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Abstract: Due to limitations in operational scope and efficiency, a single Autonomous Underwater
Vehicle (AUV) falls short of meeting the demands of the contemporary marine working environ-
ment. Consequently, there is a growing interest in the coordination of multiple AUVs. To address
the requirements of coordinated missions, this paper proposes a comprehensive solution for the
coordinated development of multi-AUV formations, encompassing long-range ferrying, coordinated
detection, and surrounding attack. In the initial phase, detection devices are deactivated, employing
a path planning method based on the Rapidly Exploring Random Tree (RRT) algorithm to ensure
collision-free AUV movement. During the coordinated detection phase, an artificial potential field
method is applied to maintain AUV formation integrity and avoid obstacles, dynamically updating
environmental probability based on formation movement. In the coordinated surroundings attack
stage, predictive capabilities are enhanced using Long Short-Term Memory (LSTM) networks and
reinforcement learning. Specifically, LSTM forecasts the target’s position, while the Deep Determinis-
tic Policy Gradient (DDPG) method controls AUV formation. The effectiveness of this coordinated
solution is validated through an integrated simulation trajectory.

Keywords: AUV formation; path planning; collaborative detection; collaborative surrounding attack;
LSTM; artificial potential field

1. Introduction

The unmanned, intelligent, multi-functional, and adaptable traits of AUVs have
garnered significant global attention, establishing them as crucial carrier platforms for
executing underwater missions [1]. Given the intricacies of the underwater environment
and the escalating mission requirements, relying on a single AUV becomes challenging.
Consequently, collaborative task execution by multiple AUVs emerges as an inevitable
trend [2]. Compared to individual AUVs, multiple AUVs demonstrate superior adapt-
ability and responsiveness when facing complex underwater environments and advanced
tasks [3]. The advantages of multiple AUV collaborative systems are evident, not only
expanding perceptual range and enhancing efficiency but also finding applications in
diverse areas such as ocean data collection, seabed exploration, and underwater target
search [4]. Therefore, in underwater environments, integrating multiple AUV systems is
indispensable for future AUV research [5].

Recent years have witnessed comprehensive developments in various technical as-
pects of multi-AUV formations, including research on path planning, formation control,
and cooperative capture. For instance: Zhang et al. [6] proposed an AMPSO algorithm for
the three-dimensional path planning of multiple AUVs, aiming to enhance the speed and
exploration capability of autonomous path planners for multiple AUVs. Hu et al. [7] pro-
posed a Formation Comprehensive Cost (FCC) model to achieve collision avoidance within
a formation by balancing convergence time, transformation distance, and sensor network
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power consumption. Qin et al. [8] achieved collision-free and coordinated motion for each
AUV by integrating master-slave formation control methods with a path planning strategy
based on artificial potential fields. Wen et al. [9] proposed a novel controller, composed
of an improved artificial potential field, graph rigidity theory, and affine transformation
(IAPF-GR-AT), to achieve real-time formation reconstruction and obstacle avoidance for
AUV formations in a three-dimensional marine environment. Huang et al. [10] proposed a
distance-based negotiation approach to control AUV formations to perform target encir-
clement. Liang et al. [11] successfully addressed the challenge of coordinated encircling
of targets by AUV formations with varying motion capabilities through the application
of a heuristic neural network approach. Cao et al. [12] proposed a multi-AUV search
algorithm based on dynamic prediction of the target’s motion trajectory. This allows AUV
formation members to swiftly reach the desired hunting points, facilitating efficient pursuit
and capture of the target. Petritoli et al. [13] demonstrated the behavioral simulation of
a dispersed fleet of underwater unmanned submersibles in a confined maritime area. In
summary, AUV collaborative formation research has a wide range of fields, such as path
planning, formation control, and formation encirclement.

However, existing research on AUV formation tasks tends to be fragmented, lacking a
comprehensive process for the entire execution of AUV formation missions. This paper
addresses this gap by presenting a complete process for simulating AUV formation tasks,
divided into four stages: The first simulation stage is the long-range ferry phase, the AUV
formation sails to the designated area according to the path planned by the RRT. The
second simulation stage is the collaborative search phase. Once the formation reaches
the suspicious target area, the AUV formation collaboratively searches for the target. The
third simulation stage is the cooperative surrounding attack phase. In this stage, the AUV
formation predicts the target trajectory using the LSTM method. The fourth simulation
stage is the capture phase, the AUV formation employs the DDPG method to control
individual AUVs for target capture. This comprehensive research framework has the
potential to provide valuable guidance and insights into the integrated execution of AUV
formation missions.

The innovations of this paper are as follows:

1. The entire process of AUV formation execution and integrating methods is developed
for four different simulation stages of AUV formation;

2. The artificial potential field method is effectively employed to calculate obstacle
avoidance waypoints for the AUV formation;

3. The utilization of LSTM neural networks efficiently predicts the motion trajectories of
targets, and the DDPG method is introduced for AUV formation control and a high
success rate of the surrounding attack can be achieved.

The remaining sections of this paper are as follows: Section 2 introduces the detailed
methods that address the requirements of the entail task, including the AUV motion
equations, path planning algorithm, dynamic obstacle avoidance method, target state
trajectory prediction method, and collaborative rounding method. Then in Section 3, the
entire collection of AUV forms is simulated. The conclusion is presented in Section 4.

