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Abstract: This paper proposes a new approach to defect detection system design focused on ex-
act damaged areas demonstrated through visual data containing gear wheel images. The main
advantage of the system is the capability to detect a wide range of patterns of defects occurring
in datasets. The methodology is built on three processes that combine different approaches from
unsupervised and supervised methods. The first step is a search for anomalies, which is performed
by defining the correct areas on the controlled object by using the autoencoder approach. As a result,
the differences between the original and autoencoder-generated images are obtained. These are
divided into clusters using the clustering method (DBSCAN). Based on the clusters, the regions of
interest are subsequently defined and classified using the pre-trained Xception network classifier.
The main result is a system capable of focusing on exact defect areas using the sequence of unsuper-
vised learning (autoencoder)–unsupervised learning (clustering)–supervised learning (classification)
methods (U2S-CNN). The outcome with tested samples was 177 detected regions and 205 occurring
damaged areas. There were 108 regions detected correctly, and 69 regions were labeled incorrectly.
This paper describes a proof of concept for defect detection by highlighting exact defect areas. It
can be thus an alternative to using detectors such as YOLO methods, reconstructors, autoencoders,
transformers, etc.

Keywords: automation; defect detection; anomaly detection; deep learning; autoencoder; clustering;
visual inspection

1. Introduction

Defect detection in visual data can be considered a separate part of object detection
used primarily as part of inspection systems in industrial applications. The applicability
of inspection systems is in the field of Industry 4.0 and the creation of cognitive control
systems. Inspection processes may vary from inter-operational to final quality control
of manufactured products [1,2]. The quality assessment or inspection objective can be
diverse, from measurement and control procedures to defect monitoring. Many object
detectors were proposed in the past. They can be divided into single-step or two-step
detectors. YOLO [3–5] and SSD [6] are single-step detectors where the prediction of the
final class and localization of the object are performed in a single step. The advantages are
architectural simplicity, regularity with easy end-to-end training, and higher FPS; however,
the cost is lower localization precision and recall. The two-step detectors use the additional
step at the beginning in order to find regions of interest (RoIs) which are subsequently
classified in the second step. This improves both the localization precision and the recall at
the expense of increased computation and complexity. R-CNN [7], fast R-CNN [8], faster
R-CNN [9], mask R-CNN [10], and cascade R-CNN [11] are examples of known two-step
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detectors. Mask R-CNN even includes the ability to classify the objects on the pixel level
(segmentation) and is proven to improve the accuracy in end-to-end learning together
with classification and localization. Cascade R-CNN repeats the classification step several
times, with increasing localization requirements, improving the accuracy further [3,7,9,10].
Visual pattern detection is one of the most researched problems with varied accuracy and
many applications. There are many goals that are mostly competing. The main goal is to
maximize the ability to correctly detect objects of interest in visual data. The second goal is
to perform the prediction efficiently. For industry applications, there are minimal frame
rate requirements of 30, 60, or more frames per second (FPS), depending on the specificity
of the task. The maximal latency of the prediction is another crucial parameter of industrial
applications required for many real-time visual detection tasks. More efficient detectors
save energy and can be run on less expensive computation resources. Anomaly detection
offers visual detection with a focus on differences without defining a closer category or
type of detected anomaly. This approach is used in many cases where anomalies are
filtered through autoencoders, U-nets, or similar methods. It prevails in the field of medical
applications, especially in machine evaluation of MRI and CT images [12–14].

