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Abstract: One of the common methods for implementing the condition-based maintenance of rotating
machinery is vibration analysis. This tutorial describes some of the important signal processing meth-
ods existing in the field, which are based on a profound understanding of the component’s physical
behavior. Furthermore, this tutorial provides Python and MATLAB code examples to demonstrate
these methods alongside explanatory videos. The goal of this article is to serve as a practical tutorial,
enabling interested individuals with a background in signal processing to quickly learn the important
principles of condition-based maintenance of rotating machinery using vibration analysis.
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1. Introduction

Complex mechanical systems such as helicopters, trains, and wind turbines require
expensive maintenance to prevent accidents that can cost human lives or cause severe
damage to the system itself [1]. The maintenance cost of these systems over their opera-
tional lifespan can often be much higher than the initial cost of the system [2]. Therefore,
improving maintenance can significantly reduce the overall cost of the system over its
operational life.

Complex mechanical systems are primarily maintained via preventive maintenance [3].
In recent decades, condition-based maintenance methods have been developed to facilitate
the maintenance of the system based on its health condition [4]. These methods enhance
system availability, prevent accidents, and, in some cases, reduce the need for replacing
perfectly healthy components [3,5].

One common approach to condition-based maintenance in complex rotating machin-
ery is the use of vibration analysis [6]. In this approach, as depicted in Figure 1, vibration
sensors are installed near the rotating components of the system (e.g., a helicopter’s rotor,
gear casing, etc.), and signal processing algorithms are employed to detect faults and
classify their sources [7,8]. Once the fault is detected, maintenance actions can be taken to
prevent the fault from deteriorating further. The algorithms employed among different
rotating components typically rely on the same fundamental methods.

A profound understanding of the component’s physical behavior guides signal-
processing algorithms tailored uniquely for each component type. Most of the algorithms
are based on two principles: (1) most of the information about the health status is concen-
trated in a finite number of frequencies due to the periodic nature of the rotation. (2) The
component’s characteristic frequencies can be calculated based on its specifications, such
as dimensions, component type, and so on.

There are various rotating components that can be monitored. This article focuses
on fundamental methods and illustrates their application in monitoring roller bearings
and gears [9,10]. The application of these principles to other components and fault types
can often be achieved relatively easily. Examples of additional algorithms, monitored
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components, and fault types can be found in Randall’s book [11], where many of the algo-
rithms are based on signal processing principles described in Braun’s book [12]. Jablonski’s
book [13] provides numerous MATLAB implementations of these algorithms.
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Figure 1. Condition-based maintenance by vibration analysis: use of vibration and speed sensors for
monitoring the rotating machinery. The quantity of vibration and speed sensors is not necessarily
identical.

Section 2 provides an overview of basic fault types in rotating components and vi-
bration measurement. In Section 3, the fundamental methods for processing vibrations of
rotating components are discussed, while Section 4 demonstrates how these methods can
be applied to detect and classify faults in bearings and gears. The tutorial is accompanied
by videos, code, and data examples in Python and MATLAB, which are available via the
link in reference [14].

2. General Framework: Goal, Fault Types, and Sensors

Rotating machines, such as helicopters and trains, consist of a wide variety of rotating
components like bearings, gears, and shafts. For example, Sikorsky UH-60 Black Hawk
has more than 100 different monitored components, including over 50 bearings, 25 gears,
and 30 shafts. Throughout the life of these systems, various faults can occur, either during
maintenance activities (e.g., the improper assembly of one of the components) or via
gradual degradation, such as the development of a fault in the outer race of the bearing
due to cyclic loading of the rolling elements on the ring [5,15].

As illustrated in Figure 2, the health condition of a rotating component can roughly
be divided into three phases: (1) a healthy condition, (2) the presence of a small fault
that grows slowly, and (3) a significant fault that grows rapidly. The primary goal of
condition-based maintenance is to first understand if a fault has occurred in one of the
rotating components of the system and, if so, which one. These two tasks are essentially
performed together, meaning that the algorithm works in a way that if it detects a fault, it
immediately classifies it, as will be explained in Section 4.
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Figure 2. An illustration of condition-based maintenance algorithms goals: detection, classification,
severity estimation, and remaining useful life (RUL) estimation.