2. Methodology

Figure 1 illustrates the configuration of the multi-AUV formation, initially arranged
linearly from the starting position. The formation utilizes the RRT algorithm to navigate
around static obstacles, ultimately reaching the designated area. Subsequently, the for-
mation transitions into a diamond configuration, employing the artificial potential field
method to detect suspicious areas while accounting for communication limitations. Upon
successful target detection, the LSTM algorithm facilitates dynamic trajectory prediction.
The AUV formation initiates a search to identify optimal interception positions. Upon
locating a defined position, the formation converges and engages the AUV to fulfill the
assigned mission. The algorithm framework for the entire task is depicted in Algorithm 1.
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To meet the task requirements outlined in Figure 1, this section, illustrated in Figure 
2, breaks down the comprehensive mission requirements into four categories: Remote Fer-
ries, Collaborative Detection, Target Trajectory Prediction, and Collaborative Environ-
ments. More precisely, we apply the RRT approach to fulfill the mission requirements for 
long-distance ferries. Artificial potential field methods are employed for collaborative de-
tection. LSTM is utilized for predicting target trajectories, and DDPG methods are imple-
mented to address collaboration-related requirements. 

 
Figure 2. The proposed method consists of long-range ferry, collaborative detection, target trajec-
tory prediction, and collaborative surrounding four stages. 

  

Figure 1. A complete simulation process of multi-AUVs formation execution mission. The simulation
process delineates the complete execution of a multi-AUV formation mission. The diagram bifurcates
into two segments. The left side portrays the AUV fleet engaging in a long-range transit, moving
from the starting point towards the target point, preparing for the collaborative search phase. On
the right side, subsequent to reaching the target point, the AUV fleet initiates a collaborative search
employing the optimized formation. Upon target detection, the fleet predicts the target’s trajectory,
facilitating interception.

To meet the task requirements outlined in Figure 1, this section, illustrated in Figure 2,
breaks down the comprehensive mission requirements into four categories: Remote Ferries,
Collaborative Detection, Target Trajectory Prediction, and Collaborative Environments.
More precisely, we apply the RRT approach to fulfill the mission requirements for long-
distance ferries. Artificial potential field methods are employed for collaborative detection.
LSTM is utilized for predicting target trajectories, and DDPG methods are implemented to
address collaboration-related requirements.
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Figure 2. The proposed method consists of long-range ferry, collaborative detection, target trajectory
prediction, and collaborative surrounding four stages.
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Algorithm 1: Multiple-AUVs Collaborative Detection and Surrounding attack Simulation

/*Initialization*/

(01) Env ← Construct virtual environment;

/*First Stage*/

(02) Starget ← Sample randomly (Env , 1);
(03) Scons ← Obstacle information;
(04) For k = 1: K/*K is the number of the AUVs*/
(05) Sk ← Sample randomly (Env , k);
(06) Ferry pathk ← RRT

(
Starget , Sk, Scons);

(07) End For

/* Second Stage */

(08) /* Determine the topology of AUVs formation */
(09) θmodel ← Build parametric formation model;
(10) Obj ← Construct a multi− objective optimization problem (Env , θmodel);
(11) θ∗model ← Optimize based on PSO and GA (θmodel , Obj);
(12) Search path ← Generation path

(
θ∗model );

/* Third Stage */

(13) Envsurround ← Build training environment (Env , Starget);
(14) D ← Construct training data (Envsurround , Batch size);
(15) LSTM model ← Training model (D);
(16) For k = 1: K
(17) Netk

actor ← DDPG
(
Starget , Sk, LSTM model);

(18) End For
(19) Surround path ← Co− Simulate (Netactor );

2.1. AUV Motion Equations

Before establishing the entire task model, the AUV motion equation system is built
according to the momentum theorem and the momentum moment theorem, as stated in
the definition of reference [14].  .

x
.
y
.
z

 = Cb
0

 vx
vy
vz

 (1)



.
vx.
vy.
vz.
ωx.
ωy.
ωz

 = Am
−1
[

fs + fg + ft + ftl
ms + mg + mt

]
(2)


.
θ
.
φ
.
ψ

 =

 0 cos φ/ cos θ − sin φ/ cos θ
0 sin φ cos φ
1 − cos φ tan θ sin φ tan θ

 wx
wy
wz

 (3)

The Equations (1)–(3) together form a set of AUV spatial kinematic equations compris-
ing 12 equations. x y z represent the displacement of the AUV in three directions within
the inertial coordinate system. vx vy vz signifies the AUV’s velocity in three directions
within the body coordinate system. wx wy wz denotes the rotational angular velocities of
the AUV around the x, y, and z axes in the body coordinate system. Cb

0 is the matrix for
transforming the body coordinate system to the inertial coordinate system. Am denotes
the added mass matrix. fs and fg signify the forces exerted by the fluid and the buoyant
forces on the AUV, respectively. ft is the force transformed by mass-based coordinates.
ftl indicates the propeller thrust. ms is the moment of hydrodynamic force acting on the
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AUV. mg represents the gravitational torque acting on the AUV. mt illustrates the moment
(torque) transformed by mass-based coordinates. θ, ψ, and φ denote the tilt angle, the yaw
angle, and the roll angle of the AUV. For specific information regarding coordinate system
definitions and parameters, please refer to [14].

2.2. Path Planning

The underwater realm is characterized by intricate, and unevenly distributed complex
environments. In addressing this, a practical and efficient motion planning approach is
introduced based on RRT. This technique involves generating collision-free trees through
random processes, enabling thorough exploration of the vicinity surrounding an AUV.