In our research, we have focused on the detection of defects, including various shapes
contained (or not) in the training dataset, that may differ in orientation, position, color,
display, etc. This is because the defect is a random element with not exactly defined
structures. Therefore, standard models based solely on the detection of trained patterns
may be insufficient in the practical application of inspection systems. The second generally
used approach mentioned in the literature is based on the comparative method, using an
autoencoder, a U-network, or a visual transformer, with the purpose of having a trained
network capable of reconstructing the input image according to the trained pattern, thereby
suppressing possible anomalies in the test image. When comparing the generated image
and the tested image, anomalies become visible. This is the essence of the first part of the
presented defect detection system. From the point of view of applicability, this method
does not give information about the kind of anomalies manifested as differences between
the tested and reconstructed images. In order to determine the type of anomaly, additional
steps should be completed. Selecting a suitable clustering algorithm is crucial for the correct
separation of the differences according to their position into related categories so that it is
possible to determine which pixels correspond to which anomaly. Since it is not possible
to estimate how many anomalies will be recorded from the autoencoder, it is necessary to
choose a clustering algorithm separating the data not according to a predefined number
of classes but, rather, according to the data structure. From this point of view, the most
suitable algorithms are DBSCAN and OPTICS. DBSCAN has been chosen due to its ability
to separate the differences into relevant clusters. Based on the clusters, the areas of interest
named as the RoIs were defined, which enter the third phase of the system, the so-called
classifier for determining the type of anomaly. The pre-trained Xception network was used
as a classifier.

The question is whether it is possible and efficient to focus on exact areas of defects,
building an alternative to the clear supervised methods (for instance, YOLO approaches)
or to the reconstructor models only (such as autoencoders, U-nets, or transformers) in
defect detection and whether only the supervised methods are sufficient enough for de-
fect detection, as well as what are the fundamental differences in defect detection from
object detection.

The main contributions and support hypotheses in the proposed U2S-CNN are
as follows:

Unsupervised method—anomaly detection: design a custom autoencoder to recon-
struct an input testing image to its more idealized version without anomalies and use its
output to detect and locate anomalies in the test image.

Unsupervised method—clustering: separation of the differences in anomalies and
regions of interest by using the DBSCAN clustering method, independent from the defined
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number of clusters and their shapes or patterns. The issue being solved is the following:
how many anomalies or defects occur in the tested image?

Supervised method—classification: classification of anomalies in the way of regions
of interest to pre-trained labels. The issue being solved is the following: what type of
anomalies occur in the tested image in the way of the detected anomaly?

2. Related Works

The defect detection was gradually implemented simultaneously with the develop-
ment of general methods for detecting objects or patterns. One of the first applications of
the R-CNN method for defect detection is described in [15]. The detection method using
R-CNN is based on the definition of 2000 region proposals that are classified. Defining
these 2000 regions depends on the algorithm used to extract the given regions. In the case
of a homogeneous image or the extraction of a specific image, it can be problematic to
correctly capture or delineate a specific pattern.

The detection of defects using the fast R-CNN method is described in [16], where four
types of defects were detected on discs of passenger car wheels. The achieved precision
was from 68.5% (oil pollution) to 74.9% (scratch). In the case of error detection, the faster
R-CNN method was used more often. For example, an improved faster R-CNN method is
described in [17]. The authors use a specific type of data from the ground-penetrating radar
device, which monitors the condition of the rails. They used a Caffe-based faster R-CNN
to detect errors in this specific data. The result is the detection of four types of defects,
where the detection accuracy expressed by the F-Score was from 75.8% to 83.6%, and the
precision was 85.2%. Another faster R-CNN-based method for detecting defects in fiber
paper tubes is presented in [18]. The data acquisition hardware consisted of a line camera
and a red line illumination. Defect detection was performed by the faster R-CNN + ZF
method. The precision was from 47.0% (internal joint detection, 15 pics) to 97.8% (external
joint detection, 75 pics). The detection of tire bubble defects on digital shearography data is
described in [19]. Bubble detection was divided into detection on the sidewalls of the tire
and on the tread of the tire. Detection accuracies of 86.87% (tire sidewall) and 89.16% (tire
tread) was achieved. The paper with a description of detection and classification applied
for metallic surface defect detection is in [20]. In this work, an autoencoder with connected
layers is applied to define different areas. The differences are cropped and classified into
the three types of defects. A specific approach for defect detection was chosen in [21]. The
work describes a two-phase approach, where the first phase is a segmentation network,
and the second phase is a decision network. The segmentation network was evaluated on
DeepLabv3+ and U-net architectures. This part of the designed system defines the defect
area. The results were achieved with a precision from 96.1% to 99.9%. A similar work [22]
demonstrated the results on the industrial databases DAGM, KolektorSDD, and Severstal
Steel Defect. In a supervised manner, an accuracy from 91.88% (DAGM dataset) to 100.00%
(KolektorSDD dataset) was achieved. Another specific approach is based on a residual
convolutional neural network. The application is for detecting defects occurring on printed
circuit boards (PCBs) [23]. Another category of error detection is an approach based on
autoencoders capable of generating a sample image, e.g., [24]. The resulting applications
are for detecting defects such as scratches, surface cracks, and caverns. Using U-net with
the Xception architectural modules achieved a precision of 0.87. Another work (Kim et al.,
2021) is based on an autoencoder with custom architecture [25]. A more advanced anomaly
detection principle can also be based on visual transformers, which is presented in [26],
where anomaly detection reached between 78.9 and 100.0%, depending on the category.

