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Abstract: Assessing pain in non-verbal patients is challenging, often depending on clinical judgment
which can be unreliable due to fluctuations in vital signs caused by underlying medical conditions.
To date, there is a notable absence of objective diagnostic tests to aid healthcare practitioners in
pain assessment, especially affecting critically-ill or advanced dementia patients. Neurophysio-
logical information, i.e., functional near-infrared spectroscopy (fNIRS) or electroencephalogram
(EEG), unveils the brain’s active regions and patterns, revealing the neural mechanisms behind the
experience and processing of pain. This study focuses on assessing pain via the analysis of fNIRS
signals combined with machine learning, utilising multiple fNIRS measures including oxygenated
haemoglobin(∆HBO2) and deoxygenated haemoglobin (∆HHB). Initially, a channel selection process
filters out highly contaminated channels with high-frequency and high-amplitude artifacts from the
24-channel fNIRS data. The remaining channels are then preprocessed by applying a low-pass filter
and common average referencing to remove cardio-respiratory artifacts and common gain noise,
respectively. Subsequently, the preprocessed channels are averaged to create a single time series
vector for both ∆HBO2 and ∆HHB measures. From each measure, ten statistical features are extracted
and fusion occurs at the feature level, resulting in a fused feature vector. The most relevant features,
selected using the Minimum Redundancy Maximum Relevance method, are passed to a Support
Vector Machines classifier. Using leave-one-subject-out cross validation, the system achieved an
accuracy of 68.51%± 9.02% in a multi-class task (No Pain, Low Pain, and High Pain) using a fusion of
∆HBO2 and ∆HHB. These two measures collectively demonstrated superior performance compared
to when they were used independently. This study contributes to the pursuit of an objective pain
assessment and proposes a potential biomarker for human pain using fNIRS.

Keywords: pain assessment; fNIRS; statistical features; SVM; machine learning

1. Introduction

Pain, despite its unpleasantness, acts as an essential biomarker in our bodies, alerting
us to potential health issues, injuries, or emotional stress. Pain can be localised to a particu-
lar region, like an injury, but it can also be more widespread, as seen in many illnesses [1].
Pain is a significant issue in society as it poses a substantial public health challenge, impacts
the quality of life of sufferers, and places a burden on the economy [2,3]. The economic
impacts of pain are drastic, imposing a financial burden exceeding AUD 73 billion dollars
annually, including AUD 48.3 billion dollars in lost productivity in Australia alone [4,5].
Furthermore, it impacts the day-to-day routines and significantly diminishes the overall
quality of life. For instance, low back pain is the leading cause of disability in the world,
with over 600 million people living with pain [6]. Therefore, the assessment and manage-
ment of pain is essential for a wide range of clinical disorders and treatments, and its early
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diagnosis plays a vital role in mitigating the risk of its progression into chronic conditions
or contributing to depression or anxiety [7].

Pain is a subjective experience and its measurement is difficult. In clinical practice,
two primary subjective methods are used for pain assessment: self-reports and clinical
judgment [8]. The commonly accepted method to assess pain is self-report. Self-reporting
techniques aim to gauge a patient’s pain using verbal or numerical self-assessment tools,
including methods such as visual analogue scales, verbal descriptor scales, numerical
rating scales, or the McGill Pain Questionnaire [9,10]. When self-reports are not accessible
or may be unreliable, clinical observations can serve as a supplementary or alternative
method. Clinical judgment for pain assessment relies on examining and understanding
the nature, intensity, and context of the patient’s pain experience based on observations [7].
Despite their convenience and utility, subjective reports come with various limitations such
as inconsistent measurement scales and variations in how pain is understood by medical
professionals and patients. Furthermore, these methods cannot be effectively employed in
cases involving children or patients with neurological disorders.

In order to address these limitations, researchers have turned to the analysis of the
neurological aspects of pain using objective methods such as neuroimaging [11]. For in-
stance, Wager et al. [12] developed a system that employs machine learning to analyse
data obtained from functional magnetic resonance imaging (fMRI). Their work demon-
strated the potential to identify a consistent neurological signature of pain at the individual
level. While fMRI-based objective assessments of pain have made significant progress
in understanding the brain’s pain mechanisms, the size and cost of MRI scanners and
other conventional neuroimaging tools (such as positron emission tomography) make
them impractical for routine clinical use [13]. This limitation has increased the interest in
portable neuroimaging devices that offer similar technical advantages to fMRI. One such
technology is functional near-infrared spectroscopy (fNIRS), which measures changes in
the concentrations of oxygenated hemoglobin (∆HBO2) and deoxygenated haemoglobin
(∆HHB)—similar to the blood oxygen level-dependent signal in fMRI. fNIRS is capable
of non-invasive measurement of near-infrared light absorption within the range of 700 to
1000 nm through the skull [14]. In contrast to traditional MRI scanners, the portability and
compatibility of fNIRS with ferromagnetic and electrical components provide researchers
with the option to monitor and study functional brain activity in clinical settings [15,16].

Machine learning has played a pivotal role in neuroimaging-based methods for the
study of pain [17,18]. It helps us to better understand the pain by uncovering patterns
within clinical and experimental data [19]. Machine learning methods can effectively
acquire the ability to map features to known classes, enabling them to predict a pain
phenotype class based on a complex set of obtained features. For instance, Brown et al. [20],
in an fMRI study, employed the Support Vector Machine (SVM) algorithm to distinguish
between painful and non-painful experimental stimuli, achieving an accuracy of 81%. In an
EEG study, Gram et al. [21] examined individuals who had received either morphine or a
placebo following cold pressor test stimulation. They used the SVM algorithm to classify
responders, achieving an accuracy of 71.9%. This classification was based on wavelet
coefficients derived from each EEG band. These studies have shown the potential of
neuroimaging and machine learning in the identification of pain.

