e). Landsat 9 2022; (f). Sentinel-2 2021; (g). UAV Multispectral 2021; (h). in situ Station in 
Derawan Island; (i) in situ Station in Derawan Island with 4 classification. 

Figure 1. Research Area: (a). Indonesia; (b). Derawan Archipelago; (c). Landsat 7 2003; (d). Landsat
7 2011; (e). Landsat 9 2022; (f). Sentinel-2 2021; (g). UAV Multispectral 2021; (h). in situ Station in
Derawan Island; (i) in situ Station in Derawan Island with 4 classification.



Sensors 2024, 24, 466 6 of 22

Table 1. Data used for research.

Data Resolution Time Resolution Spatial Time Source

Landsat 7 16 Days 30 m 2003 and 2011 USGS
Landsat 9 16 Days 30 m 2022 USGS

Sentinel-2 5 Days 10 m 2021 and 2022 European
Union/ESA/Copernicus

Multispectral Aerial Photography One time 8 cm 2021 In-situ data
Underwater Photo Transects (UPT) One time - 2021 In-situ data

2.2.1. Landsat-7

Landsat 7 is one of the missions launched by NOAA, NASA, and the USGS. On
15 April 1999, it was launched from Vandenberg Air Force Base in California. The Landsat
7 satellite has an Enhanced Thematic Mapper Plus (ETM+) sensor, which is an advancement
of the sensors used by earlier Landsat series. In terms of band composition, Landsat 7
Enhanced Thematic Mapper Plus (ETM+) has eight spectral bands with spatial resolutions
of 30 m for Bands 1–7 and 15 m for Band 8 (panchromatic). All bands in Landsat 7 can collect
one of two gain settings (high or low) to increase radiometric sensitivity and dynamic
range, while Band 6 collects high and low gain for all data [37].

2.2.2. Landsat 9

The Landsat 9 satellite was launched from Vandenberg Air Force Base in California on
27 September 2021, using a United Launch Alliance Atlas V 401 rocket. The Operational
Land Imager 2 (OLI-2) sensor was aboard Landsat 9. According to Brian Markham [38],
Landsat 9 contains a sensor with 9 bands and a TIRS-2 sensor with 2 bands, comparable
to Landsat 9. Band 1 collects ultra-blue waves with wavelengths ranging from 0.435 to
0.451 µm and a resolution of 30 m. Bands 2, 3, and 4 may collect visible waves, partic-
ularly blue, green, and red waves, with a resolution of 30 m in the wavelength range
0.452–0.512 µm, 0.533–0.590 µm, and 0.636–0.673 µm, respectively. Band 5 captures NIR
waves with a wavelength range of 0.851–0.879 µm and a resolution of 30 m. Bands 6 and 7
may catch SWIR waves with wavelengths ranging from 1.566–1.651 µm to 2.107–2.294 µm
at a resolution of 30 m. Band 8 is a band that combines numerous waves to produce a
clear black-and-white image; the waves have a wavelength range of 0.503–0.676 µm with
a resolution of 15 m. Band 9 is a band that can catch cirrus cloud objects because of its
shortwave range, precisely 1.363–1.384 µm, and a resolution of 30 m.

2.2.3. Sentinel-2

The Copernicus program’s Sentinel-2 satellite was launched in June 2015. Sentinel-2
images have spatial resolutions of 10, 20, and 60 m and two types of bands: one that can
catch visible and near-infrared (VNIR) waves and one that can record short wave infrared
(SWIR). This satellite can employ 12 different types of bands, 9 of which are in the VNIR
band and 3 of which are in the SWIR band [39].

2.2.4. Multispectral Aerial Photography

The ability of multispectral aerial photography to sharpen the contrasts in hue between
two or more objects is its advantage. Tone sharpening can be employed in multispectral
aerial pictures for visual observation without alterations, visual observation with reshoots,
and additive color blending with viewing tools [10], With a wave range of 0.4–0.5 µm, the
blue channel can capture the reflection of waves that hit the water; hence, it is commonly
used for bathymetry, detecting water turbidity, and other water variables. Because the
green channel with a wave range of 0.5 µm–0.6 µm can capture the reflection of plant
chlorophyll and the amount of chlorophyll in healthy and sick plants differs, the difference
can be easily observed by making use of this channel. With a wave range of 0.5–0.6 µm, the
Red Channel can be utilized to discriminate between vegetation and non-vegetation objects.
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The near-infrared (NIR) channel, which has a wave range of 0.7–1.1 µm, can be used to
identify the age of vegetation, the location of glacier layers, and the water content of plants.
The SWIR channel can be utilized to identify aerosol and water vapor components, mineral
types, soil components, and fire potential in dry locations [40].

2.2.5. Underwater Photo Transects (UPT)

The UPT (Underwater Photo Transect) images, numbering a total of 585, captured
using GoPro cameras, will undergo a comprehensive analysis on the CoralNet website.
CoralNet serves as a dedicated open-source platform specifically tailored for the evaluation
of benthic environments. In our study, the categorization of the benthic habitat class will
encompass six distinct types: hard coral, soft coral, sand, debris, rock, and seagrass. This
extensive collection of UPT images provides a substantial dataset, allowing for a thorough
and nuanced analysis of the diverse benthic habitats present in our study area.