The solution with the improved YOLOv4 model reached a mean average precision
of 94.5%, supporting the feasibility of the YOLOv4 model for this type of task. A frame
rate of 42 FPS was applied using an NVIDIA GeForce GTX 1080Ti [27]. The solution was
based on a transformer and performed on MVTec and their dataset, where the performance
was from 99.42 to 99.92% [28]. The application of the U-Network architecture performer on
the MVTec dataset is described in [29]. The AUC score reached 98.80% at the image level.
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The principle of work is based on the defined differences between the input and generated
images. A summary of the results is presented in Table 1.

Table 1. Detection approaches with metrics.

Paper Method Metrics

[18] Faster R-CNN 47.00–97.80% (Precision)
[20] Autoencoder, classification 84.74–89.19% (Accuracy)
[17] Improved Faster R-CNN 85.20% (Precision)
[16] Fast R-CNN 72.90% (Precision)
[19] Faster R-CNN 86.87–89.16% (Accuracy)
[15] R-CNN 97–99% (Accuracy)
[21] Segmentation (DeepLabv3+, U-net) 96.10–99.90% (Precision)
[22] Mixed supervision 91.88–100.00% (Precision)
[23] CS-ResNet 0.95 (Sensitivity, α = 1)
[24] U-net (Xception) 0.87 (Precision)
[25] Convolutional autoencoder 0.9847 (Precision)
[26] UTRAD (visual transformer) 78.9–100.0%

To sum up, in scientific contributions, the chosen approach of searching for defects
is based on detection principles such as R-CNN methods or possibly based on segmen-
tation methods. The second branch is the detection of anomalies in the data obtained by
comparing the input with generated or filtered images. In this case, primary U-networks,
autoencoders, and visual transformers are used. This approach is mainly applied in the
field of industry [25] or in the field of medicine, especially the detection of anomalies in
MRI images [30,31].

The main topics about finding defects in inspected objects for industrial applications
are in the two dominant approaches: supervised methods—detectors for defect detection
or unsupervised methods—reconstructors using unlabeled data in the way of autoencoders
or U-nets. The detectors achieve good results, but in our opinion, the usage of detectors is
not enough to detect a large number of defect types, especially the defects not contained
in a dataset. The unsupervised methods do not provide enough information about the
specific area of defects or the label of these defects. We see limits of these methods dealing
with an idea of unknown defects or unlabeled defects in using reconstructors. We see a
solution in the combination of the advantages of both approaches into one system.