As depicted in Figure 3, the path-planning method that relies on sampling is commonly
known as the RRT algorithm [15]. A tree originates from its root node and extends branches,
eventually reaching endpoints. At this stage, a distinctive path can be traced back to the
root node. The process begins by initializing the tree and defining the start and end points.
Subsequently, a sampling function is executed, where the endpoints are selected as sampling
points with a predetermined probability. This sample point explores the neighboring region
to identify the nearest node, at which the tree is further expanded. A line is drawn to connect
the sample point and its closest node. The existing branch is discarded if it intersects with
an obstacle, and a fresh sampling is conducted to identify a new nearest node, thus ensuring
obstacle avoidance. As the sampling process progresses, a new node is created, and all
existing nodes including the branch nodes and the root node are considered together. This
cumulative set of nodes guides the ongoing sampling. This process continues to advance and
gradually approaches the endpoint. The distance from the node to the endpoint is calculated
to determine whether the node can effectively reach the target point. Additionally, it evaluates
whether the step length is reasonable and devoid of obstacles. Subsequently, a path is drawn
between the node and the target point to ensure a connection.
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in the tree structure and establishes a connection between qnear and qrand. If the path between qnew

and qrand does not intersect with obstacles, RRT adds qnew to the tree. During each iteration, RRT
checks if the new node has reached the goal. If so, RRT generates the final path and concludes the
algorithm. This iterative process involves continuously expanding new nodes in the tree to rapidly
explore feasible paths until reaching the specified number of iterations or satisfying the termination
conditions.

As depicted in Figure 4, obstacles exhibit distinct starting and ending positions. The
blue dot indicates the position of the vehicle, while the gray regions indicate obstacle zones
with values between 0.5 and 0.9. The red area signifies obstacle locations with a weight
exceeding 0.9. The blue curve delineates the path devised by the RRT algorithm.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 24 
 

 

devoid of obstacles. Subsequently, a path is drawn between the node and the target point 
to ensure a connection. 

 
Figure 3. RRT flowchart. In the initial phase of the algorithm, RRT designates the starting point as 
the root node and then randomly samples a point randq . Subsequently, RRT identifies the nearest 
node nearq , in the tree structure and establishes a connection between nearq  and randq . If the path 
between newq  and randq  does not intersect with obstacles, RRT adds newq  to the tree. During 
each iteration, RRT checks if the new node has reached the goal. If so, RRT generates the final path 
and concludes the algorithm. This iterative process involves continuously expanding new nodes in 
the tree to rapidly explore feasible paths until reaching the specified number of iterations or satisfy-
ing the termination conditions. 

As depicted in Figure 4, obstacles exhibit distinct starting and ending positions. The 
blue dot indicates the position of the vehicle, while the gray regions indicate obstacle 
zones with values between 0.5 and 0.9. The red area signifies obstacle locations with a 
weight exceeding 0.9. The blue curve delineates the path devised by the RRT algorithm. 

 
Figure 4. The RRT (Fast Random Tree Method) planning path. The red point signifies the target point,
the blue point represents the AUV, and the blue curve out-lines the planned trajectory. The gray area
denotes the obstacle zone with a weight of 0.5, while the red area signifies the obstacle area with a
weight of 0.9.

2.3. Dynamic Obstacle Avoidance

During this mission phase, the task area is occupied by continuously moving noise
source obstacles denoted as Oj. These obstacles are strategically placed by the opponent
to intentionally disrupt operations within the designated area. In alignment with the
mission’s directives, the artificial potential field approach is used to address dynamic
obstacle avoidance. We assign each obstacle a separate force field. Specifically, when an
obstacle falls within the detection range of Ai (the ith AUV), the associated potential field
exerts a repulsive influence. The formula for calculating the force is as follows:

Fij = α

(
1

Dij
− 1

D0

)
1

D2
ij

(4)

where Dij means the distance between Ai and Oj, D0 means the safety distance, and α is
the repulsion coefficient.

The obstacle avoidance repulsion can be obtained by summing the repulsive forces of
each obstacle Oj, then the expected acceleration of Ai can be calculated by:

Fi = ∑
j

Fij = m
.
v (5)

As depicted in Figure 5, three dynamic obstacles within the sector detection range
are assigned individual potential fields. Varying forces are applied to the vehicle based
on the distance from each obstacle. The cumulative force represents the vehicle’s obstacle
avoidance repulsion force. By introducing the distance into Equation (4), the resultant force
of the force field can be calculated on the AUV. Furthermore, to convert the resultant force
into the control quantity, the expected acceleration of the AUV can be obtained by using
Newton’s second law (Formula (5)).
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Figure 5. Artificial potential field obstacle avoidance principle. The three black dots symbolize the
obstacles, with the fan-shaped area representing the AUV’s detection range. The three black arrows
illustrate the repulsive forces exerted by the obstacles on the AUV, while the red arrow represents the
combined force resulting from these three repulsive forces.

2.4. Cooperative Detection

The formation of AUVs can greatly enhance the efficiency and accuracy of search
operations [16]. Therefore, to fulfill the mission objectives, a strategy is implemented for
involving the formation of four AUVs. A transverse diamond formation with an acute
angle of 60◦ is configured and the maximum communication distance is 2000 m. In this
arrangement, the Leader AUV is positioned at the rear, as illustrated in Figure 6.
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The environment is divided into multiple grids Ck, each grid is assigned a probability
value representing the probability that the formation judges the presence of the target [17].
This probability value is derived from the environment probability obtained by each
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formation member through exploration Pik. Followers transmit the data to the leader, and
then the leader synthetically calculates the environmental probabilities Qk.

The Shannon entropy is employed as a metric to quantify the level of uncertainty
within an area during the exploration process:

χk = −
QklogQk + (1−Qk)log(1−Qk)

log2
(6)

As depicted in Figure 7, based on the given expression, probabilities tend to be
categorized as “certain” when they are near 0 or 1. In such cases, the resulting Shannon
entropy, which is calculated by Formula (6), is low. Conversely, probabilities close to
0.5 indicate the highest level of uncertainty, resulting in the highest Shannon entropy value.
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Figure 7. Environment probabilities. After the AUV formation traverses a specific area, the infor-
mation entropy map is updated based on the detection information gathered by the AUV fleet. A
probability of 1 or 0 indicates that the information about the target in that region is certain, signifying
the presence or absence of a target, respectively. A probability of 0.5 signifies the highest level of
uncertainty in the information for that area, representing a completely unknown state. The dashed
areas signify more distant environmental regions.