In pain research using fNIRS, machine learning has proven to be effective for the
detection and prediction of pain [22]. In a study by Pourshoghi et al. [22], authors used an
SVM classifier using B-spline coefficients from functional data analysis. They achieved a
classification accuracy of 94% in distinguishing between low-pain and high-pain signals
using fNIRS. In Fernandez et al. [23], the results indicate that by using the Gaussian Support
Vector Machine (SVM), they achieved an accuracy of 94.17% in classifying the four types
of pain within the fNIRS data. Zeng et al. [24] investigated chronic pain’s impact on brain
function using fNIRS. Machine learning achieved high accuracy in identifying chronic pain
patients based on resting-state fNIRS data, suggesting the potential for using functional
connectivity features as neural markers for chronic pain diagnosis. Despite the promising
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results obtained by the mentioned studies, there is still limited research in this field within
the literature.

This study employs an approach for pain assessment that leverages the analysis of
fNIRS signals in combination with machine learning techniques. This approach utilises
fNIRS measurements of ∆HBO2 and ∆HHB to provide a comprehensive and accurate
evaluation of pain levels. While the literature emphasises ∆HBO2 as a more promising
fNIRS measure [25,26], recent studies, as highlighted by Ho et al. [27], indicate that both
measures exhibit high accuracy in classification tasks. Therefore, in this study, both ∆HBO2
and ∆HHB measures have been taken into account. First, the pain information of 30 healthy
subjects was collected using quantitative sensory testing (QST). Then, we performed a
channel selection process to remove faulty channels from the analysis. Subsequently, ten
statistical features from each measure were extracted. Then, we utilised well-known
classifiers to identify pain levels using this reduced feature set. This study makes the
following contributions: (1) proposing an fNIRS channel selection strategy for rejecting
noisy channels based on high-frequency and high-amplitude artifacts; (2) presenting a
group of possible features from fNIRS signals for the assessment of pain; (3) identifying that
∆HBO2 is better at detecting high pain intensity and ∆HHB is good at detecting low pain
intensity; and (4) proposing the combination of ∆HBO2 and ∆HHB as a possible biomarker
of human pain. This study contributes to the field of pain assessment and offers new
avenues for understanding and quantifying pain in a more precise and objective manner.

2. Materials and Methods

Figure 1 presents the core system block diagram of the proposed fNIRS-based pain
assessment system. The system integrates attributes from both ∆HBO2 and ∆HHB to
assess the pain level. Further elaboration on the materials and methodology is provided in
the following subsections.

Figure 1. System block diagram of the proposed fNIRS-based pain assessment system.

2.1. Experimental Protocol

In this study, 30 healthy individuals (7 females and 23 males) aged 19 to 52 years
(31.7± 8.7 yrs) participated. None had unstable medical conditions, chronic pain, or recent
medication usage prior to testing. Participants received detailed explanations and provided
written informed consent before the start of the experiments. The research, involving
human participants, received ethical approval from the University of Canberra’s Human
Research Ethics Committee (reference number 11837).

The data collection procedure took place at the Human–Machine Interface Laboratory
at the University of Canberra, Australia. Participants were seated comfortably with both
arms resting on the table. Electrodes from a transcutaneous electrical nerve stimulation
(TENS) machine (Medihightec Medical Co., Ltd., Taipei City, Taiwan) were placed on the
participants’ inner forearm and the back of their right hand. The experimental process
consisted of two phases: an initial assessment of individual pain perceptions using the
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QST protocol, which determined pain thresholds and tolerances, followed by the pain
stimulation phase. We defined the pain threshold (low pain) as the lowest stimulus intensity
at which stimulation became painful, and pain tolerance (high pain) as the highest intensity
of pain the participant could endure before reaching a point of intolerable discomfort.
In the pain stimulation phase, fNIRS data were acquired and a 60 s baseline recording was
obtained before the start of the experiment. A counterbalanced approach was employed,
alternating between low and high stimuli intensity and forearm or hand stimulation.
Six 10 s stimulus repetitions were recorded for each type of stimulus, followed by 40 s rest
intervals. Figure 2 presents a schematic representation of the stimulation and perception
of pain.

Figure 2. Schematic representation of the experimental procedure.

Changes in ∆HBO2 and ∆HHB concentration (µmol/L) were measured using a wire-
less, continuous wave fNIRS device (Artinis Medical Systems, Gelderland, the Nether-
lands). The fNIRS system includes 24 channels covering the prefrontal cortex (PFC).
Optodes (10 sources and 8 detectors) are separated by 35 mm and placed on the frontal
lobe (Figure 3). The near-infrared light was emitted by sources with wavelengths of 760
and 840 nm at a sampling rate of 50 Hz. Figure 4 displays the raw fNIRS channels (∆HBO2)
recorded over a 5 min duration while a subject experienced varying pain intensities.

