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Abstract: Wireless sensor networks (WSNs) have become widely popular and are extensively used for
various sensor communication applications due to their flexibility and cost effectiveness, especially
for applications where localization is a main challenge. Furthermore, the Dv-hop algorithm is a
range-free localization algorithm commonly used in WSNs. Despite its simplicity and low hardware
requirements, it does suffer from limitations in terms of localization accuracy. In this article, we
develop an accurate Deep Learning (DL)-based range-free localization for WSN applications in the
Internet of things (IoT). To improve the localization performance, we exploit a deep neural network
(DNN) to correct the estimated distance between the unknown nodes (i.e., position-unaware) and
the anchor nodes (i.e., position-aware) without burdening the IoT cost. DL needs large training data
to yield accurate results, and the DNN is no stranger. The efficacy of machine learning, including
DNNs, hinges on access to substantial training data for optimal performance. However, to address
this challenge, we propose a solution through the implementation of a Data Augmentation Strategy
(DAS). This strategy involves the strategic creation of multiple virtual anchors around the existing
real anchors. Consequently, this process generates more training data and significantly increases
data size. We prove that DAS can provide the DNNs with sufficient training data, and ultimately
making it more feasible for WSNs and the IoT to fully benefit from low-cost DNN-aided localization.
The simulation results indicate that the accuracy of the proposed (Dv-hop with DNN correction)
surpasses that of Dv-hop.

Keywords: range-free localization; neural networks; data augmentation; wireless sensor networks

1. Introduction

In recent decades, with the advancements in IoT technologies, the intelligent percep-
tion and management of objects have become achievable through the connection of things
and people [1]. WSNs have played an increasingly significant role in the IoT by facilitating
the real-time sensing, collecting, and processing of information. The inherent characteristics
of node location make it an essential prerequisite for many functions. During the last
decade, this topic has motivated extensive research endeavors that have resulted in several
interesting localization algorithms [2]. As the demand for location-based services continues
to grow, the accuracy of node localization significantly impacts various application areas,
such as city surveillance, and smart homes [3,4]. So far, many localization algorithms have
been proposed in the literature and mainly fall into two categories: range-based and range-
free algorithms. Range-based localization utilizes the measurements of the received signal
attributes such as angle of arriving signal (AOA) [5], received signal strength (RSS) [6], and
time of arrival (TOA) [7]. While range-based algorithms are known for their high accuracy,
they are impractical for WSNs due to their high-power requirements for communication
between anchors and regular nodes, especially in the case of small battery-powered units.
Furthermore, these algorithms are susceptible to interference and fading, often necessitat-
ing additional hardware, thereby burdening both the WSN and the IoT costs. Range-free
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localization techniques are variations of the well-known Dv-hop algorithm that simply
converts the numbers of hops into coordinates [8–10]. Such techniques do not require
any additional hardware, in contrast to range-based methods, but are relatively much
less accurate. To improve localization performance, researchers have recently resorted
to machine learning (ML) or DL. Several ML techniques have been investigated in this
context such as, namely, support vector machine (SVM), artificial neural network (ANN),
etc. [11–14]. The key hurdle these techniques face in common is the requirement of large
training data sets. The larger they are, the more accurate they will be in correcting the
estimated node positions However, such data, generated very often by anchors deployed
in few numbers due to the expensive GPS technology they integrate, are relatively scarce,
thereby limiting any potential ML-driven performance improvement. Therefore, to im-
prove localization accuracy, we develop a precise, and cost-efficient DNN-based range-free
localization approach for WSN applications in the IoT. To tackle the issue of limited data
for training the proposed DNN, we are also working on an efficient DAS.

The rest of the paper is organized as follows. Section 2 introduces the range-free
localization process. Section 3 describes the implementation of data augmentation in WSN
application. The architecture processing of the DNN is described in Section 4. In Section 5,
several experiments are performed, and the experimental results are analyzed. Finally, in
Section 6 we conclude the paper with a summary.

