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Abstract: Reciprocating compressors and centrifugal pumps are rotating machines used in industry,
where fault detection is crucial for avoiding unnecessary and costly downtime. A novel method for
fault classification in reciprocating compressors and multi-stage centrifugal pumps is proposed. In the
feature extraction stage, raw vibration signals are processed using multi-fractal detrended fluctuation
analysis (MFDFA) to extract features indicative of different types of faults. Such MFDFA features
enable the training of machine learning models for classifying faults. Several classical machine
learning models and a deep learning model corresponding to the convolutional neural network
(CNN) are compared with respect to their classification accuracy. The cross-validation results show
that all models are highly accurate for classifying the 13 types of faults in the centrifugal pump, the
17 valve faults, and the 13 multi-faults in the reciprocating compressor. The random forest subspace
discriminant (RFSD) and the CNN model achieved the best results using MFDFA features calculated
with quadratic approximations. The proposed method is a promising approach for fault classification
in reciprocating compressors and multi-stage centrifugal pumps.

Keywords: detrended fluctuation analysis; reciprocating compressors; multi-fault classification;
centrifugal pump; multi-fractal feature extraction; vibration signals

1. Introduction

Early fault detection in rotating machinery prevents unplanned downtime and catas-
trophic damage. Condition monitoring is a helpful tool that measures various variables,
such as vibration, to detect faults early [1,2]. The standard methods used in condition
monitoring of rotating machinery include vibration, thermography, oil, current signature,
and acoustic sound analysis. The most common method corresponds to vibration analysis,
where vibration signals are recorded, and their analysis of time and frequency features are
helpful in identifying potential problems in the machinery [3].

In a reciprocating compressor, a piston driven by a motor moves in a cylindrical
compression chamber for the operating fluid until attaining the desired operating pres-
sure [4–6]. Like any other rotating machine, the compressor has vulnerable parts that can
fail, producing dangerous accidents and economic losses. The most common types of
failures in reciprocating compressors are piston seal failures, bearing failures, and valve
failures. Piston seal failures can allow the compressed fluid to escape, which can cause fires
or explosions. Bearing failures can cause the compressor to vibrate excessively, leading to
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other failures. Similarly, valve failures can prevent the compressor from operating correctly
and lead to failures in other system components.

The centrifugal pump is a machine that can transfer kinetic energy to a fluid, increasing
its flow velocity [7]. The centrifugal pumps rotate an impeller composed of a set of vanes or
blades that exert a centrifugal force on the fluid, making it flow outward from the impeller
center. The fluid then passes through the volute, a casing surrounding the impeller, and
is discharged from the pump. The performance of centrifugal pumps depends on several
factors, such as the size and speed of the impeller, the type of fluid used, and the pressure
and flow rate requirements of the application. The construction of centrifugal pumps can
be tailored to handle various fluids such as water, oil, gas, and chemicals [8]. Similar to
any machine, they are susceptible to severe faults that can affect many industrial processes
where they are located. Consequently, condition monitoring is a valuable tool that enables
the early detection of faults.

The recorded vibration signals contain signatures representing mechanical faults in
centrifugal pumps and reciprocating compressors. Consequently, many data-driven fault
diagnosis approaches are based on extracting features from these vibration signals and us-
ing such features for fault classification or prognosis through machine learning approaches.
However, there is significant ongoing research and development in machine learning, in-
cluding deep learning. The main challenge in this application is extracting features from the
vibration signals that can accurately represent the faults for effective fault detection. One
limitation is that fault signatures are often feeble signals, masked by heavy background
noise [9]. Most of the time, feature extraction methods require complex preprocessing
to improve the signal-to-noise ratio. In addition, centrifugal pumps with impeller faults
are non-linear dynamical systems [10], susceptible to chaotic behavior [11,12] and long-
term fractal correlations [13]. Consequently, vibration signals in such equipment must be
better represented by standard statistical features or even spectral analysis [14,15]. The
availability of features that accurately represent fault signatures is crucial for achieving
higher-level challenges like predictive and health management (PHM), where condition-
based maintenance and predictive maintenance are vital tasks that depend heavily on the
accurate data measured from the system [16,17]. Like centrifugal pumps, the research chal-
lenges in reciprocating compressors are centered around PHM and require data features
that can accurately represent potential faults. In addition, reciprocating compressors are
positive displacement compressors commonly used in the petrochemical industry; their
work in harsh environments could lead to faults in the main components of the compressor.
In addition, recorded signals are usually affected by disturbances and interferences that
represent severe challenges to feature extraction technologies [18]. Valves, in particular, are
components susceptible to faults, and significant challenges exist [19,20] in understanding
the mechanisms leading to faults in such components. Within this framework, condition
monitoring using vibration signals and extracting useful features is essential for addressing
these problems. Challenges also arise from the non-stationary and non-linear dynam-
ics of these complex mechanical systems [21] as well as the chaotic or long-term fractal
correlations [22], which are present in this type of time series.

Early fault diagnosis involves detecting and identifying faults in a system before
they cause failure. This detection can be achieved by monitoring the system for signs of
degradation or using data-driven techniques to identify patterns indicative of a fault. The
early fault diagnosis techniques are usually data-driven technologies, where several signals
can be sensed, such as vibration, acoustic emission, sound, flow rate, temperature, pressure,
or electric currents. The fault diagnosis can be feasible using valuable features extracted
from such signals. The features extracted from recorded signals are fed to machine learning
models [23–26] that perform the automatic detection of faults.
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A condition classification system for reciprocating compressors is reported in [27]. This
research extracted several statistical features from the discrete wavelet representation of the
vibration signal. These features were used to feed a neural network that classified the com-
pressor as healthy or faulty, achieving an accuracy of up to 100%. Although the approach is
accurate, it can only distinguish between healthy and faulty states. Concerning machine
learning techniques used in various application examples related to fault detection and clas-
sification, consider neural networks [27–29], the logistic regression algorithm [5], k-Nearest
neighbors (k-NN) [30], random forests [31], multi-layer perceptron [17,28], and support
vector machines (SVMs) [32,33]. These mentioned approaches are applications for centrifu-
gal pumps or reciprocating compressors. However, some of these applications address the
problem of binary fault classification; some focus on classifying a small set of valve faults,
others investigate cavitation faults, and some are related to fault prognostics. Overall, pre-
vious research shows that there is still room for improvement in feature extraction aimed at
fault classification in both types of devices investigated.

A method for fault detection in impellers and bearings of a centrifugal pump was
proposed by Hamomd et al. [34]. The modulation signal bispectrum (MSB) method is
the methodological tool used for analyzing recorded vibration signals to perform fault
detection. The MSB extracts features of modulating components at low-frequency bands
that are useful for detecting faults concerning bearing defects and impeller blockages. Only
three different conditions were analyzed, corresponding to a healthy state, bearing outer-
race defect plus small impeller blockage fault, and bearing outer-race defect plus large
impeller blockage fault. In addition, the authors did not perform classifications of these
types of faults. Their research is limited to analyzing the vibration signal spectrum under
different flow rates and for a specific range of frequencies. In the work by Tan et al. [35],
an investigation was conducted on a centrifugal pump with multi-malfunction. This
research analyzed a single-suction centrifugal pump with single-stage seal ring abrasion
and a broken blade, focusing on pump performance and flow characteristics. The authors
recorded the vibration signal, radial force, inner flow, and pressure of a centrifugal pump
with multi-faults and compared them to those from a healthy pump. The results from
the numerical simulation were also included. The efficiency of the multi-malfunction
pump is lower than that of the healthy pump. The vibration signal is affected, and new
characteristic frequencies are shown in the signal spectrum. The peak-to-peak pressure
signal decreased at the pump outlet and increased at the volute tongue. The research is
devoted to detecting the malfunction of the combined fault based on the analysis of the
vibration signal spectrum. However, the research does not report any classification of the
type of malfunction.

In [36], an application involving multi-fractal detrended fluctuation analysis (DFA) for
detecting faults in valves of a reciprocating compressor is reported. During preprocessing,
the vibration signal’s empirical wavelet transform (EWT) was combined with state-adaptive
morphological filters (SMFs). Then, the modal function was quantitatively analyzed using
MFDFA aimed at fault detection. Although the method can identify the fault type in the
valve, it depends on a complex preprocessing methodology. A feature extraction method
that combines variational mode decomposition (VMD) and MFDFA in a reciprocating
compressor is reported in [37]. The vibration signals are decomposed using VMD. Each
resultant intrinsic mode function (IMF) is analyzed using MFDFA, and a set of eigenvectors
providing higher recognition accuracy is selected using principal component analysis
(PCA). The method is evaluated for detecting four types of valve faults in a reciprocating
compressor. In [38], multi-fractal spectral parameters of four sensor signals recorded
from a centrifugal pump under different operating conditions are extracted as features
fed to a backpropagation neural network. Then, the outputs from the neural networks
are fused using the Dempster–Shafer evidence theory to attain the final diagnosis. The
research concerning DFA, MFDFA, and the combination of EMD with MFDFA shows
that these features are sensible to noise in the vibration signals [39]. Their application for
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fault detection in centrifugal pumps and reciprocating compressors heavily relies on using
complex denoising preprocessing methodologies.