2.3. Methodology
2.3.1. Data Processing

The data processing for this study was divided into two distinct parts. The first part
focused on testing the capabilities of various machine learning classification algorithms for
accuracy and precision in benthic habitat classification. This was achieved using data from
three different sources: Landsat 9 satellite imagery from 2022, Sentinel-2 satellite imagery
from 2022, and Multispectral Aerial Photography from 2021. The second part involved time-
series mapping of the island’s coral reef habitat. This was conducted using the algorithm
that demonstrated the highest accuracy in the previous testing phase and applying it to
Landsat 7 satellite imagery from 2003 and 2011 and Sentinel-2 satellite imagery from 2021,
as shown in Figure 2 and detailed as follows:

1. Recapitulation and Validation of UPT Data and Multispectral Aerial Photography:
To calculate the coverage of the coral reef ecosystem, the UPT (Underwater Photo
Transect) data was processed using the Coral Net platform [41]. This UPT data, crucial
for assessing the ecosystem coverage, involved capturing images with GoPro cameras
and GPS sets for precise location data. Each image underwent a detailed analysis
using a 10 × 10 grid pattern, totaling 100 points (Figure 3). At this stage, every UPT
point represented a 50 × 50 cm area, providing a high-resolution view of the coral
reef. This meticulous examination included classifying the benthic environment at
each grid point into detailed categories such as hard coral, soft coral, sand, algae,
rock, rubble, and seagrass. This comprehensive classification, as depicted in Figure 1h,
facilitated an in-depth understanding of the diverse benthic habitats present in each
image. Furthermore, the UPT point interpretation of the 50 × 50 cm areas served as a
reference to upscale the analysis to larger areas of 10 × 10 m. In this scaling-up process,
the classification scheme was simplified into broader categories: coral, sand-rubble,
seagrass, and mixed bottom class (Figure 1i). This modification was essential for
matching the UPT data with the grid used in Sentinel-2 multispectral aerial photogra-
phy. This integration of fine-scale UPT analysis and larger-scale satellite data, along
with the adjusted classification scheme, allowed for a more comprehensive monitor-
ing and understanding of the coral reef ecosystem. It ensured that the ecosystem
was analyzed in a detailed and multi-scaled manner, crucial for accurate ecosystem
assessments and conservation efforts.
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2. Benthic Habitat Classification: Prior to implementing the classification algorithms,
we applied necessary corrections to the satellite and UAV imagery, including ad-
justments for water surface and water column using the Lyzenga algorithm (Depth
Invariant Index-Yij) [42]. This preparatory step was crucial to account for variations
due to water depth and surface conditions, ensuring a more accurate base for habitat
analysis [43,44]. In this phase of our study, we aimed to harmonize the available
datasets from different remote sensing platforms. Although we did not have Landsat
9 images from 2021, we used the closest available satellite imagery from 2022, along
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with Sentinel-2 images from the same year. This was complemented by UAV-based
multispectral aerial photos taken in December 2021, coinciding with the date of the
Underwater Photo Transects (UPT). This alignment in data collection dates allowed
for a coherent framework in our comprehensive benthic habitat assessment, despite
the slight temporal mismatch with the Landsat 9 data. Given the spatial resolution lim-
itations of the satellite images, we simplified the detailed UPT classification scheme
into broader categories more compatible with the satellite data. These categories
included ‘coral’ (encompassing both hard and soft coral), ‘sand/rubble’ (merging
sand and rubble), ‘seagrass’, and ‘mixed bottom’ (incorporating algae, rock, and other
mixed elements). Such simplification was vital to align with the spatial resolution
capabilities of the Landsat 7, Landsat 9, and Sentinel-2 imagery, thereby ensuring a
more accurate and feasible classification process. We adapted the ground truth labels
for algorithm training to this revised scheme and divided the dataset into training
(70%) and testing (30%) sets. The accuracy of each classification algorithm—RF, SVM,
and CART—was then assessed using the confusion matrix method, ensuring a robust
evaluation of our benthic habitat classification approach.
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3. Temporal Distribution Mapping: Following the machine learning classification
tests, the best-performing algorithm was then applied to a comprehensive timeseries
of satellite multispectral imagery. This timeseries spanned from 2003 to 2021 and
included data from both Landsat 7 and Sentinel-2 satellites. This approach allowed us
to analyze changes in the coral reef ecosystem of Derawan Island over an extended
period, providing valuable insights into temporal patterns and trends. To facilitate
a balanced and accurate comparison across different years and satellite sources, we
resampled the Sentinel-2 satellite image classification results to a 30 m resolution.
This was necessary to align with the resolution of the Landsat 7 satellite images. The
combined and harmonized dataset was then visualized, where we constructed a
detailed map showcasing the temporal distribution and evolution of the coral reef
ecosystem from 2003 to 2021. This map not only highlighted the spatial changes but
also served as a crucial tool for understanding the long-term environmental dynamics
affecting the coral reefs around Derawan Island.
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4. Mapping Changes in Coral Reef Habitat Density: After the temporal mapping of
the coral reef ecosystem around Derawan Island from 2003, 2011, and 2021, we further
refined our analysis by focusing exclusively on the coral reef class. We masked out
all other classes from our classification results to isolate the coral reef areas. The
next critical step involved calculating the density of the selected coral reef class areas,
which was derived from our previous classification process. This calculation was
achieved through RF regression analysis, correlating the observed coral reef density
from the UPT dataset with the Yi band values. These computations utilized image
reflectance data from the timeseries and Yij band values from the Depth Invariant
Index algorithm. The indicator of coral reef density was an essential component in
our study, offering insights into the spatial distribution and density changes of coral
reefs over the studied period, thus providing a more nuanced understanding of the
ecosystem’s dynamics and health.