As depicted in Figure 8, after a mission cycle, when the formation transitions into
cruise mode, it employs a random selection from eight potential directions. The formation
then moves toward the region that is furthest away and exhibits the highest Shannon
entropy in the chosen direction. This criterion requires continuous updating of cruise
routes, in order to obtain comprehensive global knowledge.

The path originating from the lower right corner signifies the concluding work cycle.
During this phase, a new direction is selected toward the bottom left once the formation
has successfully reached the target area and completed the mission, indicated by the red
arrow. Along this chosen path, the maximum entropy value is 1.0, and the location with the
highest entropy value of 1 is selected as the target position for the subsequent task cycle,
which is represented by the red grid.



Sensors 2024, 24, 437 9 of 23

Sensors 2024, 24, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 7. Environment probabilities. After the AUV formation traverses a specific area, the infor-
mation entropy map is updated based on the detection information gathered by the AUV fleet. A 
probability of 1 or 0 indicates that the information about the target in that region is certain, signify-
ing the presence or absence of a target, respectively. A probability of 0.5 signifies the highest level 
of uncertainty in the information for that area, representing a completely unknown state. The 
dashed areas signify more distant environmental regions. 

As depicted in Figure 8, after a mission cycle, when the formation transitions into 
cruise mode, it employs a random selection from eight potential directions. The formation 
then moves toward the region that is furthest away and exhibits the highest Shannon en-
tropy in the chosen direction. This criterion requires continuous updating of cruise routes, 
in order to obtain comprehensive global knowledge.  

 
Figure 8. Target localization for cooperative detection tasks based on Shannon entropy. The red 
arrow indicates the direction in which the target is more likely to move, and the blue arrow indi-
cates the direction in which the target is less likely to move. 

The path originating from the lower right corner signifies the concluding work cycle. 
During this phase, a new direction is selected toward the bottom left once the formation 
has successfully reached the target area and completed the mission, indicated by the red 
arrow. Along this chosen path, the maximum entropy value is 1.0, and the location with 
the highest entropy value of 1 is selected as the target position for the subsequent task 
cycle, which is represented by the red grid. 

Figure 8. Target localization for cooperative detection tasks based on Shannon entropy. The red arrow
indicates the direction in which the target is more likely to move, and the blue arrow indicates the
direction in which the target is less likely to move.

2.5. Target State Prediction Method Based on LSTM

The Long Short Memory Network (LSTM) [18] primarily addresses the challenge of long-
term dependencies encountered in conventional Recurrent Neural Networks (RNNs). This
type of network is commonly employed for tasks such as classification and prediction [19].

The mission requirements outlined in this paper pose a significant challenge for the
communication and detection of AUV formations. Recognizing LSTM’s generalization and
processing capabilities in handling irregular data as an effective time sequences processing
tool, we incorporate it as the target trajectory prediction method in the third stage within
the task. What is more, the AUV formation cannot continuously detect the target trajectory
under some working conditions, so LSTM is needed to predict the target position in order
to detect the target trajectory.

In Figure 9, the entire network comprises a forgetting gate ft, an input gate it, and an
output gate ot. By using Formula (7), the network takes the target’s current motion state as
input, and then processes it to predict and determine the future motion state of the target.
The calculation formula is as follows:

it = σ(Wi·[ht−1, xt] + bi)
ft = σ(W f ·[ht−1, xt] + b f )
∼
Ct = tanh(WC ·[ht−1, xt] + bC)
ot = σ(Wo·[ht−1, xt] + bo)

Ct = ft ∗ Ct−1 + it ∗
∼
Ct

ht = ot ∗ tanh(Ct)

(7)
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2.6. Collaborative Rounding Method Based on DDPG
2.6.1. DDPG

DDPG (Deep Deterministic Policy Gradient) is introduced to tackle challenges in
continuous action control problems. Traditional algorithms like Q-learning, Sarsa, and
DQN are designed for discrete action spaces. DDPG is an extension of the DQN algorithm,
enabling it to address the complexities of continuous action control [20].

The target motion data and the AUV state variables are used as inputs to the action
network. The network then generates control variables for the AUVs to interact with the
virtual environment. Considering the task objectives, a reward function is designed to
guide the training process and motivate the AUV to complete the specified tasks in its
surrounding environment. The network training pseudo-code is shown in Algorithm 2:

Algorithm 2: DDPG algorithm based on the rounding network training

/*Initialization*/

(01) Initialize network parameters θµ of the Critic network Q(s, a
∣∣θQ) sand the Actor-network µ(s

∣∣θµ) ;
(02) Copy the parameters of Critic and Actor to the corresponding target network:
(03) θQ′ ← θQ · · · θµ′ ← θµ ;
(04) Initialize the Reply Buffer R.