Detection of long-range correlations in time series and fractal scaling properties is
feasible using the detrended fluctuation analysis (DFA) method [40]. This method has
been successfully applied in various fields, including fault detection. Non-linear and
non-stationary time series can be analyzed using DFA to quantify a signal’s long-range
correlation. Changes in the long-range correlation of a signal, indicative of a fault, can
be identified using DFA. An example of applying multi-fractal DFA analysis for fault
diagnosis in rotating machinery is reported in [41]. Specifically, in this research, the ap-
plication is related to the fault diagnosis in gearboxes and roller bearings. The extracted
features are proposed using a multi-fractal manifold method to extract the relevant features.
The authors show how the vibration signals have relevant multi-fractal characteristics.
Additionally, the authors show that multi-fractal DFA can enhance fractal characteristics
at different scales, although their approach does not leverage multi-scale estimation. The
DFA method first detrends the signal, removing the trend from the signal. The trend is the
long-term average of the signal. Once the trend is removed, the DFA method calculates the
fluctuation function, which measures the signal variation around the trend. The fluctuation
function is estimated for several time scales. Although MFDFA has proven useful for fault
detection in reciprocating compressors and centrifugal pumps, the research has primarily
focused on the detection and classification of a small set of fault conditions by extracting
MFDFA features from preprocessed vibration signals using various denoising methodolo-
gies. In addition, the fractal spectrum corresponds to the features commonly used for fault
detection. The fractal spectrum and the self-similarity coefficient α have been mainly used
for a selected scale and possibly for a small set of multi-fractal parameters q.

In this research, we propose the utilization of the self-similarity coefficient α extracted
from the raw vibration signal as a bi-dimensional surface estimated for multiple scales
and multiple fractal parameter values (q). This feature type has been previously used in
the biomedical engineering domain for heart rate and blood pressure characterization [42].
However, to our knowledge, this type of feature has not been applied for fault diagnosis in
rotating machinery.

The original contributions of this research are as follows:

1. A novel bidimensional feature extracted from the multi-scale, multi-fractal DFA
analysis of raw vibration signals was proposed. Such a 2D surface can capture the
fault signature’s scale or fractal features from the vibration signals without requiring
the application of preprocessing or denoising methodologies.

2. This scale-fractal DFA representation extracted from the raw vibration signals ef-
ficiently diagnoses faults in a reciprocating compressor and a centrifugal pump.
The performance of this novel feature was evaluated by classifying faults using three
different vibration signal datasets: (a) a dataset with 17 multi-valve fault conditions,
and (b) a dataset with 13 multi-fault conditions, both acquired from a reciprocating
compressor. Additionally, we considered a dataset with 13 fault conditions recorded
from a multi-stage centrifugal pump.

3. We propose a 2D robust scale-fractal feature representation extracted from vibration
signals that can be easily adapted for fault classification using either deep learning-
based or classical machine learning models.

This paper is organized as follows. Section 2 contains the theoretical background
regarding feature extraction using MFDFA. Section 3 includes details on the experimental
setup, and Section 4 describes the methodology for fault classification using scale-fractal
DFA features. Section 5 presents the experimental results, and Section 6 discusses the
results. Finally, Section 7 includes a summary of the research presented.
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2. Theoretical Background
2.1. Multi-Fractal Time Series

A mono-fractal time series only exhibits self-similarity over a single scale. This simi-
larity means that the time series has statistical properties that are relatively similar as the
time series are divided into smaller segments. In particular, the autocorrelation, variance,
and Hurst exponent can be used for describing the mono-fractal time series [13]. In contrast,
a multi-fractal time series represents a fractal system generalization that requires other
descriptors apart from the fractal dimension to describe its dynamics. Consequently, their
description can be performed using the singularity spectrum and the singularity exponent
or Hurst exponent [43].

2.2. Detrended Fluctuation Analysis

Detrended fluctuation analysis is used to calculate time series self-similarity. DFA
enables the estimation of the fluctuation function F(n) for a specific range of time scales
n, and the slope α for the log − log plot of the fluctuation function [44]. The α slope
represents the spectrum of the time series’s local exponents or multi-scale structures.
The detrended fluctuation analysis is conducted as follows: given a time series xk with N
samples, the MFDFA is composed of five steps:

• Step 1: The profile or accumulation sum is determined as [40]:

Si =
i

∑
k=1

[xk − x], i = 1, ..., N (1)

where x is the mean of the time series xk.
A vibration signal extracted from the multi-fault dataset is shown in Figure 1a. Their
corresponding accumulation sum calculated using Equation (1) is shown in Figure 1b.

• Step 2: The profile accumulation is subdivided into Nn segments of equal length n,
Nn = N/n, which are not overlapped. This procedure is applied to the signal in the
forward time direction and, starting from the end and going backward, resulting in a
total number of segments corresponding to 2Nn.

• Step 3: The trend is estimated in each 2Nn segment. This trend calculation is conducted
by the least-squares fit of the time series and subsequent estimation of the variance
as [40]:

F2(n, ν) =
1
n

n

∑
i=1

{S[(ν − 1)n + i]− sν(i)}2, (2)

for each signal segment ν, ν = 1, ..., Nn and

F2(n, ν) =
1
n

n

∑
i=1

{S[N − (ν − Nn)n + i]− sν(i)}2, (3)

for ν = 1, ..., 2Nn. In both cases, sν(i) represents a fitting polynomial in segment ν.
The possibilities for the polynomial order are linear, quadratic, cubic, or higher-order
polynomial. This fitting polynomial leads to different orders of DFA known as DFA1,
DFA2, DFA3, . . . [45]. An example of DFA of order one, or linear DFA, is shown in
Figure 1c, and the corresponding DFA of order two, or quadratic DFA, is shown in
Figure 1d for a vibration signal.

• Step 4: The fluctuation function of q order is the average over all segments, as [40]:

Fq(n) =

{
1

2Nn

2Nn

∑
ν=1

[F2(n, ν)]q/2

}1/q

, (4)

where q is a real number with values different from zero, if m represents the order of
DFA, then Fq(n) is defined for n ≥ m + 2.
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• Step 5: The scaling structure of the fluctuation function can be estimated from the
log-log plots of Fq(n) as a function of n considering several values of q. In time
series long-range power-law correlated, when n has a large value, Fq(n) increases as a
power-law [46]:

Fq(n) ∼ nh(q), (5)

where the generalized Hurst exponent h(q) corresponds to the F(n) slope in the
log–log plot, usually denoted as H.

• Step 6: The time series multi-fractal spectrum can also be calculated as [47]:

D(q) = qτ
′
(q)− τ(q), (6)

where τ(q) = qh(q)− 1.

Both features H(q) and D(q) are useful for fault detection in rotating machines. How-
ever, in this research, we propose using the derivative of the fluctuation function, denoted as
α(q, n) because their representation as a 2D function is amenable for processing with CNN
models. Also, it is a compact representation of the fault signature of the vibration signal.

(a) (b)

(c) (d)

Figure 1. Detrended fluctuation analysis for a vibration signal. The fluctuation signals are represented
in red lines. (a) Vibration signal from the compressor multi-fault dataset, (b) Accumulative vibration
signal, (c) fluctuation using linear approximation, (d) fluctuation using quadratic approximation.

2.3. Multi-Fractal Detrended Fluctuation Analysis

The time series sample values can result in probability density functions related
to multifractality. However, such multifractality can also be present due to long-range
fluctuation correlations in the time series [40].

DFA enables the estimation of the α slope in F(n), representing the fluctuation function,
where n corresponds to a range of time scales. In particular, α represents the slope of the
least-square regression line fitting logF(n) vs. logn. Multi-fractal approaches calculate the
fluctuation function considering a positive and negative range of q, including q = 2. In this
way, positive q values amplify the contributions of larger amplitude fractal components,
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while negative q values emphasize smaller amplitude fractal components. This procedure
leads to calculating the slope as a function α(q, n), also known as the self-similarity coeffi-
cient. In [44], the calculation of α using the first derivative has been attempted. However,
minimizing the noisy variability of F(n) is necessary. This minimization implies estimat-
ing F(n) in maximally overlapped blocks of size n that are overlapped n − 1 samples.
An example of a fluctuation calculation using non-overlapped and overlapped windows
is shown in Figure 2. The fluctuation was calculated for a range of integers q between
−5 and +5. A smooth fluctuation representation is obtained with maximally overlapped
windows as shown in Figure 2a. In contrast, a noisy representation of the fluctuation is
obtained using non-overlapped windows, as shown in Figure 2b. The limitation of using
maximally overlapped windows is the high computational cost, making this approach
infeasible for long time series. However, in [44], an efficient algorithm for solving this
problem is proposed. Such an algorithm is briefly presented in the following paragraph.

(a) (b)

Figure 2. Calculation of Fq(n) and the effect of using maximum overlapped boxes. The parameter
q was extracted from integers between −5 and +5. Each of the curves plotted in colors represents
a q value in the mentioned range. (a) Maximum overlapping between boxes, (b) no overlapping
between boxes.

2.4. Algorithm for Fast Calculation of Fq(n)

The example shown in Figure 2 shows two methods of calculating Fq(n) with and
without maximum overlapping of calculation blocks. In the second method, the variability
of Fq(n) at larger scales could make interpreting results difficult. This variability is highly
reduced by using maximum overlapping blocks; however, the computational cost increases,
particularly for long time series.

Fq(n) is calculated by Equation (1), where Si is subdivided into M blocks. Each has
size n for a time series of length N. We can denote L, the quantity of overlapping between
contiguous blocks (0 ≤ L ≤ n). This parameter can be estimated as [44]:

M =

⌊
N − n
n − L

⌋
+ 1, (7)

when we have L = n − 1, all N samples are incorporated in the Fq(n) calculation, and we
have maximum overlapping. When M = N − n + 1 is considered, we have the maximum
number of blocks. Each block is detrended using a least-square polynomial fitting, denoted
as r(i). The variance of residual in the detrended block k can be expressed as

σ2
n(k) =

1
n

Ik+n−1

∑
i=Ik

(Si − r(i))2 (8)
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where index Ik = (n − L)(k − 1) + 1 represents the samples included in the k block.
According to [40], the variability function for DFA is calculated as

Fq(n) =

(
1
M

M

∑
k=1

(σ2
n(k))

q/2

)1/q

, (9)

that is valid for q ̸= 0, and
Fq(n) = e

1
2M ∑M

k=1 ln(σ2
n(k)) (10)

is used for calculation when q = 0. Evaluation of Fq(n) has a computational cost mainly
related to calculating Equation (8) that involves the calculation of least-square polyno-
mial fitting and the variance for n points. As these calculations are repeated for the M
blocks, and M could be close to N, the computational cost increases heavily for maximum
overlapped blocks. An algorithm for the fast calculation of order 1 and 2 detrending
polynomials, denoted as DFA1 and DFA2, has been proposed in [48]. This fast algorithm
also includes improvements in evaluating residuals in Equation (8).