5. Analysis of Spatial Distribution Patterns: To analyze the spatial distribution and
temporal change patterns in the coral reef ecosystem around Derawan Island, we
utilized the fishnet tool in GIS. This tool facilitated the creation of a grid-like quadrant
area over the entire study region, effectively segmenting the area into smaller, man-
ageable units. This segmentation was crucial for a detailed and systematic analysis of
spatial patterns, as it allowed us to examine the distribution of coral reefs within each
quadrant and observe variations across different sections of the study area.

2.3.2. Machine Learning Classification

1. Random Forest

Random forest classification is a classification based on a collection of decision trees
to significantly increase the accuracy of pattern recognition [45]. RF classification uses a
hill-climbing search strategy to find a decision tree that will be the basis for classifying
data samples accurately and without errors based on the training data provided [46]. The
structure of the RF classification algorithm is divided into several levels of nodes, namely
the root node, branch node, and leaf node. Each class is created using a random vector
from samples independently, and each decision tree will provide calculations of the most
dominant class units to classify certain classes according to the training data [47].

2. Support Vector Machine

Support vector machines (SVMs) were developed by Boser, Guyon, and Vapnik in
1992 [48] during the Annual Workshop on Computational Learning Theory. SVM is a
technique for finding a hyperplane that can separate two sets of data from two different
classes. SVM is a technique for making predictions in two cases, namely classification and
regression. The basic concept of SVM is a combination of computational theories that have
existed in previous years. The hyperplane is the best dividing line between the two classes,
which can be found by measuring the hyperplane margin and looking for the maximum
point [49]. The margin is the distance between the hyperplane and the closest pattern
from each class, which is called the support vector. The largest margin can be found by
maximizing the distance between the hyperplane and its closest point.

3. Classification and Regression Tree

Classification and Regression Tree (CART) is an algorithmic development of the
decision tree technique developed by Leo Breiman, Jerome H. Friedman, Richard A. Olshen,
and Charles J. Stone. The development uses a binary recursive partitioning algorithm [50].
CART will produce a classification tree if the response variable has a categorical scale and a
regression tree if the response variable is continuous data. The aim of using CART is to carry
out classification analysis in the sector of response variables, whether nominal, ordinal, or
continuous. The CART method is divided into two methods, namely the classification tree
method and the regression tree method. If the dependent variable has a categorical type,
CART will produce a classification tree. Meanwhile, if the dependent variable is numeric
or continuous, CART will produce a regression tree.
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3. Result
3.1. The Effect of Spatial Resolution on the Level of Classification Accuracy of the Machine
Learning Algorithm

The processing of benthic habitat data employs three machine learning techniques:
RF, SVM, and CART. Figure 4 depicts the results of picture data accuracy testing with in
situ data. The accuracy test results utilizing RF were the best of the three machine learning
methods, as the 2022 Landsat 9 image, which has the highest RF accuracy of 71.43%, shows.
The accuracy of the SVM is 70.48%. CART classification has the lowest accuracy of 63.55%.
When using Sentinel-2 imagery in 2022, the accuracy findings are relatively comparable,
indicating that RF has the highest level of accuracy, with an accuracy value of 73.68%
and SVM of 71.76%. CART had the lowest accuracy value on Sentinel-2, with a rating of
64.91%. However, the most effective machine learning classification for multispectral aerial
photography picture data was with an SVM of 78.28%. The accuracy results of RF and
CART are not significantly different, 73.22% and 72.55%, respectively.
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Figure 4. Overall accuracy of the tested machine learning algorithm.

Figure 5 shows the distribution of the coral reef habitat using the RF algorithm over
three tested images. The interpretations of object appearances in the Landsat 9 image data
and Sentinel-2 image data are almost identical, and in one image capture area, on average,
only 1 to 3 objects are identified, and differences or delineations between one object and
another object can only be seen well at a low scale, so the detail of object interpretation is
low. For instance, in the seagrass substrate, one object (sand) was identified in Landsat 9,
and two objects (Seagrass and Sand) in Sentinel-2. This is due to the low spatial resolution
of the Landsat 9 satellite image and the medium spatial resolution of the Sentinel-2 satellite
image, which have spatial resolutions of 10 m and 30 m, respectively, where one pixel of
image data represents a 10 × 10 or 30 × 30 m area.