The two subsequent goals of condition-based maintenance are fault severity estimation
and remaining useful life estimation. There are methods for achieving these goals, but they
often require historical data on faults [16], making them less relevant to critical rotating
systems such as helicopters. Furthermore, the algorithms for these goals are not based
solely on signal processing but on statistics and machine learning. Hence, these two goals
are beyond the scope of this tutorial.

In general, each rotating component exhibits unique faults associated with it. In
bearings, there are four common faults that the literature usually deals with, as shown in
Figure 3a: outer race fault, cage fault, inner race fault, and rolling element fault [15,17].
Gears also have a variety of tooth faults that the literature addresses, such as illustrated in
Figure 3b: tooth breakage, pitting, missing tooth, and root crack [18,19].
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Figure 3. Examples of faults in rotating components: (a) examples of bearing faults; (b) examples of
gear faults.

As presented in Figure 1, two common sensor types are used for health monitoring via
vibration analysis, vibration sensors [20] and speed sensors [21], where the latter supports
the analysis of the first, as will be explained in Section 3. The measured signals are analyzed
using the condition-based maintenance algorithm, and the health status is estimated based
on the algorithm output. The measured signal consists of the vibrations of several rotating
components, random noise, and the effects of the transmission path [22].
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It is worth noting that there are other sensing methods within the condition-based
maintenance paradigm, like oil–debris monitoring, acoustics, temperature, and more, but
they are outside the scope of this tutorial. Vibration sensors are usually preferred over
others because they allow for the early detection of faults [23]. Furthermore, various
machine learning techniques, often designated as artificial intelligence methods, have
been applied to condition-based maintenance via vibration analysis [24–27]. For fault
classification, these approaches prove highly valuable when sufficient data, including
faulty data, are available. However, they are less relevant in cases where faulty data are
rare [16,28].

3. Basic Methods and Principles

As explained in Section 1, most of the algorithms are based on two principles: (1) most
of the information about the health status of rotating components is concentrated in a finite
number of frequencies. (2) These frequencies can be calculated based on the specifications
of the component. This insight can explain most of the stages of vibration analysis.

As illustrated in Figure 4, vibration analysis is generally utilized as follows: for
each rotating component, (1) the algorithm isolates the component of interest, mitigating
interferences from other sources then (2) angularly resamples the signal to be synchronized
in phase, not in time, thereby ensuring a consistent number of samples in each cycle.
After that, (3) additional operations are performed to improve the signal-to-noise ratio
or highlight specific signal characteristics. (4) Features correlated with health status are
extracted. Finally, (5) a health indicator classifies faults in the monitored component via
the smart aggregation of features extracted from both the current record and healthy
baseline records.
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Figure 4. The general stages of signal processing for condition-based maintenance of a rotating
component.

In this section, basic methods that form the basis of vibration analysis for condition-
based maintenance will be described. The next section will explain how these methods
can be used to detect faults in bearings and gears. All the data used in the tutorial are
based on a bearing experiment with an outer race spall from the publicly available Pader-
born University bearing dataset [29], a gear experiment with tooth breakage provided in
references [30], a simulated gear signal generated from the dynamic model described in
reference [16], and artificial white noise. The data are available via the link provided in
reference [2].

3.1. Angular Resampling

The vibration signal is periodic relative to the phase of the rotating shaft and not to the
time, as the rotational speed is never constant due to small speed fluctuations. To overcome
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this issue, angular resampling can be employed [31,32] as a transformation between two
domains: time domain and cycle domain.