3. Centrifugal Pump and Reciprocating Compressor Datasets

The environmental conditions of the laboratory are carefully set and kept during the
signal acquisition experiment to guarantee that the process is reproducible. The verification
of such environmental conditions must be carried out before starting the signal acquisition
and during the acquisition process of the data. The values of the environmental parameters
that serve as reference for the operation of the centrifugal pump and the reciprocating
compressor under normal operating conditions are presented in Table A1. If these values
are not within the established range, the data acquisition is invalid. Therefore, the test will
be repeated when the environmental conditions are within the specified ranges.

3.1. Centrifugal Pump Dataset

The experiments were performed using a vertical ten-stage centrifugal pump model
3SV10GE4F20 driven by a two-hp induction motor that provides rotatory motion at
3500 rpm. Figure A1 shows the vertical centrifugal pump’s main parts. The centrifugal
pump’s internal structure with ten stages is shown in Figure A2.

The sensor’s location for the centrifugal pump is shown in Figure 3. Several types of
sensors are located for monitoring the centrifugal pump. Four accelerometers correspond-
ing to A1 , A2, A3, and A4 are used for measuring the vibration signals. The sound signals
are recorded using two acoustic microphones Mic1 and Mic2. The acoustic emission signals
are recorded with sensors AE1 and AE2. A rotary encoder E1 is used for monitoring the
rotational motion of the motor. In addition, three current sensors are used, corresponding
to CV1, CV2, and CV3. Concerning the accelerometers, sensors A2 and A4—located at the
end of the coupling between the centrifugal pump and the motor—have shown excellent
classification results in previous research [49]. For this reason, we have chosen sensor A4
in the research reported in this document. The hardware for vibration signal acquisition
is intended for off-line signal processing. The accelerometer, PCB 603C01, is used in the
centrifugal pump to acquire the vibration signal. The analog vibration signal is acquired
using a National Instruments NI9234 card attached to the NI9188 chassis to stream the
digital signal to a laptop computer through a 100 Mbps Ethernet link. The selected sensor
A4 is placed horizontally in the centrifugal pump.

The investigated faults in the centrifugal pump were implemented in the test rig
by creating seeded faults in the centrifugal pump impellers. These seeded faults are
attained by modifying the physical structure of a faultless component. Research on cen-
trifugal pumps for fault diagnosing using seeded faults has been previously reported in
the literature [50,51].
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The experimental test bench for the centrifugal pump can be configured with several
impeller faults. In addition, each impeller fault can be configured with eight or six levels
of severity. In particular, the dataset includes five types of conditions: healthy condition
(HTH), pitting at the entrance of the impeller blades (PEB) (see Figure A3), pitting at the
output of the impeller blades (POB) (see Figure A4), impeller channel blockage (ICB) (see
Figure A5), and imbalance impeller (IB) (see Figure A6). In faults, PEB, and POB, the eight
levels of pitting severity are attained by creating holes in the blades using electrical dis-
charge machining (EDM) with a diameter size and an increased number of holes according
to the severity level. Similarly, six levels of severity for the blockage fault (ICB) are attained
by closing the different channels of the impeller. The six levels of severity for the impeller
imbalance fault are achieved by cutting portions of the impeller with increasing area.

Figure 3. Sensor location for the centrifugal pump. The accelerometer sensors are A1, A2, A3, and A4.
The sound signals are recorded with microphones Mic1 and Mic2. The sensors for acoustic emission
signals are AE1 and AE2. The current sensors are CV1, CV2, and CV3. The sensor for rotational
motion is a rotary encoder E1 and C1 is a flow meter.

The fault conditions in the multi-stage centrifugal pump correspond to 13 conditions,
labeled P1–P13. Each condition represents one of five conditions previously described for
the impellers. The severity of each faulty condition increases according to the stage and the
type of condition. Table 1 presents the combination of different faults. The numbers in the
columns for stages 5 to 10 represent the severity of the faulty condition presented in the
second column.

Table 1. Fault combinations in valves of the centrifugal pump. The healthy state is denoted as HTH.
The numbers in the columns for stages 5 to 10 represent the severity of the faulty condition presented
in the second column.

Fault
Label

Impeller
Fault

Stage
10

Stage
9

Stage
8

Stage
7

Stage
6

Stage
5

Rest
of

Stages

P1 HTH HTH HTH HTH HTH HTH HTH HTH

P2 PEB 2 1 HTH HTH HTH HTH HTH

P3 PEB 5 4 3 2 1 HTH HTH

P4 PEB 8 7 6 5 4 3 HTH

P5 POB 2 1 HTH HTH HTH HTH HTH

P6 POB 5 4 3 2 1 HTH HTH

P7 POB 8 7 6 5 4 3 HTH

P8 ICB 1 HTH HTH HTH HTH HTH HTH
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Table 1. Cont.

Fault
Label

Impeller
Fault

Stage
10

Stage
9

Stage
8

Stage
7

Stage
6

Stage
5

Rest
of

Stages

P9 ICB 4 3 2 1 HTH HTH HTH

P10 ICB 6 5 4 3 2 1 HTH

P11 IB 1 HTH HTH HTH HTH HTH HTH

P12 IB 4 3 2 1 HTH HTH HTH

P13 IB 6 5 4 3 2 1 HTH

Six experimental conditions were considered for acquiring the signal dataset. These
conditions were related to adjusting the pressure in the discharge valve to the values
specified in Table A2. Considering the healthy condition as the baseline, the discharge
valve opening was regulated to achieve the specified discharge pressure. The signal
acquisition begins by setting an experimental condition Ci with I ∈ {1, 2, ..., 6}, and ten
repetitions of signal acquisition are performed for each fault condition P1 to P13. This
process involves the acquisition of 60 vibration signals for each fault condition and a total
of 780 vibration signals for the dataset, considering the 13 fault conditions.

Each recorded vibration signal was acquired using a sampling frequency of 50 kHz.
Each signal is acquired with a duration of 10 seconds.

3.2. Reciprocating Compressor Dataset

The experiments used a two-stage compressor, where rotatory motion at 3470 rpm
could be attained with a 5.5 hp induction motor. Two V-belts enabled the transmission of
mechanical motion to the compression chamber. In the first stage, two valves, the intake
valve (IV), and the discharge valve (DV), enabled the gas transfer to the second stage.
The second stage also had two valves, the IV and the DV, enabling air transfer to the tank.
The main parts of the compressor are shown in Figure A7. The essential parts are the roller
bearings (shown in Figure A8) and the valves (shown in Figure A9). Figure 4 shows the
sensor’s location. The view of the sensor’s location in the reciprocating compressor is
shown in Figure 4a. Several types of sensors are considered; the accelerometers are labeled
as A1, A2, A3, and A4. Two acoustic microphones, Mic1 and Mic2, are used for recording
the sound. In addition, a rotary encoder E1 is used. A scheme showing the sensor location
concerning the internal components of the reciprocating compressor is shown in Figure 4b.
Concerning the accelerometer sensors, previous research using this test rig [49] has shown
that sensor A1, which is located close to discharge valve 1 of the first stage, provides
excellent results concerning the classification of the valve faults. For this reason, we chose
accelerometer A1 in this research. This accelerometer measures the vibration in the vertical
direction of the reciprocating compressor. The hardware used for digitally acquiring the
vibration signal is similar to that used in the centrifugal pump. The accelerometer sensor is
the PCB 603C01, which is connected to the NI9234 card attached to the NI9188 chassis for
transferring the digital signal to a laptop computer.

The reciprocating compressor has two roller bearings. The larger bearing has an
outside diameter of 80 mm with a bore diameter of 40 mm. The bearing includes 17 rollers,
and the width is 24.75 mm. The seat of the valves is made of carbon steel with an external
diameter of 41.2 mm and a height of 12.5 mm. The external diameter of the valve plate is
34.5 mm, with a thickness of 1.05 mm and an internal diameter of 14 mm. Such a valve
plate is made of stainless steel. A wire made of carbon steel with a diameter of 0.7 mm
corresponds to the helical spring. Such a helical spring has a smaller diameter of 20 mm
and a larger diameter of 32 mm. The dimensions of the limiter or guard have a height of
5 mm and an external diameter of 34.5 mm. Such a limiter or guard is made of carbon steel.
An M6 × 40 mm bolt attaches all the valve parts.
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(a) (b)

Figure 4. Sensor location for the reciprocating compressor. (a) Actual view of the sensor’s location.
(b) Schema showing the sensor’s location for the reciprocating compressor. The vibration signal is
recorded with accelerometers denoted A1, A2, A3, and A4.

Multi-Valve Fault Dataset

The valve faults investigated in the reciprocating compressor were simulated by taking
a faultless component and modifying its physical structure to create the seed of a fault in
a controlled environment. This approach has been reported in the literature and used by
several authors [5,52,53].

The experimental testbed enables the configuration of several valve faults. The valves
were configured considering four fault types: (1) wear in the valve seat (VSW), (2) valve
plate corrosion (VPC), (3) valve plate fracture (VPF), and (4) broken spring (BS). The config-
uration of such faults was attained by creating wear in the valve. For instance, the valve
seat was modified to reduce its depth from 5.0 mm to 3.56 mm. A hole with a diameter
of 2.5 mm was created to simulate the valve plate corrosion. The fracture of the valve
plate was manufactured by cutting such a plate with a 1.6 mm diameter thread. Similarly,
the broken string was attained by cutting the spring using a 1.6 mm diameter thread.
The valve faults are shown in Figure A10.