Our effort is to summarize a comprehensive approach to solving the problem of
detecting defects in data and solving the primary shortcomings of both solutions, where
the area of anomaly detection is supplemented by another part, namely the clustering of
differences and the classification of specified areas. In the area of defect detection based
only on detection systems of the faster R-CNN type and similar, there is an effort to focus
on the detection of defects not contained in datasets and thus go beyond the issue of
detecting defects of non-specific shapes, coloring, topology, and the like. A very interesting
two-phase approach is presented in [21]. The premise of the problem is not to focus on
limited defect datasets. This is due to the different display or structure of the defects. In the
work [32], the emphasis is on the generality of the shape of defects that may not be included
in the dataset. A better solution to general defect detection is based on the differential
method, where generative or predictive methods such as autoencoders, visual transformers,
or recurrent networks are used to filter out all differences. In this approach, the focus is
not on detecting defects but on training the correct patterns. However, the output from
such a system does not include sufficient information about the location and type of defect.
Based on these issues, the detection system proposed is designed to combine the essence
of both methods, while these methods are supplemented with the DBSCAN algorithm as
a category of unsupervised learning to significantly increase the cognitive ability of the
detection system.
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3. U2S-CNN Three-Phase Defect Detection System

The defect detection system designed is a three-phase detection system (Figure 1),
where the primary cognition of the system is based on the use of algorithms in the
following manner: 
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Figure 1. Illustration of method “from anomaly detection to defect classification”. 

   

Figure 1. Illustration of method “from anomaly detection to defect classification”.

First phase: Unsupervised learning–anomaly detection–defining the right areas and
focusing on anomalies in the data.

Second phase: unsupervised learning–anomaly clustering–defining clusters from
anomalies where the number, orientation, color, display, etc. may differ.

Third phase: supervised learning–anomaly classification–classification of areas of
interest into predefined classes, either a correct part that was not properly reconstructed or
an occurring defect.

The resulting detection system can be described as a U2S-CNN network developed for
defect detection. The following sections will describe each phase in detail. The dataset used
in this study was obtained in the laboratory by a 12 Mpx camera. The capture of objects
was performed in general angles without additional light conditions. These images were
cropped and resized to create the training and test data (224 × 224) for the first phase. For
training the classification, the dataset of defects was made.

4. Anomaly Detection

Anomalies can be defined as differences in data that are created by comparing test
data to expected data. Several methods, such as autoencoders, U-net visual transformers,
and the like, can be used for this purpose. From the point of view of the application and
focusing on anomalies, the primary goal is to detect these anomalies using the autoencoder.
The Convolution, Maxpooling, and UpSampling layers of the autoencoder will learn to
suppress the anomalies in the learning process. A trained autoencoder is able to reconstruct
the test data by replacing correct or at least improved areas according to training patterns.
The goal is to achieve the best possible reconstruction of the test image according to the
trained patterns. The basic premise is to ensure enough precisely defined patterns for
training (Figure 2). The base dataset consists of cropped images of a gear wheel of the same
type due to the specialization of this application for industrial purposes. Autoencoders fall
into the category of convolutional neural networks. The design of the convolutional neural
network is built with Tensorflow [33], and primarily, the following layers are utilized:
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• BatchNormalization;
• Conv (2D);
• MaxPool (2D);
• UpSampling (2D).

The architecture of the autoencoder used is defined in Figure 3B. This type of network
is an asymmetric autoencoder, where filters are trained in the latent space due to the
suppression of possible defective areas during the image reconstruction process. So, the
number of filters was set to 256 in the latent space. The neural network training parameters
are listed in Table 2, based on which it is also possible to assume the difficulty of the training
or predictive process. The ‘adam’ optimizer and “mean_squared_error” loss function were
used for training. The training was performed on 78 images with correct samples in
100 epochs. The result of the training process is shown in Figure 3B. The training data
and output data (y) were used the same. So, the autoencoder trains to patterns of correct
samples. The training accuracy was achieved at 72.02%. Such a network is sufficient to
generate a sample image in the conditions of this research.
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Figure 2. Examples of training dataset for the autoencoder.
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Figure 3. Architecture of the autoencoder and its training process. (A)—architecture of autoencoder
network, (B)—training process of autoencoder.
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Table 2. Autoencoder summary.