/*Main Loop*/

(05) For episode = 1:M /* M is the number of training times*/
(06) Initialize a random process N to add noise to the behavior;
(07) Initializes the state s1;
(08) For t = 1:T /* T is the max time step in each training process*/
(09) Get action based on the current strategy and explore the noise:
(10) at = µ(st

∣∣θµ) + Nt ;
(11) The output of the action network at is transformed into the control variable of the AUV and integrated into the

dynamic equation to obtain the reward rt and the next state st+1;
(12) Convert states to sequences (st, at, rt, st+1) and store them in Reply Buffer R;
(13) Randomly sampled from the Reply Buffer as training data for the Actor-network and Critic network;

(14) yi = ri + Q′(si+1, µ′(si+1

∣∣∣θµ′ )
∣∣∣θQ′ )

(15) Update Critic network parameters by minimizing the loss function L:

(16) L = 1
N ∑

i
(yi −Q(si+1

∣∣∣θµ′ )
∣∣∣θQ′ ) )

2

(17) Calculate the sample policy gradient ∇θµ′
µ|si, and update the parameters of the Actor-network θµ:

(18) ∇θµ
µ|si =

1
N ∑

i
∇aQ(s, a|θQ)|s=si ,a=µ(si)∇θµ

(s|θµ)|s=si

(19) Update the target network parameters θQ′ and θµ′
(20) θQ′ ← τθQ + (1− τ)θQ′

(21) θµ′ ← τθµ + (1− τ)θµ′

(22) End For
(23) End For
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2.6.2. Collaborative Rounding Environment

Based on the DDPG approach, a dynamic equation-controlled virtual environment is
constructed to train the agent network. This virtual environment facilitates the learning
process. The schematic diagram of this setup is presented in Figure 11.
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Figure 11. Schematic diagram of collaborative rounding.

Upon initializing the environment, a task target is assigned to the AUV according to
its initial position. To optimize the likelihood of successful circumnavigation, the AUV
should approach the target from various directions. Consequently, during the virtual
environment’s initialization, each AUV is given a distinct orientation based on previous
target position information. Figure 12 illustrates this process, serving as the foundation for
establishing the reward function, this will be detailed in the subsequent sections.
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Figure 12. Simultaneous approach strategy in the limited communication environment.

During the entire training process, the position information and dynamic properties
of AUV are used as state variables at each time step. The output layer of the Actor-network
uses a sigmoid activation function. The resulting two output values are subtracted in order
to obtain the normalized rudder angle output. This mechanism enables direct control of
the AUV through the action network.

2.6.3. Artificial Potential Field Reward

To enhance the success rate of circumnavigation during the training, a potential
function is employed as a reward function. This function increases in value as the relative
distance between entities decreases.
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For the ith AUV, the reward it faces can be expressed as:

Ri =


+10λ, i f ∆Si < Smin
+10λe−α∆Si , i f oi ∈ Ti
−λ, i f wi < limw

(8)

where wi indicates the angular velocity of rotation of AUV at the current time, Si indicates
the distance between the AUV and the target, α is an adjustable distance factor, λ is the
reward factor. oi indicates the location of the AUV in the environment, Ti is an area
controlled by two Angle functions: Ti ∈ [θ1eβ1∆Si , θ2eβ2∆Si ] with two adjustable coefficients
θ and β.

By using Formula (8), the reward R is obtained as the training data of the network. As
depicted in Figure 13, by implementing the above three-tiered reward settings, the AUVs
can be systematically guided to approach the target in the designated direction throughout
the training process. The proposed approach also helps minimize sudden rudder angle
fluctuations caused by the network output.
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Compared to traditional simplistic approaches, our proposed method takes into ac-
count underwater communication and AUV dynamic constraints within the specified task
scenario. Under the consideration of AUV communication and dynamic constraints, our
method demonstrates superior performance in executing the overall task.

3. Simulation Results and Analysis
3.1. The Construction of Multi-Cooperative Task Virtual Environment

In this paper, the assembly of a complete AUV formation to perform a mission is
termed a “mission”. Upon reaching the designated target area, multiple AUVs initiate
long-range flights towards the predetermined detection area. This detection area is deter-
mined based on the platform analysis, and it is also the expected location. Considering the
communication limitations and dynamic obstacles of the formation, the AUV formation
executes this long-range flight while adhering to a predefined cooperative detection pat-
tern. Upon detecting a target, its trajectory is predicted, facilitating the localization of the
AUV formation. Following the establishment of optimal positions, the formation initiates
tracking and pursuit once a target is determined. The pursuit commences from the position
deemed most favorable. A 50 km × 50 km two-dimensional simulation environment and
an AUV motion model are built in MATLAB, with the AUV performing duties at a set
depth. The simulation running time is set to T = 10,000. The overall simulation proce-
dure is divided into four phases: path planning, collaborative detection, target trajectory
prediction, and surrounding and pursuit. Through these stages, the AUV’s behavior and
interactions are systematically replicated in the defined environment.
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3.2. Simulation Verification of the Proposed RRT Path Planning Algorithm

Figure 14 shows the designed path of the AUV towards the virtual point, the proposed
RRT algorithm can generate reasonable paths in basic obstacle environments, and its
effectiveness can be verified. The positions of the target point are randomly assigned. The
target point is marked by a red dot, and the AUVs are represented by blue dots. Obstacle
areas are indicated by gray areas (with a weight of 0.5) and red areas (with a weight of 0.9
or higher).
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Figure 14. The RRT algorithm plots 4 paths in different situations. To assess the efficacy of the
Rapidly Exploring Random Tree (RRT) algorithm, various task scenarios were devised for reliability
verification. The red point signifies the target point, the blue point represents the AUV, and the blue
curve outlines the planned trajectory. The gray area denotes the obstacle zone with a weight of 0.5,
while the red area signifies the obstacle area with a weight of 0.9. In (a), the target occupies the upper
left, with the Unmanned Underwater Vehicle (UUV) situated in the lower left. In (b), the target is
positioned in the upper right, while the UUV remains in the lower left. (c) depicts the target in the
upper left, and the UUV in the lower left. Finally, in (d), the target is located in the upper right, and
the UUV is in the lower right. The consistent success across diverse scenarios underscores the robust
applicability of the RRT algorithm.

The target point and AUVs are positioned diagonally, in order to evaluate the efficiency
of the proposed RRT algorithm, and test the performance of the proposed algorithm to
navigate these different starting points.

It can be seen from the blue trajectory in Figure 14, the proposed RRT algorithm has a
powerful ability to accurately plan a seamless path for the AUV to reach the target point.
Moreover, Figure 14 also shows that the path planned by the RRT expertly maneuvers
around obstacles of different weights, resulting in a very smooth trajectory.