Seventeen conditions for the valves are configured. Such conditions are denoted as
S1 to S17, where the healthy condition is S1, and the rest are faulty. The complete list is
reported in Table 2.

Table 2. The reciprocating compressor was configured with the following set of valve faults. The cor-
rosion and fracture are located in the valve plate. The first column lists the stage where the fault is
found (1 or 2) and the type of valve (intake valve or discharge valve). Faults S14–S17 are located in
the intake valve 2 of the first stage.

Stage and Valve Type Fault Type Fault Label

All stages HTH S1

2, DV VSW S2

2, DV VPC S3

2, DV VPF S4
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Table 2. Cont.

Stage and Valve Type Fault Type Fault Label

2, DV BS S5

2,IV VSW S6

2, IV VPC S7

2, IV VPF S8

2, IV BS S9

1, DV VSW S10

1, DV VPC S11

1, DV VPF S12

1, DV BS S13

1, IV 2 VSW S14

1, IV 2 VPC S15

1, IV 2 VPF S16

1, IV 2 BS S17

During the vibration signal acquisition, a constant motor rotation speed of 57.7 Hz
was maintained to achieve a crankshaft rotation frequency of 12.8 Hz. Two crankshaft
cycles correspond to one compression cycle. Consequently, it takes approximately 0.156 s
to complete a compression cycle. The pressure in the tank was 3 bar and kept constant.
Each machinery condition was represented by 15 vibration signals acquired with the sensor.
The dataset comprises 255 signals, each sampled at 50 kHz and with a duration of 10 s.

3.3. Multi-Fault Dataset

The multi-fault dataset for the reciprocating compressor was created by implementing
seeded faults combined in the discharge valve of the second stage and a roller bearing.
Seeded faults are frequently used for research in fault detection in reciprocating compres-
sors, either for faults in valves or faults in bearings [54,55].

The faulty roller bearing, denoted as B1, is located in the second stage’s discharge
valve (DV) near the fan pulley. The faulty roller bearing exhibits the following fault
types: (a) roller element crack (REC), (b) outer race crack (ORC), and (c) inner race crack
(IRC). Both the IRC and ORC were created using the electrical discharge machining (EDM)
method, and they are aligned with the rotation axis, covering the entire raceway. The
dimensions of these cracks are a depth of 1.0 mm and a width of 2.0 mm. The REC was also
created using EDM, and is also aligned with the rotation axis. The dimensions for the REC
fault are a depth of 0.5 mm and a width of 1.0 mm. The roller bearing faults are shown in
Figure A11.

Four types of faults were configured in the valves: (1) broken spring, (2) valve plate
fracture, (3) valve plate corrosion, and 4) wear in the valve seat. The valve seat was reduced
in depth by 1.44 mm using EDM to create the valve seat wear. The valve plate corrosion
was created with a 2.5 mm diameter hole. A plate cut was used to create the fracture of the
valve plate. In this case, the diameter of the thread used for cutting was 1.6 mm. A thread
of 1.6 mm in diameter was used to create the spring brake fault by breaking such a spring.

The multi-fault classes were composed of 13 different conditions. The healthy class is
denoted as F1. The rest of the classes are denoted as F2–F13.

The different fault classes and the corresponding combinations are presented in Table 3.
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Table 3. Multi-faults in the reciprocating compressor involve combining faults in the valves and
roller bearings. For the fault type, the corrosion and fracture are located in the valve plate. The valve
exhibiting the seeded fault is in the second stage’s discharge valve, located close to the fan pulley.

Label Valve, 2S–DV Bearings, B1

F1 Healthy Healthy

F2 Valve seat wear IRC

F3 Corrosion IRC

F4 Fracture IRC

F5 Broken Spring IRC

F6 Valve seat wear REC

F7 Corrosion REC

F8 Fracture REC

F9 Broken Spring REC

F10 Valve seat wear ORC

F11 Corrosion ORC

F12 Fracture ORC

F13 Broken Spring ORC

The signal acquisition was conducted at a constant motor speed (57.7 Hz) and crankshaft
rotation speed (12.8 Hz). A total of 15 vibration signals were acquired from each sensor for
each machinery condition. The multi-fault dataset includes 195 vibration signals, digitally
acquired at a sampling rate of 50 kHz over 10 s. Concerning the reciprocating compressor,
the temperature and pressure values must be monitored during data acquisition and kept
within the specified ranges. The temperature and pressure values of the compressor during
acquisition are presented in Table A3.

4. Methodology
4.1. Feature Extraction from the Vibration Signals

The DFA features commonly reported in the literature concerning diagnosing faults
in rotating machinery are the Hurst exponent and the fractal spectrum, calculated from
Fq(n). Both features are shown in Figure 5 for several fault conditions in the reciprocating
compressor. Even when several features extracted from the fluctuation function have been
used for fault detection in rotating machinery, in this research, we selected the derivative
of the fluctuation function because this feature implicitly contains information about the
fault signature that other derived features try to recover. In addition, feature α(q, n) is a
bi-dimensional array that can be easily converted to images for classification using convo-
lutional neural networks. The feature extraction was performed using a similar procedure
in the three vibration signal datasets. Six non-contiguous fragments of 32,768-time samples
were selected in each vibration signal. The MFDFA was performed for each signal fragment
to obtain the fluctuation Fq(n) and the fluctuation function α(q, n) derivative. The pa-
rameter q varied between −5 and +5 as q = [−5,−4,−3,−2,−1, 0,+1,+2,+3,+4,+5].
The algorithms were applied, considering the maximum overlapping of contiguous blocks,
using the algorithm described in [48]. The calculated fluctuation function Fq(n) = F(q, n)
is an array of size 11 × 262. The multi-fractal DFA coefficients α(q, n) are obtained as this
array’s first derivative of logFq(n) vs logn. Both results for DFA1 and DFA2 are obtained.
The procedure for extracting the features from the vibration signal datasets is presented in
Figure 6. The procedure uses the methodology described in [48]. Two Matlab functions
distributed as supplementary material of the cited research are used. The first function is
FMFDFA(·), which is used for estimating the fluctuations F1(q, n) = Fq1 and F2(q, n) = Fq2
with linear and quadratic approximations. This function is fed with a vector array Xi
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with the signal fragment. It requires the fractal parameter q, the minimum scale given
by MinBox, a parameter defining the logarithmic density of scales BoxSizeDensity, and
the parameter Sliding, which indicates boxes overlapping when set to 1. The second
function is slpMFMSDFA(·), which is used for calculating the fractal-scale representation
α1(q, n) = alpha1i(q,n) (or α2(q, n) = alpha2i(q,n) ) from the corresponding fluctuation and
the array of logarithmic scales. The stages labeled with a red dot differ depending on the
type of classifier used. In the case of using a CNN classifier, both arrays α1(q, n) and α2(q, n)
are converted to grayscale images with pixels scaled in the range of [0, 1]; both images are
then resized using bicubic interpolation to obtain two images of size 128 × 128. The next
step corresponds to appending such images and their label to the corresponding feature
dataset, denoted as DFA1 or DFA2. When the features are used as input to classical machine
learning models, the fractal-scale representations α1(q, n) and α2(q, n) are resampled to a
size of 11 × 16 and reshaped as a vector, which is concatenated with the corresponding
label and appended to the corresponding feature dataset DFA1 or DFA2.

(a) (b)

(c) (d)

Figure 5. Features from detrended fluctuation analysis for a vibration signal. (a) Hurst exponent
for a signal from the compressor multi-fault F1 (healthy), (b) Hurst exponent for a signal from the
compressor multi-fault F6, (c) Hurst exponent for a signal from the compressor multi-fault F13,
(d) fractal spectrum for faults F1, F6, and F13.
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Figure 6. Feature extraction method. The process starts with k = 1 and runs until all files in the
vibration signal dataset have been processed. A set of J = 6 fragments is extracted from each signal.
The steps labeled with a red dot are modified when the features are intended for classification using
classical machine learning models. In that case, the arrays α1(q, n) and α2(q, n) are not converted to
images but are resampled to obtain two arrays of size 11 × 16. Each array is reshaped as a vector and
concatenated with the corresponding label to obtain the feature dataset DFA1 (or DFA2).
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4.2. Fault Classification Using Classical Machine Learning Models

The classification accuracy provided by the extracted features was validated using
a set of classical machine learning models, including random forests (RFs) [56], particu-
larly random forest models with subspace discriminant learners (RFSDs), random forest
subspaces with nearest neighbors (RFKNN), support vector machines (SVMs) with Gaus-
sian kernel (GSVM) [57], k-nearest neighbor (kNN) with a distance weighting function
(wKNN) [58], and neural networks (NNs) [59]. Validation is performed using one dataset
for the centrifugal pump (faults described in Table 1) and two datasets for the reciprocating
compressor (faults in Tables 2 and 3). The DFA1 and DFA2 feature sets for each vibration
signal dataset were validated regarding their classification accuracy. Since both DFA1 and
DFA2 feature arrays have a size of 11 × 262, which is too large for input into classical
machine learning models, these arrays were resampled to achieve a more manageable size
of 11 × 16, which is fed to the classical machine learning models. Each of the six feature
arrays obtained from each signal is considered a separate feature example, and the label
associated with the signal used for its calculation is assigned.

A 10-fold cross-validation was performed to assess each machine learning model’s
performance. As the feature dataset was split randomly into a training set (85%) and a
test set (15%), the training set was used for cross-validation. The trained cross-validated
partitioned model was analyzed using the test set for classification accuracy. This validation
procedure was repeated ten times, and the averaged confusion matrix was recorded as the
final result for each classification model. Several metrics [60] were used to evaluate each
classification model. A detailed description of such metrics is reported in [61]. The confu-
sion matrix and the receiver operator curve (ROC) enable the evaluation of the classifier
performance metrics.