The results of object interpretation using photos obtained by multispectral aerial
photography are substantially more variable than the findings from the Landsat 9 and
Sentinel-2 satellite data, as evidenced by one of the object interpretation data captures. By
detecting more things and noticing differences between them, there can be a more accurate
picture of what the objects in the field look like. That could be happening because the
multispectral aerial photography’s ground sampling distance (GSD) is getting close to
8 cm/px. According to the results of the comparison of the object interpretations of the
three image data sets above, there are considerable changes in spatial resolution that affect
how well objects are classified using the resulting classification approach. High spatial
resolution data are needed for data analysis needing fine detail since it can increase the
degree of class variation and delineation of collected objects, resulting in the categorization
and interpretation of exceedingly different data.
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The best machine learning classification results from Landsat 9 and Sentinel-2 image
data appear more relevant and acceptable than the best machine learning classification
results from multispectral aerial pictures using the SVM method. The result is due to
significant bias in the classification findings obtained from multispectral aerial photography
picture data, and field data validation reveals that the substrate categorization deviates
significantly in some spots. Figure 6 depicts bias in the multispectral aerial photography
picture data, with two examples of bias in the coastal area of Derawan Island.
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Figure 6. Comparison of Multispectral Aerial Photography: RGB composite and classification using
RF algorithm.

Changes in weather or light during recording can cause bias in high spatial resolution
imagery such as [51] Multispectral Aerial Photography photos. These could impact the
recording outcomes, leading to biased or inaccurate data. The resolution difference between
point data collecting methods like handheld GPS and multispectral aerial photography
is another issue. The presence of ocean wave forces, which can lead to fluctuations in
field sample placements, and the challenges of obtaining field sample data from seawater
centers are the major causes of the resolution gap. Figure 6 explains the bias present in the
map. Although it was recognized as a coral reef substrate in the red box area, the substrate
in the field data is sand. Subsequently, the seagrass substrate is a coral reef substrate in
the orange box. The biased portion of the box area thus leads to misclassification, which
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may lead to the reported events not being explained by the benthic habitat categorization
created using multispectral aerial photography data. The RF classification algorithm may
provide a higher level of accuracy when mapping benthic habitats than the SVM and
CART algorithms, according to the classification results and accuracy attained. In this
study, the benefit of the RF classification technique is its ability to produce a benthic
habitat classification model with superior processing power over a large number of data
dimensions. However, using RF on sample data with few dimensions would yield worse
results; a preferable option would be to use the SVM classification technique.

In contrast to prior studies [15] employing WorldView-2 imagery to map benthic
habitats using three machine learning methods (RF, SCM, CART), the classification in this
research yielded 14 classes. Among the techniques utilized, RF demonstrated the most
favorable overall outcomes, followed by classification tree analysis (CART), while SVM
exhibited the least favorable results. The misclassification of certain areas occurred due to
similar spectral characteristics and class descriptors. This phenomenon was observed in the
current study as well, where classification results deviated from the actual conditions due to
variations in color caused by weather conditions during image capture. It is known that the
RF classification algorithm used on Sentinel-2 satellite images provides the level of accuracy
in benthic habitat classification based on the accuracy test results given in Figure 4. With a
validation accuracy value of 64.21% and a validation kappa value of 0.44, the accuracy test
results demonstrate that the accuracy is satisfactory. The coral reef substrate generated in
the accuracy validation has a producer accuracy of 52.63% and a user accuracy of 83.33%.
In the accuracy validation, the accuracy level of the sand/rubble substrate formed was
75% with a producer’s accuracy and 54.55% with a user’s accuracy. Furthermore, accuracy
validation was used to determine the accuracy of the seagrass substrate, with a producer’s
accuracy value of 62.5% and a user’s accuracy value of 83.33%. Then the mixed substrate
has a level of accuracy that is formed in accuracy validation with a producer’s accuracy
value of 75% and a user’s accuracy of 21.43%

3.2. Temporal Pattern of Changes in Derawan Island Coral Reef Habitats in 2003, 2011, and 2021

Our analysis demonstrated that the RF classification algorithm was supremely ac-
curate, primarily due to its capability to process large-scale data sets. In this study, we
identified four distinct benthic habitat types: mixed, coral reef, seagrass, and sand or rubble.
Utilizing this classification, we embarked on a detailed mapping of coral reef habitats. This
was achieved by analyzing satellite data from three different years: Landsat 7 imagery from
2003 and 2011, and Sentinel-2 imagery from 2021. The insights gained from this mapping
exercise laid the groundwork for an extensive examination of the spatial and temporal
changes in Derawan Island’s coral reef habitats, with a particular focus on alterations in
their size and composition over the years.