Parameters Number

Total params: 6,218,243
Trainable params: 6,212,355

Non-trainable params: 5888

5. Clustering to Regions of Interest

In the previous phase, anomalies defined as differences in test and reconstructed test
data were detected, see Figure 3. The majority of the published works about anomaly
detection usually end at this stage. Furthermore, these works do not specify what to do
with this information. In this work, the focus is on anomaly detection and also on the
identification of detected anomalies. The main point of this phase is the distribution of
detected differences according to individual labels corresponding to anomalies on the test
object. It is impossible to say how many anomalies, what shape, location, display, and
topology may occur on the test object. Clustering algorithms as part of Unsupervised
learning are suitable to solve this issue with an unknown number of possible occurring
anomalies. Most clustering algorithms are based on methods of separating points in 2D or
3D space to a number of clusters defined before, for instance, the K-means method [34]. This
way is not sufficient because this issue needs to separate many different numbers of points
in every possible position to a separate non-predefined number of clusters. The simple
description of the problem includes the unknown number, positions, size, and shape of
these defects. For this reason, it is necessary to perform separation of the differences (in the
way of different pixels) to cluster. For this reason, we decided to utilize existing clustering
algorithms implemented in the scikit-learn library [35], which do not require the number of
clusters to be predefined but work on the principle of the separation of pixels according to
density relations. For this purpose, the suitable clustering methods are as follows: density-
based spatial clustering of applications with noise (DBSCAN) or ordering points to identify
the clustering structure (OPTICS) [36]. The DBSCAN algorithm was selected and used in
this work. For this algorithm, two parameters have to be specified. The parameter epsilon
(e or eps) is set as the radius of the searched space, and the parameter minimum number
of samples (min_samples) is set as the minimum number of points in the searched space.
Based on this, the points are divided into three categories: core points, boundary points,
and other points or noisy points. In this work, parameters for the DBSCAN algorithm were
defined: eps = 5 and min_samples = 5. A clustering result example is shown in Figure 4.
The tested gear is shown, which was evaluated as damaged in the previous phase. The
differences in RGB were transformed into monochrome expressions as the RGB mean. As
a result, 39 clusters were recorded in this test pattern. A region of interest (RoI) can be
defined from these clusters. Most of the clusters correspond to slightly blurred areas that
were assimilated in the reconstruction process. For this reason, clusters containing at least
30 points were further used. In Figure 4, three such clusters are shown.
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Figure 4. The detected anomalies clustered to regions. (A)—image of found differences, (B)—clustered
differences to clusters and made regions of interest (ROI).
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6. Classifying the Regions of Interest to Categories

In the previous phase, RoIs were defined using the clustering algorithm based on the
differences from the autoencoder. This phase is performing the classification of RoIs into
predefined classes. Based on the data, six basic types of objects were specified, where three
types belong to defects, namely, damaged edge, scratch, and surface damage. The other
three types belong to standard parts of a gear, namely edge, teeth, and thread hole. Such a
division was chosen due to the possibility of incorrect reconstruction of the correct part of
the inspected object. An example of the training dataset is shown in Figure 5. The number
of samples for the training and validation dataset is shown in Table 3.
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Figure 5. Examples of training dataset for the classification procedure.

Table 3. Training and validation dataset.

Category No. of Training Samples No. of Validation Samples

Damaged edge 124 25
Edge 123 28

Scratch 198 42
Surface damage 176 33

Teeth 193 42
Thread hole 167 35

Sum 981 205

The third part of this work focuses on defect classification. In this phase, simple
classification can be used since the anomalies and their localization are precisely defined
from the previous phases. It is convenient to use the transfer learning method in the form
of a pre-trained model for classification [37]. From the list of pre-trained models from
the Tensorflow library [38], the Xception model was selected. This model is one of the
best classification models, achieving very good results for different types of classification
tasks [39,40]. The input dimension was set to 71 × 71 × 3, and the number of outputs
to 6. The Xception neural network has 71 layers, and the parameters of the Xception are
listed in Table 4. The SparseCategoricalCrossentropy for the loss function and the Adam
optimizer were chosen. The number of epochs was chosen to be 100. The training accuracy
reached 100%. Model validation was performed on 205 samples shown in Figure 6, where
the validation accuracy reached 95.61%.
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Table 4. Xception model summary.