4.3. Fault Classification Using Convolutional Neural Network Models

Classification of faults using CNN requires the features to be represented as an image.
In this research, the selected features corresponding to α(q, n) which, in practice, is an
array of size 11 × 262, is converted to a gray-scale image. The conversion is performed by
resampling the feature array as an array of size 128 × 128 followed by a rescaling operation
to obtain pixels represented in the interval [0, 1]. As the features α(q, n) are calculated for
six fragments of the vibration signal, each of the six images obtained from each signal
is considered an example and is assigned the label associated with the signal used for
its calculation.

A relatively simple architecture is used for fault classification. The detailed architecture
is shown in Figure 7. The architecture comprises four CBR blocks, each including a
convolutional layer, a batch normalization layer, and a ReLU layer, followed by a max-
pooling (MP) layer. After the four CBR-MP blocks, a dropout layer (D) is used with a
probability of 0.75. This dropout layer is followed by a fully connected layer (FC) and a
softmax layer (SOFT) for achieving the required fault classification. All four convolutional
layers use a unique filter size of 11 × 11. The same architecture was used to classify faults
in both the centrifugal pump and the reciprocating compressor, except for the classification
layer, which is set according to the number of faults considered. The architecture and
parameters were selected after several tests evaluating classification accuracy.

Three CNN models were validated: one for the centrifugal pump and two for the
reciprocating compressor. Each model was validated using a 5-fold cross-validation, and the
performance metrics were evaluated using the average confusion matrix obtained during
cross-validation. Each model was trained using a batch size of 128 and a learning rate of
0.0082 with the Adam solver during 300 epochs.
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Figure 7. Convolutional neural network architecture. This CNN architecture was used for classifying
the faults in the reciprocating compressor and the centrifugal pump. The only modification in each
case corresponds to the softmax layer that should be set according to the number of faults to classify.

5. Results

We begin by illustrating the application of the MFDFA to the reciprocating compressor
vibration signal dataset. Several typical vibration signals are shown in Figure 8. The
four vibration signals are extracted from the multi-fault dataset. Such signals correspond
to the classes F1, F6, F10, and F13. There are differences in appearance for the signals
shown. Figure 8a shows the vibration signal corresponding to the healthy class. A periodic
event is identified in the signal marked by the roller element, and several events in each
period are defined by the valves opening and closing. Figure 8b shows the vibration
signal for a roller element crack–valve seat wear combination. In this case, the events
corresponding to the roller element are notably altered, mainly dispersed due to the
crack. In addition, differences in the events related to the valves are present as changes in
amplitude. Figure 8c,d show vibration signals for faults F10 and F13, both with outer race
crack. The first had valve seat wear, and the second had a broken spring. While the events
marked by the roller elements are similar, the outer race crack and the valve faults modify
the rest of the signal events shown in both figures. Even when there are some differences
in the signals, performing a quantitative analysis of such signals is necessary for accurate
fault classification.

In particular, the application of MFDFA corresponding to DFA1 to the signals shown
in Figure 8 allows one to obtain the fluctuation Fq(n) as an array of size 11 × 257 that can
be shown as a surface in Figure 9 for classes F1, F6, F10, and F13 of the multi-fault vibration
signal dataset. The analysis was performed considering a signal fragment of 32,768 time
samples. Even when there are differences between the surfaces Fq(n) shown, they are
difficult to grasp from such surfaces. A better representation that emphasizes the rapid
changes in the slope of the surfaces in Figure 9 corresponds to the slope surface α(q, n)
shown in Figure 10. In this case, the differences between the surfaces corresponding to F1,
F6, F10, and F13 can be observed. In particular, for large positive values of q, the differences
in the surface are shown using red arrows. The surface has two prominent peaks on the
left, with the amplitude varying depending on the fault type. In fault type F6, a third peak
appears between the previously mentioned peaks. On the right side of the surface, there
are also differences between the fault types shown in this figure.
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(a) (b)

(c) (d)

Figure 8. An example of vibration signals extracted from the multi-fault dataset included in the
reciprocating compressor is shown. The periodic events are plotted using an arrow line in red and T
is the time period of each event in the Figure. (a) A representative class F1 signal, (b) signal extracted
from the class F6 set, (c) vibration signal representing the class F10, (d) vibration signal representing
the class F13.

The MSDFA also facilitates the calculation of DFA2, which involves fitting a polyno-
mial of degree two. The results are shown in Figure 11, corresponding to the fluctuation
surfaces Fq(n) calculated for classes F1, F6, F10, and F13. Additionally, the surfaces corre-
sponding to the slope α(q, n) are shown in Figure 12 where class differences are observed
more clearly. This figure shows the differences between classes using red arrows, particu-
larly for large positive values of q. On the left, the three arrows show a valley and two peaks
with amplitudes that change for the different fault types. The two arrows at the right of the
plot also show peaks that change in amplitude. A representation of the surface α(q, n) for
vibration signals extracted from all classes in the multi-fault dataset is shown in Figure 13.
The feature array α(q, n) is shown as a 2D image with low amplitude values in dark blue
and higher amplitude values in light yellow. The figure shows the surface for classes F2 to
F13 representing faulty classes in the upper three rows. The surface α(q, n) for the healthy
class F1 is shown in the bottom row. There are differences in all the surfaces representing
each of the classes considered. In addition, this feature array can be converted to images
that can be used as input for deep learning models for fault classification. In particular, we
use the CNN model for fault classification.
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(a) (b)

(c) (d)

Figure 9. Fq(n) from the reciprocating compressor’s multi-fault dataset calculated by DFA1. The
fluctuation amplitude is color coded, the highest amplitudes are plotted using light yellow, the lower
amplitudes are plotted in dark blue. (a) Fq(n) from the class F1, (b) Fq(n) from the class F6, (c) Fq(n)
from the class F10, (d) Fq(n) from the class F13.

(a) (b)

(c) (d)

Figure 10. α(q, n) from the reciprocating compressor multi-fault dataset calculated by DFA1. The α

amplitude is color coded, the highest amplitudes are plotted using light yellow, the lower amplitudes
are plotted in dark blue. The red arrows indicate amplitude features that highlights differences
between fault classes. (a) α(q, n) from the class F1, (b) α(q, n) from the class F6, (c) α(q, n) from the
class F10, (d) α(q, n) from the class F13.
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(a) (b)

(c) (d)

Figure 11. Fq(n) from the reciprocating compressor multi-fault dataset calculated by DFA2. The
fluctuation amplitude is color coded, the highest amplitudes are plotted using light yellow, the lower
amplitudes are plotted in dark blue. (a) Fq(n) from the class F1, (b) Fq(n) from the class F6, (c) Fq(n)
from the class F10, (d) Fq(n) from the class F13.

(a) (b)

(c) (d)

Figure 12. α(q, n) from the reciprocating compressor multi-fault dataset calculated by DFA2. The α

amplitude is color coded, the highest amplitudes are plotted using light yellow, the lower amplitudes
are plotted in dark blue. The red arrows indicate amplitude features that highlights differences
between fault classes. (a) α(q, n) from the class F1, (b) α(q, n) from the class F6, (c) α(q, n) from the
class F10, (d) α(q, n) from the class F13.
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Figure 13. α(q, n) calculated from Fq(n) using DFA1. The α amplitude is color coded, the highest
amplitudes are plotted using light yellow, the lower amplitudes are plotted in dark blue. The upper
rows show α(q, n) for signals extracted from faults F2 to F13. The healthy case F1 is represented by
the α(q, n) located in the bottom row.

5.1. Classification Results for the Centrifugal Pump

Results concerning the cross-validation of several classical machine learning models
and the CNN model, trained with the MFDFA features extracted from the vibration signal
dataset for the centrifugal pump, are shown in Table 4. The dataset includes 13 different
conditions, and the cross-validation was performed for DFA1 and DFA2 features. In both
cases, the accuracy attained for all machine learning models is higher than 99%. In both
cases, the random forest models corresponding to the subspace discriminant attained the
highest accuracy, corresponding to 100%. Similarly, the sensitivity, specificity, and F1-score
are all higher than 99% for all machine learning models. Even when the CNN model
attained a classification accuracy higher than 99%, the accuracy attained was slightly lower
than that of the RFSD model.

As the cross-validation process was repeated ten times for the classical models and
five times for the CNN model, we calculated the accuracy variation during the cross-
validation experiment. The average accuracy, the standard deviation, the minimum, and the
maximum are reported in Table 5 for both DFA1 and DFA2. In both cases of DFA1 and
DFA2, the highest accuracy and lower standard deviation are attained by the random forest
model RFSD, corresponding to an average accuracy of 100% with a standard deviation
of 0.00%. The accuracy attained by the CNN model is 99.73% for DFA2 with a standard
deviation of 0.27%. In this case, the minimum is 99.39%, and the maximum is 100%.

The results of the cross-validation procedure, in terms of accuracy for each of the
conditions, are shown in Figure 14 for the models trained with the DFA1 (a) and DFA2
(b) features. Concerning DFA1, classes P4, P7, P9, and P11 (see Table 1) are classified
with lower accuracy by some models compared with the maximum of 100%. Regarding
the DFA2 features, the challenging classes were P7 and P11. In particular, the wKNN
model attained an accuracy of 95.2% for class P7, and the RFKNN model attained the same
accuracy as class P11. Other models also had lower accuracy concerning these classes.
However, most of the classes were classified with high accuracy with all the models tested.
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Table 4. Performance metrics for DFA1 and DFA2 obtained during cross-validation of several machine
learning models for the centrifugal pump dataset. The best performance is presented with bold
numbers. In both experiments reported, the RFSD model attained the best performance concerning
the metrics reported.