The time series analysis of the benthic habitat on Derawan Island, illustrated in
Figure 7, was derived from meticulous data processing. Our findings indicate a significant
dominance of seagrass areas along the coastal region in 2003, occupying approximately
119.33 hectares and constituting approximately 34.13% of the island’s benthic habitat. The
coral reef substrate, predominantly located around the island’s rim, covered an area of
111 hectares, accounting for 31.78%. Following closely, the sand/rubble areas spanned
112.5 hectares, making up 32.18% of the habitat. A detailed breakdown in Table S1 shows
the mixed area being the smallest at 6.6 hectares, representing just 1.91%.

In 2011, the seagrass beds still dominated the coastal areas of Derawan Island, ex-
panding to 175 hectares and comprising 50.20% of the habitat, as shown in Figure 7. The
area covered by coral reef substrates experienced a decline of 15% to 20%, reducing to
95.8 hectares, primarily in the eastern section. Similarly, the sand/rubble habitats also saw
a reduction, while the mixed habitat area increased slightly to 10.6 hectares, representing
3% of the total.

In 2021, as per the Sentinel-2 satellite imagery and subsequent classification resam-
pled to a 30 m pixel size for compatibility with the Landsat 7 imagery, the seagrass beds
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continued to predominate. They expanded to 167.6 hectares, making up 48.02% of the
habitat. There was also a noticeable increase in coral reef areas, particularly in the eastern
region, totaling 110.5 hectares and forming 31.68% of the habitat. The sand/rubble and
mixed habitats covered 56.1 hectares and 14.7 hectares, representing 13.24% and 4.40% of
the area, respectively. This comprehensive analysis provides a nuanced understanding of
the dynamic changes in Derawan Island’s benthic habitats over the observed periods.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 23 
 

 

with a producer’s accuracy value of 62.5% and a user’s accuracy value of 83.33%. Then the 
mixed substrate has a level of accuracy that is formed in accuracy validation with a pro-
ducer’s accuracy value of 75% and a user’s accuracy of 21.43% 

3.2. Temporal Pattern of Changes in Derawan Island Coral Reef Habitats in 2003, 2011,  
and 2021 

Our analysis demonstrated that the RF classification algorithm was supremely accu-
rate, primarily due to its capability to process large-scale data sets. In this study, we iden-
tified four distinct benthic habitat types: mixed, coral reef, seagrass, and sand or rubble. 
Utilizing this classification, we embarked on a detailed mapping of coral reef habitats. 
This was achieved by analyzing satellite data from three different years: Landsat 7 im-
agery from 2003 and 2011, and Sentinel-2 imagery from 2021. The insights gained from 
this mapping exercise laid the groundwork for an extensive examination of the spatial and 
temporal changes in Derawan Island’s coral reef habitats, with a particular focus on alter-
ations in their size and composition over the years. 

The time series analysis of the benthic habitat on Derawan Island, illustrated in Fig-
ure 7, was derived from meticulous data processing. Our findings indicate a significant 
dominance of seagrass areas along the coastal region in 2003, occupying approximately 
119.33 hectares and constituting approximately 34.13% of the island’s benthic habitat. The 
coral reef substrate, predominantly located around the island’s rim, covered an area of 
111 hectares, accounting for 31.78%. Following closely, the sand/rubble areas spanned 
112.5 hectares, making up 32.18% of the habitat. A detailed breakdown in Table S1 shows 
the mixed area being the smallest at 6.6 hectares, representing just 1.91%. 

 
Figure 7. Percentage and Area Change in Derawan Coral Reef Ecosystem in 2003, 2011, and 2021. 

In 2011, the seagrass beds still dominated the coastal areas of Derawan Island, ex-
panding to 175 hectares and comprising 50.20% of the habitat, as shown in Figure 7. The 
area covered by coral reef substrates experienced a decline of 15% to 20%, reducing to 95.8 
hectares, primarily in the eastern section. Similarly, the sand/rubble habitats also saw a 
reduction, while the mixed habitat area increased slightly to 10.6 hectares, representing 
3% of the total. 

In 2021, as per the Sentinel-2 satellite imagery and subsequent classification 
resampled to a 30 m pixel size for compatibility with the Landsat 7 imagery, the seagrass 
beds continued to predominate. They expanded to 167.6 hectares, making up 48.02% of 
the habitat. There was also a noticeable increase in coral reef areas, particularly in the 
eastern region, totaling 110.5 hectares and forming 31.68% of the habitat. The sand/rubble 
and mixed habitats covered 56.1 hectares and 14.7 hectares, representing 13.24% and 
4.40% of the area, respectively. This comprehensive analysis provides a nuanced 

Figure 7. Percentage and Area Change in Derawan Coral Reef Ecosystem in 2003, 2011, and 2021.