2. Localization Process

The aim of sensor localization is to determine the locations of unknown nodes. The
localization process identifies the positions of these unknown nodes based on input data.
In our case, the input data consists of the locations of both real anchors and their virtual
counterparts, along with the unknown node. An overview of the localization process is
depicted in Figure 1.

Sensors 2024, 23, x FOR PEER REVIEW 2 of 13 
 

 

WSN and the IoT costs. Range-free localization techniques are variations of the well-
known Dv-hop algorithm that simply converts the numbers of hops into coordinates [8–
10]. Such techniques do not require any additional hardware, in contrast to range-based 
methods, but are relatively much less accurate. To improve localization performance, re-
searchers have recently resorted to machine learning (ML) or DL. Several ML techniques 
have been investigated in this context such as, namely, support vector machine (SVM), 
artificial neural network (ANN), etc. [11–14]. The key hurdle these techniques face in com-
mon is the requirement of large training data sets. The larger they are, the more accurate 
they will be in correcting the estimated node positions However, such data, generated 
very often by anchors deployed in few numbers due to the expensive GPS technology they 
integrate, are relatively scarce, thereby limiting any potential ML-driven performance im-
provement. Therefore, to improve localization accuracy, we develop a precise, and cost-
efficient DNN-based range-free localization approach for WSN applications in the IoT. To 
tackle the issue of limited data for training the proposed DNN, we are also working on an 
efficient DAS. 

The rest of the paper is organized as follows. Section 2 introduces the range-free lo-
calization process. Section 3 describes the implementation of data augmentation in WSN 
application. The architecture processing of the DNN is described in Section 4. In Section 
5, several experiments are performed, and the experimental results are analyzed. Finally, 
in Section 6 we conclude the paper with a summary. 

2. Localization Process 
The aim of sensor localization is to determine the locations of unknown nodes. The 

localization process identifies the positions of these unknown nodes based on input data. 
In our case, the input data consists of the locations of both real anchors and their virtual 
counterparts, along with the unknown node. An overview of the localization process is 
depicted in Figure 1. 

 
Figure 1. Overview of localization process. 

This section explains the estimated distance and location computation process, while 
the remaining steps will be covered in the next section. 

For estimation of the distance between anchor and unknown nodes, we assume each 
node communicates with an anchor node through a multi-hop path by using a localization 
algorithm [10]. Firstly, all unknown nodes in the network obtain minimal hop counts to 
every anchor node. During the second phase, when an anchor node obtains hop counts to 
other anchors, it calculates an average distance for one hop, which is subsequently dis-
seminated to the entire network. Anchor node i estimates the average hop size using the 
following equation: 

Hopsize = ∑ ∑  , (1) 

where (x , y )  and x , y   are the known coordinates of anchors i  and j,  respectively, 
and h  is the minimum number of hops between them 

Upon receiving the hop size from the anchor nodes with the least hops between them, 
every unknown node computes its distance (d ) to each anchor node I using the hop size 
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This section explains the estimated distance and location computation process, while
the remaining steps will be covered in the next section.

For estimation of the distance between anchor and unknown nodes, we assume each
node communicates with an anchor node through a multi-hop path by using a localization
algorithm [10]. Firstly, all unknown nodes in the network obtain minimal hop counts to
every anchor node. During the second phase, when an anchor node obtains hop counts
to other anchors, it calculates an average distance for one hop, which is subsequently
disseminated to the entire network. Anchor node i estimates the average hop size using
the following equation:

Hopsizei =
∑i ̸=j

√(
xi − xj

)2
+
(

yi − yj

)2

∑ij ̸=hij

, (1)

where (xi, yi) and
(

xj, yj

)
are the known coordinates of anchors i and j, respectively, and

hij is the minimum number of hops between them
Upon receiving the hop size from the anchor nodes with the least hops between them,

every unknown node computes its distance (di) to each anchor node I using the hop size
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denoted earlier in Equation (1) as HopsizeI and the minimum hop count denoted here as
hops as follows:

di = hops × Hopsizei. (2)

Hence, the location of the unknown node can be estimated by solving the following
set of equations: 