Features Model Accuracy Sensitivity Specificity FPR F1-Score

DFA1

kNN 99.85 99.85 99.99 0.01 99.85

wKNN 99.85 99.85 99.99 0.01 99.85

RFSD 100.00 100.00 100.00 0.00 100.00

RFKNN 99.92 99.92 99.99 0.00 99.92

GSVM 99.69 99.69 99.97 0.03 99.69

NN 99.62 99.62 99.97 0.03 99.61

CNN 99.67 99.67 99.97 0.03 99.67

DFA2

kNN 99.62 99.62 99.97 0.03 99.62

wKNN 99.62 99.63 99.97 0.03 99.62

RFSD 100.00 100.00 100.00 0.00 100.00

RFKNN 99.77 99.77 99.98 0.02 99.77

GSVM 99.92 99.92 99.99 0.00 99.92

NN 99.08 99.09 99.92 0.08 99.08

CNN 99.73 99.73 99.98 0.03 99.73

The t-distribution stochastic neighbor embedding (t-SNE) [62] enables the construction
of a qualitative visual representation of the cluster structure of the DFA features dataset.
The t-SNE allows one to visualize high-dimensional data by constructing a mapping
from the original space to a lower 2D or 3D space map. The representation of the DFA
features as a 2D space map is shown in Figure 15a. In this representation, each of the
classes is composed of several clusters. However, the machine learning models tested
can accurately classify all the centrifugal pump conditions. The small clusters in the
feature space could be related to the six experimental conditions regulating pressure in the
discharge valve. In Figure 15b, the 2D t-SNE plot for the activations in the softmax layer of
the CNN architecture is shown. This plot shows 13 clusters corresponding to the classes
considered in the centrifugal pump multi-fault dataset. This fact shows that the selected
CNN architecture efficiently classifies this set of faults with high precision.

Table 5. Cross-validation performance for both DFA1 and DFA2 for the centrifugal pump. The metrics
represent the average accuracy, standard deviation, and maximum and minimum obtained during the
k-fold cross-validation. The best performance is presented with bold numbers. In both experiments
reported, the RFSD model attained the best performance concerning the metrics reported.

Features Model Mean Std Min Max

DFA1

kNN 99.85 0.24 99.23 100

wKNN 99.85 0.37 99.23 100

RFSD 100.00 0.00 100.00 100

RFKNN 99.92 0.32 99.23 100

GSVM 99.69 0.40 99.23 100

NN 99.62 0.54 98.46 100

CNN 99.67 0.44 98.77 100



Sensors 2024, 24, 461 23 of 40

Table 5. Cont.

Features Model Mean Std Min Max

DFA2

kNN 99.62 0.40 99.23 100

wKNN 99.62 0.40 99.23 100

RFSD 100.00 0.00 100.00 100

RFKNN 99.77 0.54 98.46 100

GSVM 99.92 0.32 99.23 100

NN 99.08 0.73 97.69 100

CNN 99.73 0.27 99.39 100

(a) (b)

Figure 14. Cross-validation accuracy as a function of the fault class. (a) The features correspond to the
DFA1 extracted from the centrifugal pump multi-fault vibration signals; (b) the features correspond
to the DFA2 extracted from the centrifugal pump multi-fault vibration signal dataset.

(a) (b)

Figure 15. t-SNE representation of the feature space and the activations of the softmax layer. (a) t-SNE
2D representation of the DFA feature space for the centrifugal pump multi-fault vibration signal
dataset, (b) the activations correspond to the softmax layer in the CNN architecture.

5.2. Classification Results for the Reciprocating Compressor
5.2.1. Results for the Multi-Faults Vibration Dataset

Results for the cross-validation procedure for the reciprocating compressor using the
multi-fault vibration signal dataset are presented in Table 6. The random forests with
sub-space discriminant achieved 95.38% accuracy for the feature set DFA1, and the CNN
achieved 97.78% accuracy for the DFA2 features, both having the highest classification
accuracy. The accuracy difference compared to the other evaluated machine learning
models is significant. The CNN model ranked second in terms of classification accuracy,
achieving 88.63% for DFA1. The RFSD model took second place with 97.44% for the DFA2
features. In all models, the specificity reached values higher than 98.12%. The lowest FPR
is 0.19%, corresponding to the CNN model trained with DFA2 features, and the highest is
1.89% for the weighted kNN model trained with DFA1.



Sensors 2024, 24, 461 24 of 40

The variation in accuracy during the cross-validation experiment is presented in Table 7
for the machine learning models trained with DFA1 and DFA2 features. The lowest standard
deviation of 3.15% is attained with the RFSD model trained with DFA1 features. Similarly,
in the case of DFA2 features, the lowest standard deviation of 2.09% is also attained by the
RFSD model, although the CNN model attains the highest accuracy. However, this model
had a standard deviation of 2.33%, which is slightly higher than the standard deviation
attained by the RFSD model.

The results concerning the variation in accuracy as a function of the condition class
are shown in Figure 16a for models trained with DFA1 features. There is a set of classes
where several models exhibit lower classification accuracies due to the nature of the fault.
The first group corresponds to classes F3, F4, and F5, all with inner race cracks (see Table 3).
The second group comprises classes F7, F8, and F9, all with roller element cracks. The last
group comprises classes F11, F12, and F13, all with outer race cracks. In these groups, the
common valve faults are corrosion, fracture, and broken spring. In contrast, fault conditions
involving valve seat wear exhibit higher classification accuracy. The faults are heavily
weighted by the fault related to the valve rather than the fault related to the bearing. In this
plot, the RFSD model has clear advantages concerning the accuracy attained.

The results for the models trained with DFA2 features are shown in Figure 16b. In this
case, we can observe the same group of faults where the models attain low accuracy.
The CNN and RFSD models have advantages concerning classification accuracy compared
to the rest.

(a) (b)

Figure 16. Cross-validation accuracy as a function of the fault class. (a) The features correspond
to the DFA1 extracted from the reciprocating compressor multi-fault vibration signals. (b) The
features correspond to the DFA2 extracted from the reciprocating compressor multi-fault vibration
signal dataset.

A 2D representation of the DFA2 feature space for the compressor multi-fault dataset
using t-SNE is shown in Figure 17a. In this representation, there are five large clusters: a
cluster with points of the healthy class F1 (at the bottom), a cluster for the F2 condition (top
left), a cluster with samples from conditions F10, F11, F12, and F13 (top right), a cluster
with samples from conditions F6, F7, F8, and F9 (middle left), and a cluster composed of
samples from conditions F3, F4, and F5 (middle right). Recalling the information in Table 3,
it seems like the roller element crack and outer race crack define the two most significant
clusters located in the diagonal feature representation, and the valve faults are subsumed
into each of the clusters, making it challenging to attain an accurate classification. A 2D
t-SNE representation of the activations in the softmax layer of the CNN architecture trained
with DFA2 features is shown in Figure 17b. The model can transform the features’ original
representation into 13 well-separated clusters, enabling accurate classification.
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(a) (b)

Figure 17. t-SNE representation of the feature space and the activations of the softmax layer. (a) t-SNE
2D representation of the DFA feature space for the reciprocating compressor multi-fault vibration
signal dataset; (b) the activations correspond to the softmax layer.

Table 6. Performance metrics for DFA1 and DFA2 obtained during the cross-validation of several
machine learning models for the reciprocating compressor multi-fault dataset. The best performance
is presented with bold numbers. In the experiments reported, the RFSD and CNN models attained
the best performance concerning the metrics reported.

Features Model Accuracy Sensitivity Specificity FPR F1-Score

DFA1

kNN 77.95 79.02 98.17 1.83 77.70

wKNN 77.18 78.65 98.12 1.89 77.18

RFSD 95.38 95.71 99.62 0.38 95.36

RFKNN 81.03 81.48 98.42 1.58 81.08

GSVM 88.21 89.27 99.02 0.98 88.34

NN 84.10 85.09 98.68 1.32 84.33

CNN 88.63 88.63 99.05 0.95 89.64

DFA2

kNN 87.94 88.23 99.01 0.99 87.42

wKNN 86.67 88.01 98.90 1.10 86.56

RFSD 97.44 97.69 99.79 0.21 97.45

RFKNN 84.87 85.06 98.75 1.26 84.60

GSVM 91.79 92.64 99.32 0.68 91.99

NN 88.71 89.41 99.06 0.94 88.73

CNN 97.78 97.78 99.81 0.19 97.78

5.2.2. Results for the Multi-Valve Vibration Dataset

The cross-validation results using the reciprocating compressor, the multi-valve fault
vibration dataset, are presented in Table 8. The cross-validation was performed for both
DFA1 and DFA2 feature sets. The random forests with sub-space discriminant models for
the DFA1 features attain the highest classification accuracy of 99.61%. In contrast, for the
DFA2 features, the highest classification accuracy of 99.80% is attained with the CNN model.
In the case of the models trained with DFA1, the CNN attained the second-best accuracy,
corresponding to 97.58%. In contrast, with the models trained with DFA2, the RFSD and
SVM attained the second-highest accuracy of 99.02%, and the NN attained the third-best
accuracy of 98.04%. Concerning the models trained with DFA1, the lowest accuracy is
attained by random forests with sub-space KNN, with a value of 91.76%. The kNN model
achieved the lowest accuracy of 93.92% when trained with DFA2 features. The values
attained by the specificity range between 99.25% and 99.98%. The FPR ranges between
0.01% and 0.75%.
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Table 7. Cross-validation performance for DFA1 and DFA2 for the multi-fault dataset of the recipro-
cating compressor. The metrics represent the average accuracy, standard deviation, and maximum
and minimum obtained during the k-fold cross-validation.The best performance is presented with
bold numbers.