To perform angular resampling, the phase of the shaft is calculated as a function of
time, and then a new sample time vector is computed to maintain a constant phase interval
between consecutive coordinates. Afterward, the vibration signal is resampled according
to the new sample time vector. This process is described in Figure 5.
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There are several terms in the literature to describe the new cycle domain. In this
paper, we use the term “cycle domain” since the signal is synchronized to the cycle of the
shaft. The frequency domain of the cycle is referred to as the “order domain”. In the context
of transitioning between domains from time to cycle, the processing can be considered to
have two steps: transitioning from time to cycle to make the signal truly periodical and
then transitioning from cycle to order where the relevant signal information is concentrated
into a finite number of specific orders.

For example, as shown in Figure 6a, initially, the time interval between each pair of
time steps is constant. The speed increases linearly from 1 Hz to 5 Hz. Consequently, the
signal is smeared in the frequency domain, as can be observed in Figure 6b. As depicted in
Figure 6c, in the cycle domain, the vibration is periodic, resulting in a sharp peak in the
order domain, as shown in Figure 6d.

3.2. Synchronous Averaging

The goal of synchronous averaging is to isolate the vibrations of the component of
interest. It does so by improving the signal-to-noise ratio via reduction interferences from
other rotating components [33,34] and random noise [35]. Figure 7 illustrates the ability of
synchronous averaging to isolate the vibrations of interest.

In synchronous averaging, the signal is divided into consecutive segments correspond-
ing to complete rounds of the shaft, and these segments are then averaged together [34,36].
This process is illustrated in Figure 8.

Synchronous averaging is highly sensitive to small fluctuations and is therefore not
relevant to bearings, where, due to slippage, the signal in the cycle domain still exhibits
fluctuations.

The reduction in random noise can be easily analyzed using Equations (1) and (2). The
synchronous average is calculated using Equation (1), where sa represents the calculated
synchronous average with N samples, M is the number of averaged segments, and sig
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is the signal in the cycle domain with M·N samples. Assuming the random noise is
independently identically distributed, we can conclude that the original variance of each
sample is reduced from σ2 to σ2

M , as shown in Equation (2).

sa[n] =
1
M

M−1

∑
m=0

sig[m·N + n] (1)

Var(sa[n]) = Var

(
1
M

M−1

∑
m=0

sig[m·N + n]

)
=

1
M2

M−1

∑
m=0

Var(sig[m·N + n]) =
1

M2 ·M·σ2 =
σ2

M
(2)Sensors 2024, 24, x FOR PEER REVIEW 6 of 18 
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The reduction in interference signals was analyzed in several studies, including
Refs. [34,37]. Concerning the sampled infinite continuous signal, synchronous averag-
ing creates a filter that isolates the complete orders of interest, as depicted in Figure 9.
When the number of averaged segments is increased, the filter becomes more selective [38].
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with respect to the complete orders of interest.

Figure 10 demonstrates the effectiveness of synchronous averaging on gears. In
Figure 10a, the measured signal is depicted alongside the gear signal. Due to interference
from the other wheel and random noise, the measured signal differs from the gear signal.
After synchronous averaging, as shown in Figure 10b, most of the interferences and random
noise are reduced; thus, the synchronous average resembles the gear signal. Figure 10c
illustrates the improvement in signal-to-noise ratio as a function of the number of average
segments. As the number of segments increases, the effect of random noise is reduced.
The number of teeth on the other wheel is 18; therefore, its interferences are eliminated
when the number of segments is an integer multiple of 18. This is because the other wheel’s
orders align precisely with zeros, similar to the zeros in the filters illustrated in Figure 9.
This example demonstrates the possibility of choosing a number of averaged segments that
completely eliminate an interfering signal [36].
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Figure 10. Demonstration of the effect of synchronous averaging. The number of teeth on the other
wheel is 18.