(x̂ − x1)
2 + (ŷ − y1)

2 = d2
1

(x̂ − x2)
2 + (ŷ − y2)

2 = d2
2

...
(x̂ − xn)

2 + (ŷ − yn)
2 = d2

n

; (3)

where (xi, yi) denote the coordinates of anchor i = 1, . . ., n and (x̂, ŷ) are the coordinates
of the unknown node. Indeed, Equation (3) could be linearized and solved under the
minimum mean square error (MMSE) criterion to estimate the coordinates of the unknown
node (x̂, ŷ) as follows: [

x̂
ŷ

]
=

−1
2

(
ψTψ

)−1
ψTφ, (4)

where:

ψ =


x1 − xn y1 − yn

x2 − xn
...

y2 − yn
...

xn−1 − xn yn−1 − yn

 , (5)

and

φ =


d2

1 − d2
n − x2

1 + x2
n − y2

1 + y2
n

d2
2 − d2

n − x2
2 + x2

n − y2
2 + y2

n
...

d2
n−1 − d2

n − x2
n−1 + x2

n − y2
n−1 + y2

n

 . (6)

3. Data Augmentation in WSN Application

Typical augmentation techniques applied to images involve a range of transformations
such as translation, blurring, flipping, rotation, and the introduction of various types of
noise to data samples. These techniques are well established in the field, and diverse DASs
are tailored to specific problems. For example, in the context of the MNIST database of
handwritten digits, researchers have explored augmentation techniques [15]. In the field
of machine learning, especially for researchers working with techniques like Generative
Adversarial Networks (GANs), the limited availability of large datasets for effective training
poses a significant challenge. In response to this challenge, a novel concept known as
“virtual big data” is introduced [16]. This concept involves the generation of synthetic or
virtual datasets that mimic the characteristics of real-world data, offering a solution in
situations where obtaining extensive real-world data is impractical. In consideration of
the small datasets of chemical reactions, the data-driven model suffers from the difficulty
of low accuracy in the prediction tasks of chemical reactions. To tackle this, the model
integrated with the strategies of data augmentation [17]. The data augmentation is used
to improve the performance of data-driven reaction prediction models by increasing the
sample size using fake data augmentation [18].

In what follows, we will employ a similar approach by utilizing data augmentation to
increase the dataset. This involves creating multiple copies of virtual anchors for each real
anchor around its position, as illustrated in Figure 2. The coordinates of these new virtual
anchors are mathematically represented by Equation (7). This data augmentation technique
is applied to enhance the dataset, generating additional instances of virtual anchors to
increase the training data.
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Figure 2. Creation of virtual anchors.

As shown in Figure 2, there are three anchors (A = 3), and each anchor is surrounded
by five virtual anchors (V = 5). The coordinates (x̃k, ỹk) of the virtual anchor near the real
anchor i can be obtained by adding a span multiplied by a random Gaussian variation
(∆xk, ∆yk), denoted as (Vcx, Vcy), as depicted in Algorithm 1 (steps 6 and 7), to the
coordinates of the anchor i (xi, yi) for (i = 1, . . ., A) and (k = 1, . . ., V) as follows:

(x̃1, ỹ1) = (xi ± ∆x1, xi ± ∆y1)
(x̃2, ỹ2) = (xi ± ∆x2, xi ± ∆y2)

...
(x̃k, ỹk) = (xi ± ∆xk, xi ± ∆yk)

(7)

where A and V denote the numbers of real and virtual anchors, respectively.