Algorithm Mean Std min max

MFDFA1

kNN 77.95 5.30 71.79 87.18

wKNN 77.18 7.30 64.10 87.18

RFSD 95.38 3.15 89.74 100.00

RFKNN 81.03 4.55 74.36 89.74

GSVM 88.21 5.01 74.36 92.31

NN 84.10 6.14 74.36 92.31

CNN 88.63 3.49 86.75 94.87

MFDFA2

kNN 87.95 2.43 84.62 92.31

wKNN 86.67 3.15 82.05 92.31

RFSD 97.44 2.09 94.87 100.00

RFKNN 84.87 4.90 76.92 92.31

GSVM 91.79 3.38 84.62 97.44

NN 88.72 5.16 79.49 94.87

CNN 97.78 2.33 94.02 99.57

Table 8. Performance metrics for DFA1 and DFA2 obtained during cross-validation of several machine
learning models for the multi-valve dataset of the reciprocating compressor. The best performance is
presented with bold numbers. In both experiments reported, the RFSD and CNN models attained the
best performance concerning the metrics reported.

Features Model Accuracy Sensitivity Specificity FPR F1-Score

DFA1

kNN 95.10 95.75 99.70 0.30 95.01

wKNN 96.86 96.91 99.80 0.20 96.85

RFSD 99.61 99.62 99.97 0.02 99.61

RFKNN 91.76 91.72 99.49 0.51 91.61

GSVM 87.25 87.21 99.25 0.75 87.20

NN 97.45 97.53 99.84 0.16 97.46

CNN 97.58 97.58 99.85 0.15 97.57

DFA2

kNN 93.92 94.22 99.62 0.38 93.96

wKNN 95.49 95.66 99.72 0.28 95.43

RFSD 99.02 99.16 99.94 0.06 99.01

RFKNN 94.71 94.69 99.67 0.33 94.65

GSVM 99.02 99.10 99.94 0.06 99.02

NN 98.04 98.18 99.88 0.12 98.03

CNN 99.80 99.80 99.99 0.01 99.80

The accuracy variation during the cross-validation experiment is presented in Table 9.
Concerning the models trained with DFA1 features, the lowest standard deviation of 1.24%
is attained with the RFSD model, followed by the CNN model with 1.45%. The lowest
standard deviation of 0.18% is attained with the CNN model trained with DFA2 features.
The RFSD and GSVM models with 1.03% follow this result.
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Table 9. Cross-validation performance for DFA1 and DFA2 for the multi-valve dataset of the recipro-
cating compressor. The metrics represent the average accuracy, standard deviation, and maximum
and minimum obtained during the k-fold cross-validation. The best performance is presented
with bold numbers. In both experiments reported, the RFSD and CNN models attained the best
performance concerning the metrics reported.

Algorithm Mean Std min max

MFDFA1

kNN 95.10 2.96 90.20 100.00

wKNN 96.86 2.11 94.12 100.00

RFSD 99.61 1.24 96.08 100.00

RFKNN 91.76 3.18 88.24 98.04

GSVM 87.25 1.39 84.31 88.24

NN 97.45 2.45 94.12 100.00

CNN 97.58 1.45 95.75 99.35

MFDFA2

kNN 93.92 3.51 88.24 100.00

wKNN 95.49 2.08 92.16 98.04

RFSD 99.02 1.03 98.04 100.00

RFKNN 94.71 2.93 88.24 98.04

GSVM 99.02 1.03 98.04 100.00

NN 98.04 2.07 94.12 100.00

CNN 99.80 0.18 99.67 100.00

The variation in accuracy as a function of the condition class for models trained with
DFA1 features, extracted from the multi-valve fault dataset of the reciprocating compressor,
is shown in Figure 18a. Several machine learning models have difficulties classifying
several condition classes. In particular, S4, S5, S8, S9, S14, and S15 have lower accuracy for
several machine learning models. However, the RFSD model provides the highest accuracy
for most of the classes. Concerning the type of fault (see Table 2), the dominant faults are
the valve plate fracture and broken spring. The results of the accuracy variation for models
trained with DFA2 are shown in Figure 18b. The classes where several classical machine
learning models have lower accuracy are S3, S4, and S5. The second group comprises
classes S8 and S9; the last group corresponds to S12, S15, and S16. In these groups, the
valve plate fracture appears in several instances. Concerning this dataset, the CNN and
RFSD models provide the highest accuracy for most of the classes.

(a) (b)

Figure 18. Cross-validation accuracy as a function of the fault class. (a) The features correspond
to the DFA1 extracted from the multi-valve vibration signals of the reciprocating compressor; (b)
the features correspond to the DFA2 extracted from the multi-valve vibration signal dataset of the
reciprocating compressor.
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The t-SNE 2D representation of the feature space is shown in Figure 19a. In this
representation, several conditions form an isolated cluster. In particular, we can observe
isolated clusters for the healthy condition S1 and faulty conditions, S2, S6, S10, S11, and S17.
A large cluster is composed of S12, S13, S14, S15, and S16. Another cluster is composed
of S3, S4, S5, and S7. Finally, there is a cluster comprising faults S8 and S9. In this case,
it is difficult to draw any conclusion concerning the cluster structure and the nature of
the valve faults. However, the CNN and RFSD machine learning models can accurately
classify all the valve faults. Concerning the CNN model, the 2D t-SNE representation
for the activations in the softmax layer of the CNN architecture is shown in Figure 19b.
In this case, the model has transformed the cluster structure of the DFA2 features dataset
of the multi-valve dataset of the reciprocating compressor, as shown, where 17 clusters
represent the 17 health classes of the dataset. This cluster structure is amenable to highly
accurate classification.

(a) (b)

Figure 19. t-SNE representation of the feature space and the activations of the softmax layer. (a) t-
SNE 2D representation of the DFA2 feature space for the multi-valve vibration signal dataset of the
reciprocating compressor; (b) the activations correspond to the softmax layer of the CNN architecture.

6. Discussion

Previous research performed in our research group has been reported concerning the
proposal of several features useful for fault diagnosis in centrifugal pumps and reciprocat-
ing compressors. Research reported in [49] investigated the proposal of several feature sets
useful for fault classification using classical machine learning models. Specifically, the re-
search compared a statistical feature set composed of 12 features (Statistical), an information
entropy feature set composed of 15 features (InfoEntropy), a non-linear entropy feature
set composed of 14 features (Entropy), and the concatenation of all features previously
mentioned, composed by 41 features Allfeat. In addition, the comparison also included
the 2D spectrogram of the vibration signal fed to a CNN model for fault classification.
The research used the same experimental test rig. The investigation was validated using
the centrifugal pump dataset with 13 fault conditions and the multi-valve fault dataset
acquired from the reciprocating compressor. A performance comparison is reported in
Table 10. The percentage accuracy attained with the scale-fractal DFA representation used
with the CNN model is higher than that attained with the spectrogram feature represen-
tation of the vibration signal combined with a CNN model. In addition, the accuracy
attained by the α(q, n) features is also higher than the accuracy attained by the rest of the
statistical and non-linear entropy-based features investigated in [49] for the reciprocating
compressor. Concerning the centrifugal pump, the accuracy attained by the α(q, n) features
is slightly lower than the accuracy attained by the combination of statistical and non-linear
entropy-based features (Allfeat). Although the accuracy provided by the feature set focused
on non-linear entropy features is high, a limitation of such features, like approximate en-
tropy, is that their estimation requires calculating distances of n-dimensional signal vectors
representing the phase space for the non-linear dynamical system. The length of these
vectors n should be large enough to represent the dynamical system accurately. However,
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increasing n has an impact on the computational cost. In contrast, even when the MFDFA
also requires the calculation of distances between the Nn segments and the local trend of
the signal, the length of these segments is lower than the length of the vectors used for
approximate entropy calculation, and the computational cost is lower for MFDFA. This
computational efficiency is a relevant advantage of the MFDFA method proposed in this
document.

Table 10. Comparison of the performances of several features extracted from the reciprocating
compressor (RC) and the centrifugal pump (CP) obtained during the 10-fold cross-validation of
classical and CNN models. The accuracies are represented in percentage values. The dataset for RC
denotes the multi-valves with 17 fault conditions, and for CP, the dataset denotes the multi-faults
with 13 fault conditions. The best performance is presented with bold numbers.

Machine
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

Statistical InfoEntropy Entropy AllFeat α(q, n) Spectrogram
+SVM [49] +SVM [49] +SVM [49] +SVM [49] +CNN +CNN [49]

CP 71.03 96.32 97.30 99.81 99.73 98.61

RC 86.91 96.83 97.57 97.90 99.80 96.74

Research reported in [63] investigated the usefulness of Poincaré images generated
from vibration signals, combined with CNN models for fault classification in a reciprocating
compressor. The research was validated using the multi-valve dataset with 17 valve
faults from the reciprocating compressor. Poincaré images represent a promising 2D
representation of time series, such as the vibration signal that could be combined with
deep learning models for fault classification. However, further research is still necessary
to improve the classification accuracy and the range of possible applications. The highest
accuracy attained with Poincaré images was 94.97%, which is lower than the accuracy
attained with the proposed scale-fractal DFA feature representation.

Two additional feature types were reported in [31], helping to classify faults in a
reciprocating compressor using classical machine learning models. The results concerning
the multi-fault dataset, including 13 conditions, were classified with an accuracy of 100%
considering symbolic dynamic features and 99.4% with the complex correlation measure
when such features were combined with random forest classifiers. This accuracy is higher
than that attained with the scale-fractal DFA representation combined with CNN, which
corresponds to 97.78%. Concerning the multi-valve fault dataset, the symbolic dynamics
combined with random forest classifiers attained an accuracy of 100%, and the complex
correlation measure achieved an accuracy of 91.7%. In contrast, the scale-fractal DFA
representation combined with CNN attained a classification accuracy of 99.80% for the
multi-valve fault dataset. Although the symbolic dynamic features and complex correlation
measure achieved high accuracy in the reciprocating compressor, these features have not
been investigated in centrifugal pumps. Moreover, these features are intended mainly for
use in combination with classical machine learning models.