(a) (b)

Figure 3. fNIRS channel information: (a) fNIRS cap. (b) Schematic of fNIRS channel locations.
Red: Sources; Blue: Detectors; and Yellow: Channels. Specifically, the optodes Tx1, Tx2, Tx7, Tx9,
Rx3, and Rx7 were positioned at the following locations on the standard 10–20 EEG system: Tx1: at
F8; Tx2: at Fp2; Tx7: at Fp1; Tx9: at F7; Rx3: at F4; and Rx7: at F3.
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Figure 4. Twenty-two-Channel fNIRS (measuring changes in ∆HBO2) raw data (excluding two
faulty channels) with annotated and highlighted durations for different conditions: B (Baseline), LA
(Low Arm Pain), HA (High Arm Pain), HH (High Hand Pain), and LH (Low Hand Pain). The gray
background in the figure represents the duration of each experiment phase: Baseline: 60 s, LA, LH,
HA, and HH, each lasting 10 s.

2.2. Channel Selection

In the context of processing fNIRS data from 24 channels, as shown in Figure 4, some
specific challenges arose. Two of the electrodes related to channels 19 and 23 were found to
be malfunctioning, necessitating their exclusion from the analysis. This action was taken
to ensure the integrity of the data. Additionally, among the remaining 22 channels, it was
observed that certain channels exhibited distinct and undesirable features in the form of
high amplitude and sharp peaks resembling square wave artifacts. These peculiar patterns
suggest that these channels were significantly contaminated by movement artifacts or
other non-neural artifacts. To effectively address this issue and proceed with data analysis,
a preliminary step involved the systematic identification of unreliable channels to be
excluded from further processing. This selection was accomplished using the relative range
(RR) operator threshold. Relative range (Equation (1)) is defined as the ratio of the range of
the derivative of an fNIRS channel to the range of the raw channel, as follows:

RR =
max(x′ch)−min(x′ch)

max(xch)−min(xch)
(1)

where x′ch is the derivative of an fNIRS channel x′ch, which represents the rate of change
in a signal. In the context of fNIRS signals, the derivative can highlight regions where the
signal changes rapidly, which may correspond to high-amplitude peaks (i.e., spikes) within
a channel. As a result, high RR values indicate the presence of these high-amplitude sharp
peaks. Experimental findings revealed that channels with an RR exceeding 0.1 (10%) are
typically contaminated by these artifacts. With this threshold, the channels contaminated
by artifacts were excluded, ensuring that only artifact-free channels were retained for
subsequent processing. The raw fNIRS channels (n = 17) for ∆HBO2 measurement selected
after the channel selection algorithm are shown in Figure 5. After this step, the data from
three subjects were excluded from further processing as the algorithm resulted in the
removal of over 70% of their number of channels. For the remaining 27 subjects, the number
of retained channels after the selection process ranged from 16 to 22.
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Figure 5. Raw fNIRS channels (measuring changes in ∆HBO2) selected after the proposed channel
selection algorithm featuring the relative range (RR). The intervals for various pain conditions are
highlighted and annotated as B (Baseline), LA (Low Arm Pain), HA (High Arm Pain), HH (High
Hand Pain), and LH (Low Hand Pain). The gray background in the figure represents the duration of
each experiment phase: Baseline: 60 s, LA, LH, HA, and HH, each lasting 10 s.

2.3. Dataset Organisation

After completing the data collection and channel selection process, all recorded data
were segmented into 10-second intervals for each class. This resulted in six observations for
the baseline class per subject, 12 observations for the low pain class per subject, and 12 ob-
servations for the high pain class per subject. In order to address the class observation
imbalance, six additional observations from the rest periods of each subject, prior to the
pain stimulation, were included in the baseline class. Consequently, the dataset consisted of
a total of 972 observations. Each subject contributed 12 observations for each class, resulting
in a cumulative total of 36 observations per subject. The dataset included 324 observations
for each of the Baseline (B), Low Pain (LP), and High Pain (HP) classes.

2.4. Signal Processing: Filtration and Averaging

To suppress the noise and pulsation in fNIRS data (∆HBO2 and ∆HHB), as shown in
Figure 6, each available fNIRS channel was passed through a 4th order Butterworth infinite
impulse response low-pass filter with a cut-off frequency of 0.16 Hz [23].

Figure 6. Raw 10-Second Data Segments for Baseline (B), Low Pain (LP), and High Pain (HP) Classes,
displayed for Channel 1 of ∆HBO2 (Left) and ∆HHB (Right).

During fNIRS data acquisition, there can be various common noise sources that affect
the measurements. These noise sources can include changes in blood flow unrelated to
neural activity, motion artifacts, and systemic physiological changes such as heart rate and
respiration [23]. These sources can introduce noise into the fNIRS data. Common Average
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Referencing (CAR) [28] involves calculating the averages from all available channels across
the scalp for each wavelength (∆HBO2 and ∆HHB). This average is then subtracted,
for each wavelength from the signal of each individual channel. This effectively subtracts
out the common noise components shared by all channels. Equation (2) shows the channel-
averaging scheme:

havg(k) =
1
M

M

∑
j=1

H(k, j) (2)

where h is the average of fNIRS measure H (∆HBO2 or ∆HHB), M is the total number of
channels for each participant, k is the discrete time for which the signal is recorded, and j is
the channel number. The preprocessed version of both fNIRS measures, i.e., ∆HBO2 and
∆HHB for various experimental conditions, is displayed in Figure 7.

Figure 7. Preprocessed 10-Second Data Segments for Baseline (B), Low Pain (LP), and High Pain
(HP) Classes, displayed for ∆HBO2 (Left) and ∆HHB (Right). The processing pipeline encompasses
low-pass filtering, Common Average Referencing (CAR) for each filtered channel, and the final step
of averaging across all channels, culminating in a consolidated vector representation.