3.3. Formation Optimization

To find the best formation for four AUVs, it is necessary to find the topological struc-
ture. Despite the additional communication relationships caused by the parameters, the
preset topological relationships must be determined to achieve formation communication.
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There must be at least three edges in the formation communication network to connect four
AUV nodes. However, considering the dynamic stability of the AUV and to expand the
scope of design, one more edge should be added to improve the stability of the communica-
tion system. It is easy to see that every AUV can communicate with two other agents when
the communication structure is a ring like in Figure 15a. But when it comes to Figure 15b,
the AUV with only one communication relationship would be instability.
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Figure 15. Two possible topological structures of the formation. (a) Each AUV establishes a commu-
nication relationship with its two connected AUVs, and the entire communication network is in a
stable state; (b) AUV III only establishes a communication relationship with AUV I, so while AUV I,
AUV II, and Main AUV can communicate stably, AUV III is unstable in the communication network.

When solving the formation optimization problem, it is necessary to parameterize
the formation structure, so the polar coordinate method is considered. As shown in
Figure 16, the polar coordinate system is established with the main AUV as the pole, and
the coordinates of the two AUVs are determined by the pole angle and pole diameter. At
the same time, the polar coordinate system is established with AUV I as the pole, and the
coordinate of the AUV III is determined in the same way. At this time, the constraint of the
optimization problem can be given according to the communication angle and distance of
AUV II and AUV III.
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In Formula (10), iS  means the area that can be detected by i  AUVs, which can be 
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In addition to the communication constraints determined by the topology, there are
still some constraints to be considered in the communication links of the formation. First,
to ensure the synchronization of communication, the communication of each node should
be as consistent as possible. Secondly, when the communication signals received by a node
are too close, it is easy to cause a signal interference. Therefore, it is also necessary to ensure
that there is a certain angle between different communication signals.

There is always an inevitable error rate in AUV detection. When the target is covered
in multiple AUV detection areas, the success rate can be effectively improved, expressed in
the formula as follows.

Ψ = 1− µN (9)

In Formula (9), Ψ represents the success rate of formation detection, µ represents the
error rate, and N represents the number of overlapping detection areas. Therefore, what
needs to be considered in formation optimization is not only a larger detection area but
also a more accurate detection effect. We define the feature detection area as follows and
take it as the optimization goal:

S∗ =
N

∑
i=1

SiΨi =
N

∑
i=1

Si

(
1− µi

)
= S−

N

∑
i=1

Siµ
i (10)

In Formula (10), Si means the area that can be detected by i AUVs, which can be seen
in Figure 17. Combined with the communication link consistency agreement mentioned
above, we can propose the target function of the optimization problem:

f = ρ1S∗ + ρ2R({di}) = ρ1S∗ + ρ2(max({di})−min({di})) (11)
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In this problem, it is hard to calculate the overlapped area, so we used the Monte 
Carlo method for approximate calculation and selected the number of samples as 1000. To 
better balance the optimized goals of detection and communication, we defined the coop-
eration as follows:  
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To get a better optimization result, we tested the effect of different algorithms includ-
ing GA and PSO with different inertia coefficients on this problem in Table 1. After 10,000 
times of function evaluation of different algorithms, we got the following optimization 
results (Figures 18 and 19):  
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In Formula (11), ρ1 means the coefficient of the characteristic area and ρ2 means the
coefficient of the extreme difference of the communication link.
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According to the above analysis, we put forward the format of the formation optimiza-
tion problem and apply the particle swarm algorithm to solve the problem:

min. f = ρ1S∗ + ρ2(max({di})−min({di})) = f
(→

x
)

s.t. P0 =
[

0 0
]

P1 =
[

x2 cos x1 x2 sin x1
]

P2 =
[

x4 cos x3 x4 sin x3
]

P3 = P1 +
[

x6 cos x5 x6 sin x5
]

30◦ ≤ ⟨Pi − Pa, Pi − Pb⟩ ≤ 150◦, i ̸= a ̸= b ∈ {0, 1, 2, 3}
40◦ ≤

〈
P3 − P2,

→
oy
〉
≤ 140◦

{di} = {|P1 − P0|, |P2 − P1|, |P3 − P2|, |P0 − P3|}
50 ≤ di ≤ 2000

S∗ = S−
N
∑

i=1
Siµ

i

(12)

In this problem, it is hard to calculate the overlapped area, so we used the Monte Carlo
method for approximate calculation and selected the number of samples as 1000. To better
balance the optimized goals of detection and communication, we defined the cooperation
as follows: 

µ = 0.8
ρ1 = −10−6

ρ2 = 10−3
(13)

To get a better optimization result, we tested the effect of different algorithms including
GA and PSO with different inertia coefficients on this problem in Table 1. After 10,000 times
of function evaluation of different algorithms, we got the following optimization results
(Figures 18 and 19):

Table 1. Optimization results.

Algorithm Design Variables Objective Variable

PSO (w = 0.4) 0.69 1358.97 2.37 1294.73 2.27 1529.89 −0.80

PSO (w = 1) −0.87 2000.00 4.01 2000.00 4.01 2000.00 −1.46

PSO (w = 2) −0.87 2000.00 4.01 2000.00 4.01 2000.00 −1.47

GA −0.86 1865.29 4.01 1870.17 4.01 1860.75 −1.37
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In Figure 19, the three red circles represent the optimized formation of the AUV fleet.
Upon reaching the target area, the AUV fleet will reconfigure into the optimized formation,
preparing for the next stage of collaborative search.
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3.4. Collaborative Detection and Dynamic Obstacle Avoidance

Considering the communication limitations of vehicles, a diamond formation with an
internal angle of 60◦ is adopted in this paper. This formation mode will be applied when
the AUV formation is established within the target water area with an initial span of 50 km.
If there are hostile interference sources within the task area, the proposed model abstracts
them into dynamic point avoidance. The dynamic boundaries are represented by black
dots, and the fan-shaped regions depict the sonar detection areas.