Algorithm 1. Generator for the coordinates of the virtual anchors

Input: BorderLength, NodeAmount, BeaconAmount, Span, V;
C (generation of coordinates of all nodes);
Beacon = [C(1,1:BeaconAmount);C(2,1:BeaconAmount)]; % Coordinates of real anchors
Output:
1. for V = 5:5:25
2. k = BeaconAmount × V;
3. for i = NodeAmount:−1:BeaconAmount +1;
4. C(:,i + k) = C(:,i); % Shift unknown nodes to leave room for virtual ones
5. end
6. n = 1;
7. for i = 1:V + 1:k + BeaconAmount
8. Vcx = Span × randn(1,V);
9. Vcy = Span × randn(1,V);
10. for j = 0:V
11. if (j = 0)
12. C1(:,i + j) = Beacon(:,n);
13. else
14. C(1,i + j) = C(1,i) + Vcx(1,j);
15. C(2,i + j) = C(2,i) + Vcy(1,j);
16. Bind C(:,i+j) within (BorderLength)2 square if outside
17. end
18. end
19. n = n + 1;
20. end
21. n = n − 1; % Total number of real and virtual anchors n = BeaconAmount × (V + 1)

This augmentation strategy involving virtual anchors significantly expands the dataset,
providing a more extensive and diverse set of training instances for the proposed DNN
model. The input data for the proposed DNN framework is the distance between the real
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anchors and their virtual anchors, and the unknown nodes. The data are then structured or
shaped to be in a format suitable for training, often represented in matrix form. The format
of the input data for the DNN is a single array form, as depicted in Figure 3.
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In Figure 3, Bi and VBik represent the locations of the real anchors and virtual anchors,
respectively, where (i = 1, . . ., A), A being the total number of real anchors, and (k = 1, . . .,
V), and V being the total number of virtual anchors. Uj denotes the unknown nodes, where
(j = 1, . . ., Nu), with Nu being the total number of unknown nodes. The distance between
(the real anchors and their virtual anchors), and the unknown nodes, is denoted as d(ik)j.
The training data size (Dt) is described in Equation (8):

Dt = (A × V + A)× Nu. (8)

In this scenario, the dataset composition is determined by the number of real an-
chors (A = 5), unknown nodes (Nu = 95), and the presence or absence of virtual anchors
(V = 0), the total data size (Dt) is calculated as 475 using the formula of Equation (7). How-
ever, introducing virtual anchors, as exemplified with V = 20, leads to a substantial increase
in the total data size, reaching up to 9975, as shown in Table 1 and Figure 4.
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Table 1. Training data size.

Virtual Anchors Anchors with Augmentation Total Data (Dt)

5 30 2850
10 55 5225
15 80 7600
20 105 9975
25 130 12,350

4. DNN-Based Estimated Distance Correction

To obtain a deeper understanding of DNNs, it is necessary to revisit the basics of
ANNs. ANNs have been used in several areas, such as engineering applications and WSN
applications [14,19]. Several types of neural networks are described in [13]. Generally, an
ANN can be defined as a system or mathematical model that consists of many nonlinear
artificial neurons running in parallel and may be generated as one layered or multilayered.
An ANN consists of a network of neurons organized in input layers, output layers and
hidden layers. Different types of networks can be implemented by varying the structure of
the weights and the activation functions of the neurons. Neural network systems can learn
how to approximate relationships between inputs and outputs without being overcome by
the complexity and size of the problem. The training of ANN using the backpropagation
(BP) technique typically occurs in three main steps: the feedforward of input training, the
backpropagation of the error, and the update of weights and biases.

ANNs, as highly efficient computational methods, find widespread applications in
knowledge representation, machine learning, and predicting output responses in complex
systems [20]. Recent advancements have underscored their effectiveness and led to notable
achievements in diverse domains [21]. In the domain of ANN training, various processes
have been employed [22]. This method is characterized by two essential stages: forward
propagation, and backward propagation [23]. Localization system based on WSN and
backpropagation-based BP-ANN have been practically implemented to detect and deter-
mine the position of an Alzheimer’s patient in an indoor environment [14]. To achieve
a minimal localization error, a thorough exploration of various DNN architectures was
undertaken, considering different combinations of hidden layers and neurons. Through
this iterative process, an optimal DNN architecture emerged, characterized by one input
layer (referred to as DNN input distance), five hidden layers with neuron counts of (20, 10,
5, 10, and 20,) and a single output layer (referred to as corrected distance), as depicted in
Figure 5.
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The process of localization accuracy involved the meticulous collection of DNN data
input for the purpose of training, testing, and validation. The dataset was judiciously parti-
tioned, allocating 70% for training, 15% for testing, and an additional 15% for validation.
The iterative process for training the DNN was extended up to 1000 iterations, a crucial
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step undertaken to enable the DNN to reach an optimal normalized root-mean-square
error (NRMSE).