2.5. Feature Extraction

The ∆HBO2 and ∆HHB signals display distinct characteristics associated with the
pain intensities. Amplitude, as an indicator of pain intensity, increases with more painful
stimuli, signifying higher neural activity and oxygen demand. Variation in these signals
highlights the dynamic nature of pain experiences, showcasing rapid and substantial fluc-
tuations over time. Complexity in ∆HBO2 and ∆HHB responses uncovers the intricate
interactions between brain regions and physiological systems involved in pain process-
ing [29]. The dynamics of ∆HBO2 and ∆HHB responses reveal the timing of pain intensity,
from pain onset to apex, and then, to recovery. Moreover, the stability of these signals
distinguishes sustained pain from transient changes, providing insights into the persistence
of pain perception. To extract the fNIRS signal information related to intensity, dynamics,
stability, complexity, and variation-like characteristics [30], we have carefully chosen fea-
tures [31,32] such as Log Energy, Crest Factor, Shape Factor, Impulse Factor, Margin Factor,
Mobility, Complexity, Mean Absolute Deviation of First Difference, Range, and Variation in
First Difference as defined in Table 1. These features are extracted from both ∆HBO2 and
∆HHB signals and fused at the feature level to create a fused feature vector.

2.6. Feature Selection

Feature selection is crucial for improving model efficiency by focusing on important
features, reducing dimensionality, and ultimately improving the overall performance in
machine learning tasks. In this work, the Minimum Redundancy Maximum Relevance (MRMR)
algorithm [33] is utilised. MRMR identifies the most informative features for a given task
by considering both their relevance to the target variable and their redundancy with respect
to each other. It evaluates the mutual information between features and the target, ranking
them by relevance while also measuring the redundancy between features. The algorithm
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then selects features that achieve the right balance between relevance and redundancy,
resulting in a subset of features that can improve model performance with reduced features.

Table 1. Details of statistical features used in this study. The feature vector F comprises all ten
features, with h as the preprocessed signal (∆HBO2 or ∆HHB), h′ as the derivative of h, and h̄′ as the
mean of h′. hpeak, hrms, and ham denote the peak, root mean square, and absolute mean of the input
signal h, respectively, while var(.) represents the variance.

Features Definitions

Log Energy F1 = ∑n
i=1 log(h2

i )

Crest Factor F2 =
hpeak
hrms

Shape Factor F3 = hrms
ham

Impulse Factor F4 =
hpeak
ham

Margin Factor F5 =
hpeak

ham
2

Mobility F6 =

√
var(h′)
var(h)

Complexity F7 = F6(h′)
F6(h)

Mean Absolute Deviation of First Derivative F8 = 1
n ∑n

i=1 |h′i − h̄′|
Range F9 = max(h)−min(h)

Variation in First Derivative F10 =
√

1
n ∑n

i=1(h
′
i − h̄′)2

2.7. Classification

In the context of pain level assessment, the classification focus was on distinguishing
between various pain classes: Baseline (B), Low Pain (LP), and High Pain (HP). To achieve
this, we employed a reduced feature set consisting of statistical features extracted from
both ∆HBO2 and ∆HHB signals. We utilised well-known classifiers such as Discriminant
(Disc) [34], K-Nearest Neighbour (KNN) [35], and Support Vector Machine (SVM) [36] to
identify pain levels using the feature set. We employed parameter optimisation, carefully
tuning the classifiers using a Bayesian approach [37]. This data-driven decision-making
process is supported by an acquisition function known as ‘expected improvement per
second plus’, which underwent 50 iterations. We identified the hyperparameters for each
classification algorithm that minimised the 10-fold cross-validation loss across the entire
dataset [38].

The classification performance was evaluated using a leave-one-subject-out cross-
validation (LOSOCV) approach [39]. In LOSOCV, the model’s effectiveness is assessed by
withholding one individual’s data from the dataset for testing, while the data from the re-
maining participants undergoes 10-fold cross validation. This process is repeated iteratively
for each subject in the dataset, ensuring that each subject serves as the test set exactly once.
The performance metrics consisting of accuracy (Acc), sensitivity (Sen), specificity (Spec),
and F1 score (F1) and obtained in each iteration were averaged to provide a comprehensive
assessment of the model’s overall performance. Additionally, we systematically tested the
identification of the best-performing model with varying numbers of features based on their
MRMR rank. Thus, the combination of feature engineering, hyperparameter optimisation,
and classification algorithms proves to be a powerful toolkit for decoding pain levels based
on fNIRS signals.

2.8. Statistical Analysis

The obtained features were also analysed using statistical analysis to identify signifi-
cant differences in the obtained features across the different experimental conditions for
both ∆HBO2 and ∆HHB independently. This information will help validate our hypothesis,
indicating that the obtained features encompass pain-related data from the experimen-
tal conditions. First, the data were examined for normality and homogeneity using the
Kolmogorov–Smirnov tests. Focusing on the ten extracted features from ∆HBO2 and
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∆HHB measurements for the classification of the pain level, differences were analysed
using Analysis of Variance (ANOVA). A post hoc Bonferroni test was carried out for mul-
tiple comparisons. The significant level was set to p < 0.05. All statistical analyses were
performed using SPSS version 29.