Regarding the statement, “most of the information about the health status is con-
centrated in a finite number of frequencies due to the periodic nature of the rotation”,
synchronous averaging can also be calculated via the order domain by extracting orders of
interest. As depicted in Figure 11, the signal is converted to the order domain, and then
the values of the integer orders are extracted. After division by the number of averaged
segments, the signal is converted back to the cycle domain. The resulting signal is the same
synchronous average calculated using averaging in Figure 8 [2]. This analogous process
demonstrates that synchronous averaging is a procedure that isolates a finite number of
orders of interest of the monitored component, where most of the information about the
health status is concentrated.

3.3. Difference Signal

Gear mesh vibrations dominate the synchronous average even under a healthy state,
masking the faulty signal. This masking effect can be addressed by analyzing the difference
signal [39]. The difference signal is calculated by filtering out the gear mesh harmonics
and their associated close pairs of sidebands, as depicted in Figure 12 [9]. The number of
filtered sidebands can be determined via trial and error; typically, two pairs surrounding
the gear mesh harmonics is a reasonable value.
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In Figure 13, the effectiveness of calculating the difference signal is demonstrated. Two
synchronous averages of two faulty cases are depicted in Figure 13c,d. The fault is not
visible in these figures. However, after calculating the difference signal, the fault becomes
clearly visible. For comparison, a healthy case is depicted alongside.
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3.4. Dephase

For rotating components that still exhibit speed fluctuations after angular resampling,
such as bearings, synchronous averaging is not effective in isolating the component vi-
brations. Therefore, Dephase can be employed [40,41]. Dephase can be considered the
opposite of synchronous averaging. While synchronous averaging retains the signal of the
synchronous components, such as shafts and gears, Dephase filters them out. There are
also alternative approaches, such as employing cepstrum analysis [42,43] for “liftering” out
the synchronous components [44,45].

As depicted in Figure 14, for each synchronous component that needs to be filtered
out, Dephase performs the following steps: (1) the signal is angularly resampled according
to the desired shaft speed, and then (2) the signal in the cycle domain is divided into long
segments. (3) For each long segment, the synchronous average is calculated, and then
(4) concatenated to the original length of the long segment. Afterward, (5) the concatenated
signal is subtracted from the original signal, and then (6) the long segments are assembled.
Finally, (7) the signal is resampled back to the time domain. This process is repeated
for each interfering synchronous component, and in the end, the signal of the diagnosed
component remains.
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Figure 14. Block diagram of Dephase.

Figure 15 illustrates the ability of Dephase to mitigate the interference of gear on the
vibration of the bearing. To emphasize the Dephase effect, the original signal contains a
faulty gear signal.

3.5. Envelope Analysis and Bearing Tones

The vibration of a faulted bearing is composed of periodic disturbances [7,46]. The
specific vibration shape is not as crucial for bearing diagnosis; instead, it is the frequency
of the vibration that matters. Due to the high-frequency interaction signal and bearing
slippage, the direct analysis of the vibration in the cycle and order domains (after angular
resampling) is problematic. Therefore, the envelope of the bearing signal is analyzed [15,46].
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The envelope signal of the bearing is extracted using the Hilbert transform [47,48].
Subsequently, the signal is converted to the order domain, as depicted in Figure 16.
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Figure 16. Envelope analysis of bearing vibrations.

For bearings, it is possible to calculate the relationship between the bearing parameters
and the orders at which faults will manifest, referred to as bearing tones. The terms bearing
tones, bearing frequencies, and bearing orders are used interchangeably.

The bearing tones can be calculated using Equations (3)–(6) [7,15]. Figure 17 illustrates
an example of these orders for an outer race fault. FTF is the fundamental train frequency,
BSF is the ball-spin frequency, BPFO is the ball-pass frequency outer race, BPFI is the
ball-pass frequency inner race, fs is the shaft speed, d is the rolling element diameter, D is
the pitch diameter, α is the bearing contact angle, and n is the number of rolling elements.
For analysis in the order domain, fs = 1.