5. Simulation and Performance Analysis

The experimental region was defined by the parameters outlined in Table 2; the nodes
were randomly deployed. We also carried out a series of experiments. This section presents
one case as an example of node deployment under the influence of network settings,
specifically by changing the amount of virtual anchor and span ranges, as illustrated in
Figure 6a. This figure provides a visualization of unknown nodes enclosed by 5 real anchors,
each surrounded by 20 virtual anchors, with a span equal to 1 m. Figure 6b showcases
another scenario where unknown nodes and 5 real anchors are surrounded by 20 virtual
anchors around each real anchor, but with a span equal to 6 m. These visual representations
offer a concrete example of node deployment configurations, demonstrating the impact of
the amount of virtual anchor, and varying span ranges in the simulation setup.

Table 2. Experimental parameter.

Contents of Experiments

Nu Number of unknown nodes 95
A Number of real anchors 5
V Number of virtual anchors 5, 10, 15, 20, 25
Sa Square area 100 × 100 m2

R Communications range 15 m, 20 m, 25 m, 30 m
σ Node density 0.01
S Span 1 m, 3 m, 6 m, 9 m, 12 m
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5.1. Experiment Results

To verify the performance of the proposed Dv-hop + DNN correction algorithm, the
simulations were separately carried out on the Dv-hop algorithm and the improved Dv-
hop + DNN correction algorithm across various values of spans and node communication
ranges within a randomly selected square area. The evaluation metric employed for
this comparison was the normalized root-mean-square error (NRMSE), calculated using
Equation (9):

NRMSE =

(
∑U

i=0

√(
xi − x̂j

)2
+
(

yi − ŷj

)2
/(Nu × R)

)
(9)
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where (xi, yi) denotes the real position of the unknown node, and
(

x̂j, ŷj

)
represents the

estimated position (Dv-hop) or corrected position (Dv-hop + DNN correction) of the
unknown node. The remaining parameters are defined in Table 1.

The comparison of the localization NRMSE for two different algorithms, Dv-hop and
a proposed DNN-correction algorithm, are presented in Figure 7, and a comparison was
made of various values of virtual anchors, in Figure 8 concerning span, and in Figure 9
with changes in the communication range. These figures illustrate that the accuracies of
all algorithms improved, as expected, with an increasing span and communication range.
However, the proposed approach consistently outperformed the Dv-hop algo-rithm in
terms of localization accuracy. The error in localizing unknown nodes de-creased with a
higher number of virtual anchor nodes in the proposed approach. The positioning errors
were smaller with the proposed approach compared to the Dv-hop algorithm, even when
the number of virtual anchor nodes was the same. Gradually changing the number of
virtual anchor nodes yielded different results in various sce-narios. The proposed approach
demonstrates increasing superiority over the Dv-hop approach as the number of virtual
anchor nodes rises. Importantly, under the same conditions, the NRMSE of the proposed
approach with an augmentation system was smaller than that of the Dv-hop algorithm.

Sensors 2024, 23, x FOR PEER REVIEW 8 of 13 
 

 

Table 2. Experimental parameter. 

 Contents of Experiments  𝑁  Number of unknown nodes 95 
A Number of real anchors 5 
V Number of virtual anchors 5, 10, 15, 20, 25 
Sa Square area 100 × 100 m2 
R Communications range 15 m, 20 m, 25 m, 30 m 
σ Node density 0.01 
S Span 1 m, 3 m, 6 m, 9 m, 12 m 

5.1. Experiment Results 
To verify the performance of the proposed Dv-hop + DNN correction algorithm, the 

simulations were separately carried out on the Dv-hop algorithm and the improved Dv-
hop + DNN correction algorithm across various values of spans and node communication 
ranges within a randomly selected square area. The evaluation metric employed for this 
comparison was the normalized root-mean-square error (NRMSE), calculated using Equa-
tion (9): NRMSE = ∑ x − x + y − y (N × R)   (9) 

where (x , y ) denotes the real position of the unknown node, and (x , y ) represents the 
estimated position (Dv-hop) or corrected position (Dv-hop + DNN correction) of the un-
known node. The remaining parameters are defined in Table 1. 