3. Results

In this section, the outcomes of the proposed multi-class fNIRS-based pain assessment
system are presented. The results of the system are demonstrated via the independent
utilisation of ∆HBO2 and ∆HHB signals, along with employing combined haemoglobin
measures. Ten features are extracted from each measure and are passed to the three clas-
sifiers (Disc, KNN, and SVM). In the case of ∆HBO2 + ∆HHB, the features from each
measure are fused before the classification stage, resulting in a total of 20 features in
this case. The selection of classifiers for each experiment was made following extensive
hyperparameter tuning, as detailed in Table 2.

Activation levels of fNIRS using both ∆HBO2 and ∆HHB measurements for different
experimental conditions are presented in Figure 8. As shown, the highest activation in the
prefrontal cortex for ∆HBO2 (first row) is recorded for HA (High Arm pain), while LH
(Low Arm pain) exhibits the lowest concentration level compared to other conditions and
with a very similar activation level to the baseline. Similar to ∆HBO2, the most elevated
activation in ∆HHB measures is observed in the HA condition. However, other conditions
do not exhibit a significant increase.

Table 2. Optimised hyperparameters for different classification algorithms via Bayesian Optimisation
in the context of distinguishing between Baseline (B), Low Pain (LP), and High Pain (HP).

Model Parameters ∆HBO2 ∆HHB ∆HBO2 + ∆HHB

Disc
Discriminant Type Pseudo Linear Linear Diagonal Linear

Gamma 7.55 × 10−4 0.0025 0.006
Delta 3.51 × 10−5 2.96 × 10−5 2.12 × 10−5

KNN

Number of Neighbours 211 1 25
Distance Chebychev Cosine City Block

Distance Weight Inverse Inverse Equal
Exponent – – –

Neighbour Search KD-Tree Exhaustive Exhaustive
Standardisation Yes Yes Yes

SVM

Coding One vs. All One vs. All One vs. One
Box Constraint 2.1888 10.3923 980.4894

Kernel Scale – – 13.2018
Kernel Function Polynomial Polynomial Gaussian

Polynomial Order 3 3 –
Standardise Yes Yes Yes

3.1. Classification Results

The results in terms of performance metrics for each measure are presented in Table 3.
For the ∆HBO2 measure, the SVM classifier performs remarkably well as compared to
that of Disc and KNN, achieving the highest accuracy of 64.67%. It exhibits outstanding
sensitivity (92.85%) and specificity (97.22%), underlining its ability to effectively identify
pain instances while maintaining high precision. For the ∆HHB measure, the SVM classi-
fier again excels with the highest accuracy of 62.28%. It maintains remarkable sensitivity
(92.87%) and specificity (97.07%), showcasing its effectiveness in pain assessment. The KNN
classifier exhibits an accuracy of 41.83%, whereas the Disc classifier displays an accuracy
of 50.94%. The combined ∆HBO2 + ∆HHB measure, when paired with the SVM classi-
fier, outperforms other classification algorithms with an accuracy of 66.55%. Sensitivity
(93.8%) and specificity (96.14%) remain high, highlighting the SVM’s effectiveness in pain
assessment. The F1 Score of 96.98% emphasises the balanced performance. On the other
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hand, the KNN classifier, with an accuracy of 40.19%, shows lower performance, and the
Disc classifier, with an accuracy of 56.23%, exhibits moderate performance. The SVM
classifier consistently achieves high accuracy, sensitivity, specificity, and F1 Score, with the
∆HBO2 + ∆HHB measure performing the best among all measures.

Figure 8. Haemodynamic changes shown using fNIRS for ∆HBO2 (first row) and ∆HHB (second
row) measures: (a) Baseline, (b) HH (High Hand Pain), (c) LH (Low Hand Pain), (d) HA (High Arm
Pain), and (e) LA (Low Arm Pain). The color bar signifies the change in concentration of ∆HBO2

and ∆HHB (∆µmol). These calculations are derived from the averages across all subjects for each
respective channel.

Table 3. System performance metrics (Acc: Accuracy, Sen: Sensitivity, Spec: Specificity, and F1 Score)
for different classification algorithms (Disc, KNN, and SVM) across various measures, with each
measure having a different feature vector length denoted by #.

Measure Model # Acc Sen Spec F1 Score

∆HBO2

Disc
10

51.78± 9.94 74.78± 19.43 73.30± 11.91 85.98± 9.60
KNN 41.74± 7.73 56.96± 17.03 64.81± 13.29 75.53± 7.85
SVM 64.67± 5.99 92.85± 8.25 97.22± 3.65 96.67± 3.76

∆HHB
Disc

10
50.94± 7.60 73.57± 12.12 75.77± 9.53 85.35± 6.42

KNN 41.83± 8.34 44.36± 14.30 74.23± 9.10 73.14± 5.75
SVM 62.28± 5.86 92.87± 8.24 97.07± 3.62 96.63± 3.83

∆HBO2 + ∆HHB
Disc

20
56.23± 6.84 76.32± 11.62 79.32± 10.81 87.24± 5.73

KNN 40.19± 8.09 43.63± 13.77 68.06± 10.01 70.99± 6.07
SVM 66.55± 7.36 93.8± 6.38 96.14± 3.04 96.98± 3.08

Following the acquisition of reference values using the full feature set (see Table 3),
the feature set underwent a feature selection process using MRMR to minimise redun-
dancy and enhance the discriminative power. Table 4 presents the performance metrics
for each measure after applying MRMR. The results provide insights into how feature
selection impacts the performance of pain assessment models. In the ∆HBO2 measure,
the feature selection process has notably influenced the performance of different classifiers.
The SVM classifier, with nine selected features, achieves the highest accuracy of 65.71%
with improved sensitivity (93.18%) and specificity (95.99%). The KNN classifier, with seven
selected features, exhibits enhanced accuracy at 44.22%, although it still falls behind SVM.