FTF = fs
2

[
1 − d

D cos α
]

(3)

BSF = D
2d

[
1 −

(
d
D cos α

)2
]

(4)

BPFO = n fs
2

[
1 − d

D cos α
]

(5)

BPFI = n fs
2

[
1 + d

D cos α
]

(6)
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Figure 17. An example of bearing tone analysis of the envelope signal in the order domain. The
signal is from the publicly available Paderborn University bearing dataset [29].

4. Gear and Bearing Diagnosis

In this section, we will demonstrate the diagnosis of gears and roller bearings based
on the methods presented in the previous section. The two demonstrations will illustrate
how to diagnose a single gear and a single roller bearing in the rotating machine. In both
cases, we assume that examples of healthy records are available, either based on the initial
condition of the rotating component being assumed to be healthy or on historical data from
previous cases.

There are, of course, more approaches to the diagnosis of gears and roller bearings
presented in various papers [15,19,49]. More examples, which will help interested readers
deepen their learning on the subject, can be found in the references [15,17,50,51] for bearings
and in the references [52–54] for gear diagnosis.

4.1. Gear Diagnosis

As illustrated in Figure 18, initially, (1) the signal is angular resampled according to
the rotational speed of the gear shaft, and then (2) the synchronous average of the gear is
computed for isolating the gear vibrations. Then, (3) the difference signal is calculated from
the synchronous average to highlight the defect. (4) From these signals, various statistical
features can be extracted, such as root mean square (RMS), Skewness, Kurtosis, and so on.
Then, (5) based on healthy data, a health indicator is calculated for the rotating component.
(6) If the health indicator exceeds a certain threshold, the system alerts for a fault in the
monitored component. This threshold can be determined using statistical tools or via
trial and error by the operator, taking into account the trade-off between false alarms and
misdetections.

It is worth noting that currently, there is no widely known technique to classify the
type of fault (i.e., pitting, breakage, etc.) without the information of former gear faults in
the system. Furthermore, there are also other types of processing in Step (3), apart from
the difference signal and other possible features to extract in Step (4) [55]. Additionally,
there are more options for health indicator calculation. Figure 18 illustrates a representative
example of gear diagnosis, but of course, many other options are available.
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Figure 18. Block diagram of gear diagnosis.

4.2. Roller Bearing Diagnosis

Figure 19 illustrates an optional diagnostic process of a roller bearing. Initially,
(1) interferences of synchronous components such as gears are attenuated using Dephase.
Then, (2) In many cases of incipient faults, signal processing techniques, such as minimum
entropy deconvolution [56,57], are employed to enhance the fault signature. Following (3),
the signal is angularly resampled according to the shaft’s bearing. (4) The envelope signal
of the bearing is calculated, followed by (5) conversion of the envelope from the cycle to
the order domain using discrete Fourier transform or power spectral density calculation.
(6) Now, based on the parameters of the bearing, the bearing tones are extracted as features
for fault detection. (7) Next, similar to gear diagnosis, based on health records, the health
indicator for each type of fault is computed. (8) When the health indicator crosses the alarm
level in any of them, the algorithm alerts about a fault in the bearing, as well as its type
(cage fault/rolling element fault/outer race fault/inner race fault).
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Additional examples that can assist interested readers in deepening their understand-
ing of bearing diagnosis can be found in the references [15,17,50,51].
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5. Summary

In this tutorial, accompanied by code and explanatory videos, we explore the fun-
damental methods currently used in academia and industry for the purpose of signal
processing of rotating machinery for condition-based maintenance via vibration analysis.
It provides a quick entry point for interested signal processing experts in the field and
can also assist researchers in machine learning to become familiar with common methods
used today.

As explained in the paper, the leading principle is that rotating components generate
periodic signals, and therefore, most of the relevant information about their condition can
be found in a finite number of frequencies that can be calculated based on the parameters
of these rotating components.

Currently, fault severity and remaining useful life estimation are crucial research
goals in the signal processing of rotating machinery for condition-based maintenance via
vibration analysis. We anticipate that future studies will expand the existing capabilities of
fault detection and classification to achieve these objectives.
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