The comparison of the localization NRMSE for two different algorithms, Dv-hop and a 
proposed DNN-correction algorithm, are presented in Figure 7, and a comparison was 
made of various values of virtual anchors, in Figure 8 concerning span, and in Figure 9 
with changes in the communication range. These figures illustrate that the accuracies of 
all algorithms improved, as expected, with an increasing span and communication 
range. However, the proposed approach consistently outperformed the Dv-hop algo-
rithm in terms of localization accuracy. The error in localizing unknown nodes de-
creased with a higher number of virtual anchor nodes in the proposed approach. The 
positioning errors were smaller with the proposed approach compared to the Dv-hop 
algorithm, even when the number of virtual anchor nodes was the same. Gradually 
changing the number of virtual anchor nodes yielded different results in various scenar-
ios. The proposed approach demonstrates increasing superiority over the Dv-hop ap-
proach as the number of virtual anchor nodes rises. Importantly, under the same condi-
tions, the NRMSE of the proposed approach with an augmentation system was smaller 
than that of the Dv-hop algorithm.

 
Figure 7. NRMSE performance with different virtual anchors. Figure 7. NRMSE performance with different virtual anchors.

Sensors 2024, 23, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 8. NRMSE performance versus span values. 

 
Figure 9. NRMSE performance versus communication range. 

Figure 10 illustrates the cumulative distribution function (CDF) of the localization 
NRMSE with experiment parameters, as shown in Table 2. From Figure 10a, using the 
proposed algorithm Dv-hop + DNNs correction without augmentation system 70%, and 
with Dv-hop + DNNs correction for (5 V, 10 V, 15 V, 20 V, and 25 V), 90%, 94%, 95%, 96%, 
and 98%, respectively, of the sensors could estimate their position with an NRMSE less 
than 0.2. In contrast, from Figure 10b with Dv-hop for (5 V, 10 V, 15 V, 20 V, and 25 virtual), 
76%, 82%, 82%, and 91%, respectively, of the sensors could estimate their position, and 
only about 50% with Dv-hop without adding virtual anchors. This proves even more the 
accuracy of the proposed localization algorithm. Figure 10c shows when the span is very 
small (without and with 5 to 25 virtual), using the Dv-hop + DNN correction algorithm, 
71% of nodes estimate their position within a NRMSE value of less than 0. 2, and no more 
than 50% using Dv-hop (without and with 5 to 25 virtual), as shown in Figure 10d. Mean-
while, Figure 10e and Figure 10f show the effect of communication range when reduced 
from 30 m to 20 m, for two case Dv-hop and Dv hop + DNNs. The Dv-hop + DNNs cor-
rection without augmentation system 50%, and with Dv-hop + DNNs correction for (5 V, 
10 V, 15 V, 20 V, and 25 V), 78%, 81%, 82%, 86%, and 84%, respectively, of the sensors could 
estimate their position with an NRMSE less than 0.2. In contrast, from Figure 10f with Dv-
hop for (5 V, 10 V, 15 V, 20 V, and 25 V), 55%, 62%, 69%, and 67% of the nodes achieve the 
same accuracy with and only about 50% with Dv-hop without adding virtual anchors. 
From the simulations, we observed that the proposed approach kept improving noticea-
bly with a larger number of virtual anchor nodes up to 20 when the total training data size 
was 9975, as shown in Table 1. Performance gains started to saturate beyond that thresh-
old. 

Figure 8. NRMSE performance versus span values.