In the ∆HHB measure, feature selection has similarly enhanced the performance of
the classifiers. The SVM classifier, with nine selected features, maintains its position as
the top-performing classifier with an accuracy of 63.42% along with improved sensitivity
(94.44%) and specificity (97.22%). The combined ∆HBO2 + ∆HHB measure benefits from
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feature selection, particularly in the SVM classifier with 15 selected features. It achieves
the highest accuracy at 68.51%, emphasising the significance of choosing both hemoglobin
measures. Sensitivity (94.7%), specificity (94.29%), and the F1 Score also reflect notable
improvements. The KNN classifier, with 18 selected features, shows an accuracy of 40.8%.
These findings emphasise the crucial role of both measures, particularly in the combined
(∆HBO2 + ∆HHB) measure, where the SVM classifier emerges as the optimal choice for
precise and well-balanced pain assessment.

Table 4. System performance metrics (Acc: Accuracy, Sen: Sensitivity, Spec: Specificity, and F1 Score)
with MRMR-based selected features for different classification algorithms (Disc, KNN, and SVM)
applied to each measure, with the feature vector length denoted by #.

Measure Model # Acc Sen Spec F1 Score

∆HBO2

Disc 10 51.78 ± 9.94 74.78 ± 19.43 73.30 ± 11.91 85.98 ± 9.60
KNN 7 44.22 ± 8.16 55.36 ± 15.38 70.22 ± 13.16 76.30 ± 7.20
SVM 9 65.71 ± 5.97 93.18 ± 8.03 95.99 ± 4.24 96.77 ± 3.67

∆HHB
Disc 10 50.94 ± 7.6 73.57 ± 12.12 75.77 ± 9.53 85.35 ± 6.42
KNN 10 41.83 ± 8.34 44.36 ± 14.3 74.23 ± 9.10 73.14 ± 5.75
SVM 9 63.42 ± 6.85 94.44 ± 8.33 97.22 ± 3.27 97.40 ± 3.84

∆HBO2 + ∆HHB
Disc 20 56.23 ± 6.84 76.32 ± 11.62 79.32 ± 10.81 87.24 ± 5.73
KNN 18 40.8 ± 7.26 44.58 ± 15.27 68.83 ± 9.34 71.72 ± 6.34
SVM 15 68.51 ± 9.02 94.70 ± 5.77 94.29 ± 4.92 97.33 ± 2.92

Table 5 lists the features corresponding to the optimal results for each measure. In the
approach using a fusion of haemoglobin measures (∆HBO2 + ∆HHB), among the fifteen
selected features, nine belong to ∆HBO2, highlighting its greater contribution compared to
the six features from ∆HHB.

Table 5. List of selected features for each measure, with # indicating the number of features.

Measure # Selected Features

∆HBO2 9
Mobility, Complexity, Range, Shape Factor, Variation in First
Derivative, Impulse Factor, Mean Absolute Deviation of First
Derivative, Log Energy, Crest Factor.

∆HHB 9
Crest Factor, Complexity, Shape Factor, Mobility, Range, Varia-
tion in First Derivative, Log Energy, Mean Absolute Deviation of
First Derivative, Margin Factor.

∆HBO2 + ∆HHB 15

∆HBO2: Mobility, Complexity, Range, Shape Factor, Variation
in First Derivative, Impulse Factor, Mean Absolute Deviation of
First Derivative, Log Energy, Crest Factor.
∆HHB: Crest Factor, Complexity, Shape Factor, Mobility, Range,
Variation in First Derivative.

In pain assessment, class-wise performance is also crucial because it enables the
accurate identification of different pain levels, helping clinicians in making treatments
based on individual pain experiences and needs. Analysing the class-wise performance
of each measure, as depicted in Figure 9, highlights the superior effectiveness of the SVM
classifier, particularly in accurately classifying instances of Baseline (B), Low Pain (LP),
and High Pain (HP) compared to other classification methods such as Disc and KNN.
Notably, the ∆HBO2 measure demonstrates its strength in achieving higher classification
accuracy for High Pain (HP) instances, while the ∆HHB measure excels in classifying Low
Pain (LP) cases. However, it is important to emphasise the significance of identifying the
absence of pain (B) in pain assessment, and here, the ∆HHB measure proves better at
predicting pain-free observations compared to the ∆HBO2 measure. The fusion of both
∆HBO2 and ∆HHB effectively integrates this information, yielding improved results for
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both LP and HP classes. In summary, the fusion of both fNIRS measures enhances class-
wise accuracies in pain assessment, contributing to a more comprehensive and precise pain
perception evaluation.

Figure 9. Class-wise accuracy (%) assessment of different measures using Disc; KNN; and SVM
classifiers using confusion charts.