Parameters Number

Total params: 20,873,774
Trainable params: 20,819,246

Non-trainable params: 54,528
Sensors 2024, 24, x FOR PEER REVIEW  6  of  9 
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Figure 6. Confusion matrix of Xception model on validation dataset.

7. Results

Evaluation of the correctness of the inspected object is already possible in the 1st phase
of the U2S-CNN network, where, based on the differences, it is possible to assume that there
are anomalies on the inspected object. The validation of the first phase of the U2S-CNN
network was performed on 144 samples shown in Figure 7, where the points represent the
average value of the detected differences, while the green points below the experimentally
set value of 5.5 represent the controlled samples without detected anomalies. The average
values higher than 5.5 represent the high possibility of occurring anomalies in the inspected
objects, most likely in the form of defects.
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Figure 7. Validation of 1st phase of U2S-CNN.

An example of the operation of the U2S-CNN network is shown in Figures 8 and 9,
where the sequence of operation of the U2S-CNN network is shown. The input image (A)
is processed by the autoencoder in the first phase (B). Differences are expressed based on
the input and generated image (C). Based on these differences, it is possible to determine
whether the image is correct or shows traces of anomalies or damage and requires the next
inspection steps. Next, the differences enter the second phase, where they are separated into
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clusters using the DBSCAN algorithm (D). The number of detected differences is displayed
as a green number. Clusters with more than 30 points are defined as anomalies and form
RoIs for the third stage. Highlighting of the detected anomalies in the input image is shown
in (E) (best seen in color and zoomed). Subsequently labeled RoIs are shown in (F).
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Figure 8. Illustration of working U2S‐CNN network with correct samples, where (A)—input image, 
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Figure 8. Illustration of working U2S-CNN network with correct samples, where (A)—input im-
age, (B)—generated image by autoencoder, (C)—differences between input and generated images,
(D)—clustered differences with shown regions of interest, (E)—merged input image and detected
clusters, and (F)—labeled anomalies.
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Figure 9. Illustration of working U2S‐CNN network with damaged samples, where (A)—input im‐
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Figure 9. Illustration of working U2S-CNN network with damaged samples, where (A)—input
image, (B)—generated image by autoencoder, (C)—differences between input and generated images,
(D)—clustered differences with shown regions of interest, (E)—merged input image and detected
clusters, and (F)—labeled anomalies.

The evaluation of the U2S-CNN network is described in Table 5. The evaluation is
performed on two types of samples. The reconstruction reached an industry-acceptable
result. All correct samples were defined as correct in the reconstruction process. Altogether,
423 clusters for 78 images were detected in the clustering process. From them, there were
16 regions of interest, which contained more than 30 pixels. In the classification process,
there were seven regions labeled correctly, and nine regions were labeled incorrectly. In
tested samples, there were 1920 clusters detected for 61 samples, and 177 RoIs were defined.
In the classification process, 108 RoIs were classified correctly, and 69 RoIs were classified
incorrectly. In total, 142 of 205 damaged areas were undetected. The main problem was to
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identify small defects correctly, e.g., small scratches or defects visually very close to the
surrounding areas. More experimental work is necessary to find a suitable combination of
light sources under specific angles that will increase the contrast and improve the detection
capability. Light experimentation is out of the scope of this work and will be addressed
in the future. This summarizes the complete results, including the manual review of the
U2S-CNN network [41].

Table 5. The evaluation of U2S-CNN.