When the sonar identifies a dynamic obstacle, the AUV formation immediately begins
dynamic obstacle avoidance maneuvers. AUVs need to be able to avoid areas with dynamic
obstacle distribution, in order to ensure that the AUV formation is always focused on
target detection.

In Figure 20, four AUVs are configured in a diamond shape for target area detection.
The red line represents the trajectory of the lead AUV, and the blue lines represent the
trajectories of the three sub-AUVs.

Sensors 2024, 24, x FOR PEER REVIEW 19 of 24 
 

 

In Figure 20, four AUVs are configured in a diamond shape for target area detection. 
The red line represents the trajectory of the lead AUV, and the blue lines represent the 
trajectories of the three sub-AUVs.  

 
Figure 20. Navigation detection of AUV formations. This figure illustrates the AUV formation 
aligned with the optimized configuration for collaborative detection tasks. The dotted green lines 
symbolize the communication chain. The AUVs sporting blue heads acting as followers, while the 
blue lines depict the paths of the followers. The leader, distinguished by a red head, is denoted by 
solid red lines outlining its trajectory. 

3.5. Trajectory Prediction with LSTM Network 
In this section, the training method and the prediction effect of the LSTM network 

are illustrated in detail. In supervised learning methods, the selection of training data di-
rectly affects the performance of the trained network. Firstly, the target is independently 
run several times in the virtual environment to obtain enough target state data to construct 
the dataset. After that, the data in 11 consecutive time steps are taken as a set of inputs 
and output, where the first ten are set as inputs and the last one is set as output. The 
network uses the backpropagation method to update the parameters, and 20% of the da-
taset is taken as the test set to evaluate the loss function. In addition, during the construc-
tion of the training set, the maneuver angle of the target is set to 90 degrees, and 2% Gauss-
ian noise is added. 

To enhance the real-time performance of LSTM predictions, the rollout muti-step-
ahead (RMS) [21] is applied to predict the target locations in the proposed method, which 
is expressed as equation 14: 

  2
[ ,..., ] ,...,

t+1 t+ t+UM M M Mt-W+1 t
target target targettarget targetS S S S S⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→

 
(14)

where t
targetS  demonstrates the target location information at the 𝑡 step, 𝑊 is set to 10 

according to the training data, and 𝑀 represents the generation method of the state in-
formation at the next time. When the target is in a detectable location, the state information 
at the next time step is filled with the true position of the target; otherwise, the state infor-
mation is filled with the LSTM prediction position.  

Figure 21 illustrates the effectiveness of the LSTM network, which shows that the 
accuracy of the prediction position obtained by the LSTM network gradually increases 
with the target moves. 

Figure 20. Navigation detection of AUV formations. This figure illustrates the AUV formation
aligned with the optimized configuration for collaborative detection tasks. The dotted green lines
symbolize the communication chain. The AUVs sporting blue heads acting as followers, while the
blue lines depict the paths of the followers. The leader, distinguished by a red head, is denoted by
solid red lines outlining its trajectory.

3.5. Trajectory Prediction with LSTM Network

In this section, the training method and the prediction effect of the LSTM network are
illustrated in detail. In supervised learning methods, the selection of training data directly
affects the performance of the trained network. Firstly, the target is independently run
several times in the virtual environment to obtain enough target state data to construct the
dataset. After that, the data in 11 consecutive time steps are taken as a set of inputs and
output, where the first ten are set as inputs and the last one is set as output. The network
uses the backpropagation method to update the parameters, and 20% of the dataset is taken
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as the test set to evaluate the loss function. In addition, during the construction of the
training set, the maneuver angle of the target is set to 90 degrees, and 2% Gaussian noise
is added.

To enhance the real-time performance of LSTM predictions, the rollout muti-step-
ahead (RMS) [21] is applied to predict the target locations in the proposed method, which
is expressed as Equation (14):

[St−W+1
target , . . . , St

target]
M→ Ŝt+1

target
M→ Ŝt+2

target
M→, . . . , M→ Ŝt+U

target (14)

where St
target demonstrates the target location information at the t step, W is set to 10 accord-

ing to the training data, and M represents the generation method of the state information
at the next time. When the target is in a detectable location, the state information at the
next time step is filled with the true position of the target; otherwise, the state information
is filled with the LSTM prediction position.

Figure 21 illustrates the effectiveness of the LSTM network, which shows that the
accuracy of the prediction position obtained by the LSTM network gradually increases with
the target moves.
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Figure 21. The prediction effectiveness obtained by the LSTM network on the conditions of different
target maneuver angle. (a) The prediction effect of the LSTM network under the condition that
the maneuver Angle of the target is 15 degrees, the orange dots and the blue dots correspond to
the predicted and actual positions of the target respectively; (b) The prediction effect of the LSTM
network under the condition that the maneuver Angle of the target is 30 degrees, the orange dots
and the blue dots correspond to the predicted and actual positions of the target respectively; (c) The
prediction effect of the LSTM network under the condition that the maneuver Angle of the target
is 60 degrees, the orange dots and the blue dots correspond to the predicted and actual positions
of the target respectively; (d) The prediction effect of the LSTM network under the condition that
the maneuver Angle of the target is 90 degrees, the orange dots and the blue dots correspond to the
predicted and actual positions of the target respectively.
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As shown in Figure 21, in the target maneuvering angles of 15, 30, and 60 degrees,
the trajectory prediction obtained by the LSTM network is still effective. Different from
the condition of 90 degrees which is used in the training set, these results demonstrate the
generalization ability of the proposed method. In addition, the mean error of the prediction
data is 19.4 m and the standard deviation is 7.2 compared with the real position under the
90-degrees maneuvering condition of the target.