3.2. Statistical Analyses

The results regarding the comparison of the statistically significant ∆HBO2 feature
in the different experimental conditions are provided in Table 6. Among ten different
features for ∆HBO2 measurement, Log Energy, Crest Factor, Shape Factor, and Range
exhibit significant differences compared to other features in distinguishing between ex-
periment conditions, as indicated by their respective p-values (F(2,972) = 3.078, p = 0.046,
F(2,972) = 3.264, p = 0.039, F(2,972) = 3.466, p = 0.032, F(2,972) = 10.179, p < 0.001, re-
spectively). For ∆HHB measures, three features, Log Energy, Margin Factor, and Range,
showed significant differences in identifying pain levels as compared to other features
(F(2,972) = 3.127, p = 0.044, F(2,972) = 4.134, p = 0.016, F(2,972) = 4.558, p = 0.011, respec-
tively). The results of the post hoc test for the comparison of pain levels for statistically
significant features of the ∆HHB measure have been provided in Table 7.

Table 6. Post Hoc Test Results for Different Levels of Pain in Various Features of ∆HBO2 (Only
comparisons with significant (p ≤ 0.05) values are reported.)

Feature Group One Group Two Mean Diff. Std. Error Sig. Lower Bound Upper Bound

Log Energy

No Pain Low Pain 73.67 41.110 0.073 −7.00 154.33
High Pain 96.99 * 41.110 0.018 16.33 177.66

Low Pain No Pain −73.67 41.110 0.073 −154.33 7.00
High Pain 23.33 40.966 0.569 −57.06 103.71

High Pain No Pain −96.99 * 41.110 0.018 −177.66 −16.33
Low Pain −23.33 40.966 0.569 −103.71 57.06

Crest factor

No Pain Low Pain −0.02 0.039 0.685 −0.09 0.06
High Pain 0.078 * 0.039 0.044 0.00 0.15

Low Pain No Pain 0.02 0.039 0.685 −0.06 0.09
High Pain 0.094 * 0.039 0.015 0.02 0.17

High Pain No Pain −0.078 * 0.039 0.044 −0.15 0.00
Low Pain −0.094 * 0.039 0.015 −0.17 -0.02

Shape factor

No Pain Low Pain −0.017 * 0.006 0.008 −0.03 0.00
High Pain −0.01 0.006 0.067 −0.02 0.00

Low Pain No Pain 0.017 * 0.006 0.008 0.00 0.03
High Pain 0.01 0.006 0.402 −0.01 0.02

High Pain No Pain 0.01 0.006 0.067 0.00 0.02
Low Pain −0.01 0.006 0.402 −0.02 0.01
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Table 6. Cont.

Feature Group One Group Two Mean Diff. Std. Error Sig. Lower Bound Upper Bound

Impulse factor

No Pain Low Pain −0.05 0.055 0.386 −0.16 0.06
High Pain 0.08 0.055 0.167 −0.03 0.19

Low Pain No Pain 0.05 0.055 0.386 −0.06 0.16
High Pain 0.125 * 0.055 0.024 0.02 0.23

High Pain No Pain −0.08 0.055 0.167 −0.19 0.03
Low Pain −0.125 * 0.055 0.024 −0.23 −0.02

Range

No Pain Low Pain −0.165 * 0.037 p ≤ 0.001 −0.24 −0.09
High Pain −0.129 * 0.037 0.001 −0.20 −0.06

Low Pain No Pain 0.165 * 0.037 p ≤ 0.001 0.09 0.24
High Pain 0.04 0.037 0.33 −0.04 0.11

High Pain No Pain 0.129 * 0.037 0.001 0.06 0.20
Low Pain −0.04 0.037 0.33 −0.11 0.04

*: the mean difference is significant at 0.05 level.

Table 7. Post Hoc Test Results for Different Levels of Pain in Various Features of ∆HHB (Only
comparisons with significant p-values are reported).

Feature Group One Group Two Mean diff. Std. Error Sig. Lower Bound Upper Bound

Log Energy

No Pain Low Pain 104.153 * 49.629 0.036 6.770 201.535
High Pain 110.774 * 49.629 0.026 13.391 208.156

Low Pain No Pain −104.153 * 49.629 0.036 −201.535 −6.770
High Pain 6.62 49.4554 0.894 −90.420 103.662

High Pain No Pain −110.774 * 49.629 0.026 −208.156 −13.391
Low Pain −6.62 49.455 0.894 −103.662 90.420

Margin Factor

No Pain Low Pain 1.629 * 0.572 0.004 0.506 2.752
High Pain 0.621 0.572 0.277 −0.501 1.744

Low Pain No Pain −1.629 * 0.572 0.004 −2.752 −0.506
High Pain −1.007 0.570 0.078 −2.126 0.111

High Pain No Pain −0.621 0.572 0.277 −1.744 0.501
Low Pain 1.007 0.570 0.078 −0.111 2.126

Range

No Pain Low Pain −0.106 * 0.04 0.00 −0.18 −0.04
High Pain −0.072 * 0.04 0.04 −0.14 0.00

Low Pain No Pain 0.106 * 0.04 0.00 0.04 0.18
High Pain 0.03 0.04 0.34 −0.04 0.10

High Pain No Pain 0.072 * 0.04 0.04 0.00 0.14
Low Pain −0.03 0.04 0.34 −0.10 0.04

*: the mean difference is significant at 0.05 level.

4. Discussions

To the best of the authors’ knowledge, this is the first study that deals with the
objective assessment of pain via fNIRS within a comprehensive exploration of ∆HBO2
and ∆HHB measures. The findings reveal an association between pain intensities and
distinct statistical patterns in haemoglobin concentrations. Considering the overall system
accuracy, the ∆HBO2 measure demonstrated better performance than the ∆HHB measure
in the multiclass scenario used in this study. However, when examining accuracies for
specific classes, ∆HBO2 excels in identifying High Pain signals, while ∆HHB demonstrates
better accuracy for Low Pain observations. Upon a comparison of both fNIRS measures,
it can be concluded that the fusion of ∆HBO2 and ∆HHB measures at the feature level
emerges as an effective method for the categorisation of the three pain intensities in our
experimental conditions.