Similar to earlier investigations [23] that conducted analyses on temporal trends and
spatial distribution, our study also performed analyses on both temporal and spatial dis-
tributions. However, our research uniquely divided the study area into four quadrants.
Figure 8, titled ‘Pattern of Change in the Spatial Distribution of Benthic Habitats on Der-
awan Island from 2003 to 2021’, illustrates the analysis of changes in the benthic habitat
distribution. An imaginary line in the form of a quadrant area, divided into four regions
with distinct characteristics, was used for this analysis. Quadrants 1 and 4 are primarily
influenced by natural factors, while quadrants 2 and 3 are more affected by human activi-
ties, with each quadrant covering an area of 200 hectares. This quadrant system aims to
facilitate the analysis of changes in benthic habitat distribution on Derawan Island over the
period from 2003 to 2021.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 23 
 

 

understanding of the dynamic changes in Derawan Island’s benthic habitats over the ob-
served periods. 

Similar to earlier investigations [23] that conducted analyses on temporal trends and 
spatial distribution, our study also performed analyses on both temporal and spatial dis-
tributions. However, our research uniquely divided the study area into four quadrants. 
Figure 8, titled �Pattern of Change in the Spatial Distribution of Benthic Habitats on Dera-
wan Island from 2003 to 2021’, illustrates the analysis of changes in the benthic habitat 
distribution. An imaginary line in the form of a quadrant area, divided into four regions 
with distinct characteristics, was used for this analysis. Quadrants 1 and 4 are primarily 
influenced by natural factors, while quadrants 2 and 3 are more affected by human activ-
ities, with each quadrant covering an area of 200 hectares. This quadrant system aims to 
facilitate the analysis of changes in benthic habitat distribution on Derawan Island over 
the period from 2003 to 2021. 

 
Figure 8. Changes in distribution of the benthic habitats of Derawan Island in 2003, 2011, 2021. 

The analysis of Derawan Island’s benthic habitat classification highlights that the 
coral reef habitat is mainly concentrated in the reef crest zone, also referred to as the edge 
area. In this classification, the green polygons illustrate regions where the coral reef habi-
tat has expanded, while the red polygons indicate areas of decline. From 2003 to 2011, 
quadrants 1 and 4, which are less developed and have minimal human activity, experi-
enced significant deterioration in their coral reef habitats, totaling a loss of 15.3 hectares. 
In these less disturbed quadrants, the impact of natural forces, such as ocean currents and 
sea surface temperature changes, is more pronounced. The dominant current, moving 
from east to west, has been a crucial factor in altering sea surface temperatures over time, 
significantly influencing the coral reef habitats in these areas. 

Between 2003 and 2021, quadrants 2 and 3, situated closer to Derawan Island and 
more impacted by human activities due to higher population densities, experienced slight 
reductions in their coral reef habitat distributions along the reef slope. In contrast, from 
2011 to 2021, there was a significant increase in the coral reef habitats in quadrants 1, 2, 
and 3. During this period, the coral reef habitats in these quadrants began to revert to a 
more natural state with reduced density, including in areas outside the barrier. This in-
crease, predominantly observed in the reef crest or tuber area, contributed to the prolifer-
ation of diverse coral types, thereby enhancing the coral reef habitats around Derawan 
Island. The total expansion of the coral reef habitats in these quadrants from 2011 to 2021 
was 14.76 hectares, aligning closely with the area measured in 2003. However, quadrant 
4, an area with a lower population, continued to experience a decline in its coral reef hab-
itat, influenced by natural factors such as ocean currents and changes in the sea surface 
temperature (Figure 9). 

Figure 8. Changes in distribution of the benthic habitats of Derawan Island in 2003, 2011, 2021.

The analysis of Derawan Island’s benthic habitat classification highlights that the coral
reef habitat is mainly concentrated in the reef crest zone, also referred to as the edge area.
In this classification, the green polygons illustrate regions where the coral reef habitat has
expanded, while the red polygons indicate areas of decline. From 2003 to 2011, quadrants 1
and 4, which are less developed and have minimal human activity, experienced significant
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deterioration in their coral reef habitats, totaling a loss of 15.3 hectares. In these less
disturbed quadrants, the impact of natural forces, such as ocean currents and sea surface
temperature changes, is more pronounced. The dominant current, moving from east to
west, has been a crucial factor in altering sea surface temperatures over time, significantly
influencing the coral reef habitats in these areas.

Between 2003 and 2021, quadrants 2 and 3, situated closer to Derawan Island and
more impacted by human activities due to higher population densities, experienced slight
reductions in their coral reef habitat distributions along the reef slope. In contrast, from
2011 to 2021, there was a significant increase in the coral reef habitats in quadrants 1, 2, and
3. During this period, the coral reef habitats in these quadrants began to revert to a more
natural state with reduced density, including in areas outside the barrier. This increase,
predominantly observed in the reef crest or tuber area, contributed to the proliferation
of diverse coral types, thereby enhancing the coral reef habitats around Derawan Island.
The total expansion of the coral reef habitats in these quadrants from 2011 to 2021 was
14.76 hectares, aligning closely with the area measured in 2003. However, quadrant 4,
an area with a lower population, continued to experience a decline in its coral reef habi-
tat, influenced by natural factors such as ocean currents and changes in the sea surface
temperature (Figure 9).
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Statistical data on the temporal distribution of benthic habitats reveal a continuous
reduction in the distribution of sand and rubble substrates. Conversely, from 2011 to
2021, the coral reef and mixed substrates experienced an increase in area, approximately
15 hectares and 4 hectares, respectively. Regarding the seagrass substrate, there was an
initial increase from 2003 to 2011, followed by a decrease of approximately 8 hectares in the
period from 2011 to 2021.