Sensors 2024, 24, 430 9 of 13

Figure 10 illustrates the cumulative distribution function (CDF) of the localization
NRMSE with experiment parameters, as shown in Table 2. From Figure 10a, using the
proposed algorithm Dv-hop + DNNs correction without augmentation system 70%, and
with Dv-hop + DNNs correction for (5 V, 10 V, 15 V, 20 V, and 25 V), 90%, 94%, 95%, 96%,
and 98%, respectively, of the sensors could estimate their position with an NRMSE less
than 0.2. In contrast, from Figure 10b with Dv-hop for (5 V, 10 V, 15 V, 20 V, and 25 virtual),
76%, 82%, 82%, and 91%, respectively, of the sensors could estimate their position, and
only about 50% with Dv-hop without adding virtual anchors. This proves even more the
accuracy of the proposed localization algorithm. Figure 10c shows when the span is very
small (without and with 5 to 25 virtual), using the Dv-hop + DNN correction algorithm,
71% of nodes estimate their position within a NRMSE value of less than 0. 2, and no
more than 50% using Dv-hop (without and with 5 to 25 virtual), as shown in Figure 10d.
Meanwhile, Figures 10e and 10f show the effect of communication range when reduced
from 30 m to 20 m, for two case Dv-hop and Dv hop + DNNs. The Dv-hop + DNNs
correction without augmentation system 50%, and with Dv-hop + DNNs correction for (5 V,
10 V, 15 V, 20 V, and 25 V), 78%, 81%, 82%, 86%, and 84%, respectively, of the sensors could
estimate their position with an NRMSE less than 0.2. In contrast, from Figure 10f with
Dv-hop for (5 V, 10 V, 15 V, 20 V, and 25 V), 55%, 62%, 69%, and 67% of the nodes achieve
the same accuracy with and only about 50% with Dv-hop without adding virtual anchors.
From the simulations, we observed that the proposed approach kept improving noticeably
with a larger number of virtual anchor nodes up to 20 when the total training data size was
9975, as shown in Table 1. Performance gains started to saturate beyond that threshold.
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These further prove the efficiency of the Dv-hop + DNN algorithm, and that the DAS
has a sufficient effect for correcting the location of coordinates of unknown nodes.

5.1.1. Effect of Span

The evaluation of the Dv-hop and Dv-hop + DNN correction algorithms was con-
ducted with systematic adjustments made to the span (distance between real anchors and
virtual anchors) at values of 1 m, 3 m, 6 m, 9 m, and 12 m. The foundational aspects of the
WSN model, detailed in Table 2, remained unchanged throughout these experiments. The
experimental outcomes, detailed in Tables 3 and 4, highlight the performance of the Dv-hop,
Dv-hop + virtual, and Dv-hop + DNN correction algorithms under varying span values,
assessed through NRMSE values. Remarkably, the NRMSE obtained by the proposed
Dv-hop + DNN correction consistently ranked first, particularly when virtual anchors
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were strategically introduced around the real anchors. This observation underscores the
algorithm’s superior performance in terms of both accuracy and cost efficiency.
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Table 3. Result of different values of span for Dv-hop, R = 30 m.

Span 1 m 3 m 6 m 9 m 12 m

Dv-hop 43.87% 43.34% 43.24% 43.22% 43.20%
Dv-hop (5 V) 43.09% 41.37% 39.91% 37.65% 36.58%
Dv-hop (10 V) 43.09% 39.05% 37.35% 35.45% 35.35%

NRMSE of Dv-hop (15 V) 43.07% 38.75% 36.97% 35.26% 34.17%
Dv-hop (20 V) 43.06% 38.08% 36.55% 35.14% 34.11%
Dv-hop (25 V) 43.06% 38.05% 36.87% 35.05% 34.02%
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Table 4. Results of different values of span for Dv-hop + DNNs correction, R = 30 m.