The Type of Images No. Samples Detected
Regions RoI Labels No. of Undetected

Areas
No. of Damaged

Areas

Correct samples
(Training dataset) 78

All: 423 Good: 7 0 0
RoIs: 16 Wrong: 9 0 0

Tested samples 61
All: 1920 Good: 108

142 205RoIs: 177 Wrong: 69

8. Discussion

In this work, a proof of concept for a hybrid system for defect detection built on unsu-
pervised and supervised methods and combining their advantages was introduced. This
study was performed on a dataset of 139 images for autoencoder consisting of 78 correct
samples and 61 tested samples. For the next study, it is appropriate to consider a larger
dataset prepared using artificial light for capturing photos in the environment of the black
box and with a larger size of images. From such data, it will be possible to obtain higher
quality and improved results of reconstruction, which is crucial for achieving good detec-
tion of defects. It is necessary to adapt light conditions to the shape and topology of the
object being inspected, mainly to prevent the appearance of shadows. The other issue of
application defect detection is connected with time dependency to perform this task. In this
paper, this area is not explored. For further work, the monitoring of the time parameter and
the use of optimized algorithms are planned to obtain faster performance of software and
better usage of computational power. These tasks are planned for the further evolution of
this solution, where an architecture and system of training process of models in supervised
and unsupervised models will be adapted.

9. Conclusions

In this paper, a system designed for defect detection is presented. It is composed of
three parts, where two parts are trained on an adequate dataset of data. In the first step,
the cropped data in Figure 2 were used to train the autoencoder. In this way, it is possible
to demonstrate the possibilities of anomaly detection when applying such a system very
well for industrial purposes in limited conditions. This term means a precisely defined
object with adequate sensing conditions, for example, lighting and the position of the
sensing device in relation to the object, etc. It is especially good to highlight the cognitive
nature of the proposed system, not being limited to the detection of defined patterns but
to the detection of anomalies that are classified into individual classes. The classification
of differences into anomalies is ensured by a clustering algorithm, which significantly
increases the cognitive ability of such a system. In its current form, this system is based on
the use of an autoencoder. For other specific purposes, the autoencoder can be replaced
by, for example, a visual transformer [26] or another so-called predictive algorithm, for
example, based on a recurrent network [42] and similar. Any reconstruction model that
is able to transform the input image into its more ideal version without irregularities can
be used.

We present the results of the proposed U2S-CNN in detail, from anomaly detection
to a defect classification system. All results and visualizations to illustrate the reliability
of U2S-CNN can be accessed in a GitHub repository. The first two phases are reaching
industry-acceptable results. Not enough sufficient real results were obtained in the clas-
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sification phase. The main issue is the problem of defect detection, where defects have
very different patterns, locations, colors, etc. This is mainly the case of scratches, which
are characterized as long and very thin patterns. Also, in this process, the input resolution
224 × 224 × 3 is used in the autoencoder. Higher resolutions can significantly improve this.
The second issue is data quality, which is crucial in this type of task. In further research,
attention has to be focused on the area of lighting conditions for scanning and inspecting
an object and surfaces or parts [43]. The full evaluation of various lighting conditions
was not in the scope of this work, and we will focus on it in future work. In the case of
non-compliance with the conditions, these anomalies can be assimilated and may not be
detected in the reconstruction process.

The purpose of this work is to demonstrate the proof of concept, focusing on defining
the exact area of defects and specifying the defect area more precisely than just obtaining
bounding boxes from standard detectors such as YOLO methods. From the point of view
of the application of U-nets, transformers, and autoencoders, these methods provide only
the basic truth areas. Also, the labels are not included in their results. Our system assigns
labels and separates anomaly areas of specific defects. As a result, the proposed system
combines the possibilities of two methods into one system and reaches the advantages
of both approaches. Our assumption is a more feasible use of defect detection based on
reconstruction in the first step due to the fundamental lack of strictly defined shapes of
defects. These methods work, such as unsupervised approaches without labeled data. This
way is not a problem with datasets with many different types of defects.
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21. Tabernik, D.; Šela, S.; Skvarč, J.; Skočaj, D. Segmentation-based deep-learning approach for surface-defect detection. J. Intell.
Manuf. 2019, 31, 759–776. [CrossRef]
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