3.3. Coral Reef Density over a Decade on Derawan Island

Figure 10 depicts the correlation between the observed and predicted percentage cover
with a scatter plot, demonstrating a clear positive linear trend. The line of best fit for the
training data is characterized by the equation y = 0.7008x + 7.2387, with an R-squared value
of 0.8164, implying that the model successfully explains over 81% of the variance. This
high level of variance explained indicates a robust predictive ability within the training
context. Upon evaluation of the testing data, a similar positive linear relationship is
evident, albeit with a modest reduction in the R-squared value to 0.7097. This best-fit
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line is represented by the equation y = 0.7625x + 6.8543. The observed reduction in the
R-squared value, relative to the training phase, suggests a diminished, yet still substantial,
predictive capacity when the model is applied to unseen data. Despite this diminution, the
model maintains a commendable level of prediction accuracy, underscoring its utility in
practical applications. Building on the established prediction model, Figure 11 extends the
analysis to a temporal dimension, showcasing a time-series map of coral density across
three distinct years: 2003, 2011, and 2021. This map provides a visual representation
of the changes in coral density over the 18-year period, illustrating spatial patterns and
trends within the benthic habitats of Derawan Island. In 2003, the map likely reveals a
distribution of coral densities that corresponds to the initial baseline conditions within the
study area. As we progress to 2011, the map reflects any shifts that have occurred over the
eight-year interval, potentially showing changes in coral densities that may be attributable
to various environmental factors or anthropogenic influences. By 2021, the culmination
of the series, the map captures the latest state of coral densities, offering insights into the
long-term evolution of the coral ecosystem. The changes depicted in the time-series map
are underpinned by the predictive model’s accuracy, as previously discussed. The model’s
capability to account for a significant portion of variance in the training and testing phases
provides confidence in the reliability of the trends observed in the time-series map.
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According to Figure 11, it is evident that the coral density on Derawan Island has un-
dergone changes in various regions over an 18-year period. In 2011, there were fluctuations
indicating both an increase and decrease in the extent and density of coral reef habitats.
In comparison to 2003, quadrants 1, 2, and 4 experienced a decline in coral reef density
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in 2011. However, each quadrant exhibited distinct density changes, such as an average
density increase from the 20–40% range to 60–80% in quadrant 1, and a decrease in average
density from the >80% range to 40–60% in quadrant 2, as well as from the 20–40% range
to <20% in quadrant 4. On the other hand, quadrants 3 and 4 witnessed an expansion in
the coral reef habitat areas in 2011. In finer detail, the increased area was accompanied
by an average increase from the 60–80% class to >80% in quadrant 3 and from the 20–40%
class to 40–60% in quadrant 4. Overall, the period from 2003 to 2011 was characterized by a
predominant reduction in the coral reef habitat area.

In contrast to the findings of the preceding year, the year 2021 is marked by a prevailing
expansion in the spatial extent of the coral reef habitat. Over the ten-year period from 2011
to 2021, a discernible escalation in coral reef density is observed within quadrants 1, 2, and
3. Notable variations are particularly evident in quadrant 1, characterized by an extension
of the elevated region towards the southwest, concomitant with an escalation in density
from the 20–40% classification to the >80% classification. Furthermore, in quadrants 2 and
3, there is an enlargement in habitat area, albeit accompanied by a reduction in density
from the 60–80% range to the 20–40% range and from the >80% range to the 20–40% range,
respectively.

The overall analysis of coral density on Derawan Island reveals distinct trends between
the periods 2003–2011 and 2011–2021 (Figure 12). From 2003 to 2011, there was a notable
reduction in coral density within the <20% and 20–40% classes. Conversely, there was an
expansion in the coral density area for classes exceeding 40%, with the most substantial
increase observed in the 60–80% class. In contrast to the preceding period, the 2011–2021
timeframe demonstrates an inverse pattern. During this period, there was a significant
growth in area for the 20% and 20–40% density classes. Simultaneously, a decrease in area
was noted in density classes exceeding 40%, with the most substantial decline occurring
in the 60–80% density class. In conclusion, the analysis of the coral density on Derawan
Island indicates contrasting trends between the periods 2003–2011 and 2011–2021, marked
by a decline in certain density classes and an increase in others, highlighting the dynamic
nature of coral habitats over time.
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4. Discussion

In our recent investigation into the benthic habitats of Derawan Island, we focused on
the impact of spatial resolution on the accuracy of machine learning algorithms in classify-
ing these habitats [52–54]. Utilizing three distinct methods—Random Forest (RF), Support
Vector Machine (SVM), and Classification and Regression Trees (CARTs)—our study pro-
vided pivotal insights into their effectiveness with various types of image data [55–60]. Our
results indicated that RF outperformed in terms of accuracy with Landsat 9 and Sentinel-2
imagery, while SVM showed notable efficacy in the context of multispectral aerial photog-
raphy. This divergence in performance across different spatial resolutions and imaging
types raises critical questions about the role of spatial resolution in classification accuracy
and the potential biases inherent in remote sensing data [61], especially when faced with
environmental variability, such as changes in light and weather conditions.