Span 1 m 3 m 6 m 9 m 12 m

Dv-hop + DNN 33.65% 33.05% 33.04% 33.04% 33.05%
Dv-hop + DNN (5 V) 32.23% 31.35% 29.95% 27.55% 26.34%

NRMSE of Dv-hop + DNN (10 V) 32.15% 30.05% 26.45% 24.89% 24.73%
Dv-hop + DNN (15 V) 32.15% 29.85% 25.91% 24.54% 24.34%
Dv-hop + DNN (20 V) 32.05% 29.05% 25.76% 23.55% 23.29%
Dv-hop + DNN (25 V) 32.05% 29.15% 25.12% 22.85% 22.30%

5.1.2. Effect of Node Communication Range

To test the Dv-hop and Dv-hop + DNN correction algorithms under the effect of
communication range. The communication range (R) of the nodes was systematically
varied across different values, 15 m, 20 m, 25 m, and 30 m, while keeping the rest of
the WSN model unchanged. The experimental results, presented in Tables 5 and 6, il-
lustrate the performance of the algorithms under these varying communication ranges,
with the evaluation based on NRMSE values. Lower NRMSE values indicate higher
accuracy in node localization. Generally, an increase in the communication radius corre-
sponds to a decrease in NRMSE values, signifying improved accuracy. It is noteworthy
that indiscriminate expansion of the communication range may not always be the opti-
mal strategy. While a larger communication range enhances the accuracy of hop counts
between sensor nodes, leading to better connectivity, the optimal approach is contin-
gent on the specific requirements of the WSN. A larger communication range provides
sensor nodes with more neighbors, facilitating more accurate hop counts and enhanced
connectivity, enabling each unknown node to leverage a greater number of anchors for
improved self-localization.

Table 5. Result of different values of communication range for Dv-hop (span = 1).

R 15 m 20 m 25 m 30 m

Dv-hop 139.89% 72.56% 56.34% 43.22%
Dv-hop (5 V) 118.45% 45.45% 39.45% 35.58%

NRMSE of Dv-hop (10 V) 115.67% 42.34% 37.87% 34.35%
Dv-hop (15 V) 98.87% 40.65% 36.23% 34.17%
Dv-hop (20 V) 65.82% 39.54% 35.05% 34.11%
Dv-hop (25 V) 67.72% 38.67% 35.12% 34.02%

Table 6. Result of different values of communication range for DNNs (span = 12).

R 15 m 20 m 25 m 30 m

Dv-hop + DNN 99.02% 52.55% 45.53% 34.05%
Dv-hop + DNN (5 V) 90.12% 34.87% 29.34% 25.34%

NRMSE of Dv-hop + DNN (10 V) 88.98% 32.56% 27.43% 24.73%
Dv-hop + DNN (15 V) 65.44% 30.33% 26.82% 24.34%
Dv-hop + DNN (20 V) 47.34% 24.36% 24.25% 23.49%
Dv-hop + DNN (25 V) 48.54% 25.5% 23.56% 22.60%

5.2. Performance Analysis

This section explores the advantages of the proposed Dv-hop + DDNs correction
compared to other state-of-the-art optimization algorithms, including those employed
by EFPA-G [24] and WRCDv-hop [25]. Many contemporary optimization algorithms,
such as those utilized by EFPA-G and WRCDv-hop, leverage intelligent optimizers to
estimate the locations of unknown nodes. The complexity of these algorithms depends on
various factors, including the number of real anchors and communication range, leading to
increased accuracy at the expense of higher energy consumption. However, the use of many
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real anchors can be cost-prohibitive and may pose challenges in terms of training data size.
To address this issue, we introduced a DAS that virtually increases the number of anchors,
mitigating the prohibitive cost associated with the deployment of many real anchors.

6. Conclusions

This article introduced an innovative and precise machine learning-based approach
for range-free localization in WSN applications within the IoT. Our methodology presents
a cost-effective distance estimation strategy through the development of DNN. The aim is
to reduce localization errors and enhance accuracy without incurring additional hardware
costs. Additionally, we proposed a DAS that virtually increases the number of anchors,
significantly augmenting the training data and leading to more accurate localization. Simu-
lation results illustrate the effectiveness of our DAS in range-free localization for WSNs,
particularly with a limited number of real anchors. Notably, our proposed Dv-hop + DNNs
correction surpasses the traditional Dv-hop algorithm, demonstrating superior localiza-
tion accuracy.
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