Based on the classification results, it can be deduced that the SVM classification al-
gorithm is most effective when used with the selected statistical features across all the
measures in pain assessment. Both of the fNIRS measures are considered to be reliable
in evaluating pain, with ∆HBO2 demonstrating slightly higher accuracy than the ∆HHB
measure when used independently. However, the most optimal results are obtained when
combining both ∆HBO2 and ∆HHB, suggesting that a combination of these two measures
offers the best performance for pain assessment in our experimental conditions. While
∆HBO2 provides insights into the oxygenated haemoglobin concentration, which can indi-
cate changes in blood flow and tissue activity, ∆HHB reveals deoxygenated haemoglobin
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levels reflecting variations in tissue oxygen consumption. By integrating these two mea-
sures, a more holistic understanding of the physiological responses to pain is achieved.
This combined approach allows for a more robust assessment as it captures both the supply
and demand aspects of oxygen delivery, thus enhancing the ability to detect and interpret
changes in pain perception.

Existing studies on pain assessment using neuroimaging methods have primarily fo-
cused on binary classifications, mainly distinguishing between pain and no pain. However,
the development of approaches capable of distinguishing various signatures of pain has
been neglected so far. This limitation is significant given the diverse origins (e.g., peripheral,
emotional, and phantom pain), varying intensities, and durations of pain experienced in
the human body. Different types of pain are carried to the central nervous system by
different sensory receptors, responding to various stimuli associated with pain, such as
temperature, chemical, or pressure [15]. Hence, there is a need for machine learning models
that can effectively differentiate between multiple pain signatures at varying intensities,
offering greater relevance for real-world scenarios. In contrast, our study addresses this gap
by focusing on multilevel pain classification, considering pain originating from different
locations of the body, specifically the hand and arm. This is particularly important for
patients who are unable to communicate verbally, such as elderly people recovering from a
stroke or with advanced dementia, and when the source of pain is not readily apparent.

In examining activation levels across different pain conditions, our focus on ∆HBO2
and ∆HHB measures provides valuable insights into the neural responses associated with
pain perception. As depicted in Figure 8, the most pronounced increase in ∆HBO2 levels
occurs in response to High Arm (HA) pain, emphasising the sensitivity of this measure to
high pain intensities. Similarly, increased activation is evident in High Hand (HH) pain
compared to Low Hand (LH) and Low Arm (LA) pains. These outcomes are consistent with
prior research, reinforcing the notion that elevated pain levels are associated with a more
pronounced neural response in fNIRS studies investigating ∆HBO2 [22,40]. The significant
increase in activation during various conditions compared to the baseline, except for
Low Arm (LA) pain, is noteworthy. This could, in part, account for the lower accuracy
observed in identifying the low pain (LP) class using ∆HBO2 across all three classifiers.
Activation levels in ∆HHB data exhibited minimal fluctuations across diverse conditions,
with the exception of the HA condition, where the highest activation, akin to ∆HBO2,
was observed. These findings highlight the superior efficacy of ∆HBO2 as a more reliable
measure for pain assessment compared to ∆HHB, when used independently. However,
when combined in a feature fusion scheme, they collectively obtained better accuracy than
when used independently.

While our proposed system demonstrated better performance in identifying different
pain levels, it presents some limitations. First, the channel selection algorithm employed in
our study served the purpose of rejecting channels saturated with artifacts and noise. How-
ever, it may automatically discard channels containing valuable pain-related information.
To address this, a more advanced preprocessing algorithm should be considered, capable of
mitigating noise in unreliable channels without outright rejection. This would ensure that
potentially relevant information is retained in the dataset for more comprehensive pain
assessment. Second, it is evident in our preprocessing stage, where we opted to average
out all channels to generate a single time series vector. This approach, while simplifying
the data, has the drawback of suppressing information inherent in individual channels.
In our future work, we will conduct analysis by defining specific regions of interest based
on functional areas of the brain, which can provide insights into the localised functions and
responses to pain associated with different brain regions. Finally, our investigation into
fNIRS data primarily focused on the time domain, emphasising the extraction and assess-
ment of simple statistical features. However, by exclusively focusing on the time domain,
we may have overlooked valuable information present in other domains. To broaden the
scope of the analysis, we should consider additional domains, such as frequency or cepstral
domains, throughout the stages of preprocessing, feature extraction, and evaluation.
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5. Conclusions

In this study, we introduced a multilevel pain intensity assessment using fNIRS data,
compiling a novel dataset from healthy individuals experiencing varying induced pain
levels in distinct body locations. Analysing ∆HBO2 and ∆HHB measures, we found
that ∆HBO2 outperformed ∆HHB overall but excelled in predicting high and low pain
classes, respectively. Combining both measures significantly improved the performance,
demonstrating the potential of fNIRS for multilevel pain assessment. The system achieved
68.51% ± 9.02% accuracy, 94.7% ± 5.77% sensitivity, and 94.29% ± 4.92% specificity in
diagnosing no pain, low pain, and high pain observations, respectively. Future research
aims to explore integrating fNIRS with other sensor modalities, analysing pain-related
information in different fNIRS domains, and effectively pinpointing the site of pain.
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