Our temporal analysis spanning the years 2003, 2011, and 2021, revealed significant
shifts in the coral reef habitat types and densities [23,30,62]. These changes, shaped by both
natural phenomena and human activities, highlight the dynamic and ever-changing nature
of marine ecosystems [31–34]. The evolving landscape of coral reefs, as revealed through
advanced imaging and sophisticated machine learning techniques, underscores the urgent
need for adaptive conservation strategies that can respond to such dynamic changes.

The intricacies observed in our study extend beyond the mere technical aspects of
image processing and machine learning. They touch upon a more profound understanding
of the interplay between technology, environmental science, and conservation efforts. The
varying degrees of classification accuracy across different algorithms depending on the
image source signal the need for bespoke approaches in ecological studies. Our findings
suggest that while RF is highly suitable for processing Landsat 9 and Sentinel-2 imagery,
SVM excels in the realm of multispectral aerial photography, offering an avenue for detailed
habitat analysis, albeit with a caveat regarding potential biases caused by environmental
factors [61,63].

Moreover, our quadrant-based analysis of the coral reef changes over time provides an
intricate perspective of the island’s complex ecosystem [44,62]. This approach revealed how
different regions of the island are affected distinctly by natural forces and human activities,
painting a comprehensive picture of the challenges and dynamics at play. Understanding
these nuances is critical not only for comprehending the current state of Derawan’s coral
reefs but also for informing future conservation strategies and management plans.

The study’s comprehensive approach not only deepens our understanding of the
complex dynamics governing coral reef ecosystems but also brings to light the essential
need for adaptive conservation measures. These measures are crucial for maintaining the
ecological integrity of Derawan Island’s coral reefs in the face of persistent environmental
challenges. By delving into both the image aspects and temporal distribution of coral
reef cover and density, our analysis offers valuable insights into the fluctuating nature
of this marine ecosystem. The observed changes over the years—likely influenced by a
confluence of environmental conditions, human activities, and climatic factors—underscore
the importance of ongoing monitoring and the identification of both resilient and vulnerable
areas within coral reef ecosystems.

In conclusion, our study serves as a foundational step towards a more comprehensive
understanding of marine ecosystem dynamics and the role of cutting-edge technology
in environmental conservation. It highlights the importance of integrating advanced
remote sensing and machine learning techniques with ecological expertise to develop
more effective, responsive, and sustainable conservation strategies. The insights gained
from Derawan Island’s coral reefs can be instrumental in guiding future research and
conservation efforts, not only within this specific ecosystem but also in other marine
environments facing similar challenges.
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5. Conclusions

This study has made significant strides in understanding the spatial and temporal
dynamics of coral reef environments on Derawan Island, leveraging a combination of satel-
lite data, machine learning algorithms, and multispectral aerial photography. A standout
finding of our research is the superior performance of the Random Forest (RF) classification
method in analyzing these complex ecosystems. The RF algorithm demonstrated notable
accuracy in classifying benthic habitats, distinctly outperforming other methods such as
Support Vector Machine (SVM) and Classification and Regression Tree (CART) algorithms.
Our analysis indicates that the accuracy of habitat classification is heavily influenced by
both the spatial resolution and the quality of field data, satellite imagery, and multispectral
aerial photographs. This underscores the importance of high-quality, high-resolution data
in ecological studies.

In terms of spatial patterns, we observed a distinctive clustered formation of coral
reefs along the edges of Derawan Island. This pattern provides insights into the habitat
preferences and the distribution mechanisms of coral ecosystems. Temporally, our study
reveals a concerning decline in both the area and density of coral reef habitats across all
regions of the reef crest from 2003 to 2011. However, the period from 2011 to 2021 marked a
turnaround, with an overall increase in the area of coral reef habitats throughout Derawan
Island. This increase, however, is coupled with a general decline in coral density, an aspect
that merits further investigation to understand the underlying causes and implications.
The exception to this trend was observed in Quadrant 4, where different dynamics were
noted. This variation highlights the complexity of coral reef ecosystems and the influence
of various biotic and abiotic factors in shaping their growth and distribution.

In conclusion, this research not only sheds light on the changing landscapes of De-
rawan Island’s coral reefs but also establishes the efficacy of advanced technological ap-
proaches in ecological monitoring. The integration of RF classification with high-resolution
spatial and temporal data has set a new standard in habitat analysis. Our findings call
for continued and focused conservation efforts, particularly in areas showing a decline in
coral density. Future research should aim to integrate additional environmental variables
to further unravel the complexities of these ecosystems, ensuring the preservation and
resilience of these vital marine habitats.
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