Considering the previous comparison with other features proposed in our research
group, the scale-fractal DFA feature representation is highly accurate. It has advantages
in classification performance compared to other types of features. In addition, their bidi-
mensional representation can be efficiently connected to deep learning classifiers such as
the CNN model. Vibration signals acquired from centrifugal pumps and reciprocating
compressors exhibit inherent non-stationary and non-linear dynamics derived from the
superimposed contributions of multiple fault modes and interacting internal components.
Furthermore, their dynamic characteristics fluctuate in response to such external driving
forces under various operating conditions involving speed or load variations. The con-
fluence of non-linear effects arising from fault interactions, compounded by behavioral
variability due to changes in the operating regime, generates complexities that make it
difficult to effectively extract characteristics indicative of fault frequency using conventional



Sensors 2024, 24, 461 30 of 40

techniques [64]. A relevant advantage of the scale-fractal DFA feature type is that this
feature set can be extracted directly from the vibration signal without the need to apply
denoising methodologies. The proposed feature type is highly robust as it can provide high
classification accuracy by estimating the features directly from the raw vibration signal.

At this stage, the main goal of this research is to propose a feature extracted from
vibration signals that could be useful for fault classification in centrifugal pumps and
reciprocating compressors. Their implementation in a real-time application requires further
research to optimize the computation time required for the feature extraction. Specifically,
the feature extraction method runs on a laptop computer with an Intel Pentium i7-6700HQ
CPU 2.60 GHz and 12 GB of RAM using Matlab 2021a. It takes 92.0 s to process a
vibration signal to extract α1(q, n) and α2(q, n). Once an RF model is trained, it takes
only 0.09 s to classify such a signal. Overall, the fault classification approach with the
proposed features could be implemented in real-time using carefully selected hardware
and optimized parameters according to the specific application.

The fractal-scale feature representation we are proposing is robust because it is ex-
tracted from raw vibration signals and provides high classification accuracy with either
CNN or classical machine learning models. The algorithm for calculating the features
uses maximally overlapping boxes that provide robustness to the estimation, as shown in
Figure 2. This robustness is a relevant advantage concerning other methods proposed in
the literature that estimate the DFA features after applying complex preprocessing method-
ologies. However, we acknowledge that further research into this type of feature is needed
to assess its potential usefulness in other rotating machines for anomaly detection and
estimating the remaining useful life of rotating machines. Furthermore, evaluating how
features and classification methods behave in the presence of noisy signals and missing
data is necessary. A comparison with other time-frequency representations also represents
a topic of investigation for this type of feature.

7. Conclusions

The MFDFA features enable accurate fault classification in both a centrifugal pump
and a reciprocating compressor. In particular, the slope of the fluctuation provides a 2D
feature representation suitable for classifying faults using deep learning models such as
CNN. In addition, this type of feature can be used with classical machine learning models
for fault classification.

The multi-scale calculation of the detrended fluctuation analysis using maximally
overlapped blocks allows for the estimation of the slope of fluctuation with minimal
noise. These DFA features are useful for classifying faults in rotating machinery, such as
centrifugal pumps and reciprocating compressors. A relevant advantage of the scale-fractal
DFA feature representation is their robustness, enabling feature extraction from vibration
signals without requiring denoising preprocessing.

The methodology for fault classification was validated using a vibration signal dataset
representing 13 different multi-fault conditions in the centrifugal pump. Cross-validation
was conducted using various machine learning models, and the accuracy attained in all
tested models was higher than 99%. The method was also tested using two vibration
signal datasets from a reciprocating compressor. The first dataset corresponds to 13 multi-
faults that combine faults from the second-stage valve and the bearings. The CNN model
attained the highest classification accuracy, corresponding to 97.78%. The second vibration
signal dataset corresponds to 17 multi-valve fault conditions, and the highest classification
accuracy was attained by the CNN model, corresponding to 99.80%.

The CNN model demonstrated a low standard deviation in the accuracy measure for
most experiments during cross-validation.

The comparison between DFA1 and DFA2 features showed similar results for the
centrifugal pump. However, in the reciprocating compressor, clear advantages in accuracy
were observed between DFA1 and DFA2, particularly with DFA2 allowing for the highest
accuracy using the CNN model.
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Further research into this type of feature is necessary to assess their potential usefulness
in other rotating machines, for detecting anomalies, and for predicting the remaining useful
life of these machines. Comparing these features to other time-frequency representations
is also an important research subject, as is their application to other signals recorded for
condition monitoring.
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Abbreviations
The following abbreviations are used in this manuscript:

BS Broken Spring
CBR Convolutional, Batch normalization, and ReLU layer
CNN Convolutional neural networks
CP Centrifugal Pump
D Dropout layer
DFA Detrended fluctuation analysis
DFA2 Detrended fluctuation analysis with quadratic approximation
DV Discharge valve
EDM Electrical Discharge Machining
EWT Empirical Wavelet Transform
FC Full connected layer
GSVM Support vector machine with Gaussian kernel
GSVM Gaussian support vector machines
HTH Healthy
IB Imbalance impeller
ICB Impeller channel blockage
IMF Intrinsic mode function
IRC Inner race crack
IV Inlet valve
kNN k-Nearest Neighbors
MFDFA Multi-fractal detrended fluctuation analysis
MP Max-pooling layer
MSB Modulation signal bispectrum
NN Neural network
ORC Outer race crack
PCA Principal component analysis
PEB Pitting at the entrance of the impeller blades
POB Pitting at the output of the impeller blades
RC Reciprocating Compressor
REC Roller element crack
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ReLU Rectified linear unit
RF Random Forests
RFKNN Random forest subspace k-nearest neighbor
RFKNN Random forest subspace kNN
RFSD Random forest subspace discriminant
ROC Receiver operator curve
SMF State-adaptive morphological filter
SOFT Softmax layer
SVM Support vector machine
VMD Variational mode decomposition
VPC Valve plate corrosion
VPF Valve plate fracture
VSW Valve seat wear
wKNN Weighted k-nearest neighbor

Appendix A. Tables and Figures

The appendix includes several tables and figures that complement the topic reported
in the paper.

Appendix A.1. Tables

The tables report the environmental and experimental conditions used during the
vibration signal acquisition.

Table A1. Values of the environmental parameters required for operating the reciprocating compressor
and the centrifugal pump. These parameters must be measured at least one meter around the
compressor.

Parameter Units Limit Value

Room temperature ◦C Min 14

Room temperature ◦C Max 24

Relative Humidity Percent Min 42%

Relative Humidity Percent Max 60%

Environmental noise before starting compressor dBA Max 48

Environmental noise during experiment dBA Max 80

Table A2. Experimental conditions for the centrifugal pump.

Experimental Description Discharge
Conditions Pressure (bar)

C1 Regulated discharge valve up to 5.5 bar 5.5 ± 0.2

C2 Regulated discharge valve up to 6.5 bar 6.5 ± 0.2

C3 Regulated discharge valve up to 7.5 bar 7.5 ± 0.2

C4 Regulated discharge valve up to 8.5 bar 8.5 ± 0.2

C5 Regulated discharge valve up to 9.5 bar 9.5 ± 0.2

C6 Regulated discharge valve up to 10.4 bar 10.4 ± 0.2
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Table A3. Values of the physical parameters of the compressor during acquisition.

Parameter Units First Stage Second Stage Tank

Tank pressure bar - - 2.9 to 3.1

Inlet pressure bar −0.1 to 0.1 Variable -

Discharge pressure bar 1.3 to 2.5 2.9 to 4.1 -

Surface temperature ◦C 37 to 65 38 to 72 -
in the intake valve cover

Surface temperature ◦C 42 to 50 40 to 62 -
in the discharge valve cover

Appendix A.2. Figures

A set of figures that describes the centrifugal pump and the reciprocating compressor
are included in this appendix.

Figure A1. Main parts of the vertical centrifugal pump test bench.
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Figure A2. The ten stages of the vertical centrifugal pump. The centrifugal pump model is
3SV10GE4F20 and it is driven by a two-hp induction motor.

(a) (b)

Figure A3. An example of pitting at the entrance of the impeller blades is shown. In addition, up to
eight levels of pitting severity can be configured by creating holes in the blades using EDM. (a) Holes
created using EDM. The diameter of each hole is 2.5 mm and the number of holes varies according to
the level of severity for each fault. (b) Internal view of the holes created in the impellers.
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(a) (b)

Figure A4. A configuration of pitting at the output of the impeller blades is shown. The configuration
of the levels of pitting severity is implemented by creating holes with a diameter size and a number
that is increased according to the severity level. (a) View of the holes in the output of the impeller
blades. (b) Internal view of the holes located at the output of the impeller blades.

(a) (b)

Figure A5. An example of impeller channel blockage is shown. The levels of blockage severity
are attained by closing different channels of the impeller. (a) Appearance of the impeller channel
blockage. (b) Drawing representing the impeller channel blockage.

(a) (b)

Figure A6. An example of impeller imbalance is shown. The six levels of severity for the impeller
imbalance fault are attained by cutting portions of the impeller with increasing area. (a) Appearance
of the impeller imbalance. (b) Drawing representing the impeller imbalance.
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Figure A7. Main parts of the EBG-250 compressor. (a) External parts. (b) Details of the internal parts.

Figure A8. Parts of the tapered roller bearing used in experimentation.
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Figure A9. Reciprocating compressor valve assembly and details about their components. (a) Com-
ponents of the valve; (b) valve assembly scheme.

(a) (b)

(c) (d)

Figure A10. Valve faults in the reciprocating compressor. (a) Valve corrosion, (b) valve seat wear,
(c) broken valve spring, and (d) valve plate fracture.
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(a) (b)

(c) (d)

Figure A11. Roller bearing faults in the reciprocating compressor. (a) Ball fault, (b) healthy roller
bearing, (c) outer race fault, and (d) inner race fault.
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