3.6. Simulation Verification of the Target Surrounding Method

Figure 22 shows a graph representing the success rate of target surroundings in
various AUV formations. The abscissa represents the target orientation with the initial
yaw angle of the AUV formation, and the ordinate represents the success rate of the
AUV formation encircling the target. The four curves correspond to standard values for
successful surrounding by AUV formations, which are set to 450 m, 600 m, 750 m, and
900 m, respectively. The key observation from Figure 22 is that, no matter where the target
is in the AUV formation position, a high success rate of the surrounding can be achieved
when the standard value is set to 900 m.
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Figure 22. Multi-AUVs formation surrounding success rate.

As shown in Figure 23, the orange AUV represents the AUV formation, the blue trajec-
tory represents the trajectory of the AUV formation, the black AUV represents the targets,
and the red trajectory represents the target trajectory. Completion of the surrounding
process involves the following steps. First, the AUV formation verifies the presence of
the target. The AUV formation then adjusts to ensure it is in the best position before the
target arrives. When AUV No. 1 identifies the target, it initiates communication with AUV
No. 2 and AUV No. 3 on its flanks. In response, AUVs No. 2 and No. 3 are located in
advantageous locations. At the same time, AUV No. 1 follows and pushes the target to the
final stage of surrounding. The above surrounding process achieves successful completion
of the target surrounding maneuver by the AUV formation.
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3.7. The Effectiveness Analysis of Surrounding Attack

In this section, a test environment based on sparse probing is designed to verify the
dependence of the proposed algorithm on LSTM in the sparse detectable environment.
Basically, during each test, the AUVs have a certain 30% probability of losing the position
state of the target at each time step. Based on this, we make a comparison between using
the LSTM model to predict the target trajectory and not using the LSTM model. when the
LSTM prediction is not used, the position state of the target under the detectable failure
condition is set to zero as input to the actor network, and when the LSTM prediction is
used, the input to the actor network is the prediction result of the LSTM network. In
addition, the number of AUVs in our formation is set to four, and each set of data is set
to run 100 times independently. The successful condition of the surrounding attack is set
as when there are more than two AUVs within 200 m of the target. The success rate in
different conditions is illustrated in Table 2, where nine instances of different conditions
with three target velocities and three target maneuver angles are demonstrated. And the
AUV’s trajectory on the instance of 8 knot 60 maneuver angle with not using the LSTM
model and using the LSTM model is illustrated in Figures 24 and 25, respectively.

Table 2. Surrounding attack success rates using different trajectory prediction methods on 9 target
instances. The black upward arrow signifies a rise in success rate, while the downward arrow denotes
a decrease in success rate.

Target
Velocity (knot) Maneuver Angle

Not Using the LSTM
Model

Success Rate

Using the LSTM
Model

Success Rate

6 90 84% ↓ 100% ↑
6 60 77% ↓ 100% ↑
6 45 74% ↓ 84% ↑
8 90 80% ↓ 98% ↑
8 60 72% ↓ 100% ↑
8 45 23% ↓ 79% ↑
10 90 79% ↓ 98% ↑
10 60 79% ↓ 100% ↑
10 45 23% ↓ 72% ↑
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According to the experimental results, the application of the prediction method based
on the LSTM network improves the proposed surrounding attack method by a 10 to
20 percent success rate, which demonstrates the necessity of LSTM prediction in the process
of surrounding. Furthermore, the AUV formation without LSTM prediction under the
condition of sparse detection showed inferior performance, because as it gets closer to the
target, the wrong position information makes some AUVs deviate from the target direction,
which demonstrates the importance of LSTM prediction for formation synergy.

3.8. Discussion of AUVs Collaborative Environment

In the actual process of marine resources development, a safe and stable underwater
environment is crucial. However, due to the underwater communication environment and
the dynamic constraints of AUVs, the collaborative operation of AUVs is challenged greatly.
In addition, a collaborative task often contains multiple mission objectives and requires
planning different formation modes. Based on this, we propose a method of formation ferry,
formation detection, and formation surrounding attack, which is suitable for the known
partial target prior information, in order to cope with the complex task requirements of the
formation control method, and based on this, a multi-cooperative task virtual environment
can be simulated for multiple tasks. Nevertheless, the present study does not encompass
the influence of ocean currents on AUVs and energy consumption within AUVs. In future
endeavors, there is an opportunity to fortify our research in these particular domains.

4. Conclusions

This paper offers a comprehensive simulation of the entire mission execution process
for a multi-AUV formation, including path planning, formation design methodology, collab-
orative search strategies, target trajectory prediction, cooperative surrounding techniques,
and coordinated pursuit within multi-AUV formations. Firstly, this paper introduces a
solution to the AUV path planning problem based on ocean information from the under-
water platform. It develops a feasible path while considering the operational limitations
of the AUV. Subsequently, considering communication limitations, this paper addresses
the reconstruction and formation establishment of AUV formations. It utilizes an artificial
potential field approach for formation navigation, ensuring robust and stable formation
control. The article proposes a prediction scheme based on the LSTM neural network
to predict the trajectory of the target after detection. This approach learns target motion
characteristics, enabling the AUV formation to strategically surround the target during the
decision-making process. After identifying the target location, the AUV formation initiates
a surrounding mission. Finally, a high success rate in surrounding can be achieved when
the standard value is set to 900 m.
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In future work, we will consider more complex ocean environments to address the
complexity of real-world ocean scenes and provide more practical guidance for AUV
formations.
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