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Abstract: The aims of this study were to investigate the potential of utilising molecularly imprinted
polycarbazole layers to detect highly toxic picric acid (PA) and to provide information about their
performance. Quantum chemical calculations showed that strong interactions occur between PA and
carbazole (bond energy of approximately 31 kJ/mol), consistent with the theoretical requirements for
effective molecular imprinting. The performance of the sensors, however, was found to be highly
limited, with the observed imprinting factor values for polycarbazole (PCz) layers being 1.77 and 0.95
for layers deposited on Pt and glassy carbon (GC) electrodes, respectively. Moreover, the molecularly
imprinted polymer (MIP) layers showed worse performance than unmodified Pt or GC electrodes,
for which the lowest limit of detection (LOD) values were determined (LOD values of 0.09 mM and
0.26 mM, respectively, for bare Pt and MIP PCz/Pt, as well as values of 0.11 mM and 0.57 mM for
bare GC and MIP PCz/GC). The MIP layers also showed limited selectivity and susceptibility to
interfering agents. An initial hypothesis on the reasons for such performance was postulated based
on the common properties of conjugated polymers.

Keywords: molecularly imprinted polymer; sensor; picric acid; 2,4,6-trinitrophenol; detection;
polycarbazole

1. Introduction

In recent years, the increasing scientific interest in the subject of environmental protec-
tion and safety has led to tremendous scientific developments in the detection of hazardous
substances such as explosives [1,2]. Energetic nitroaromatic compounds, which include
2,4,6-trinitrophenol (PA), have attracted particular attention [3–5]. One common application
of PA is the use of the compound as a standard material for analytical methods such as
HPLC [6]. Due to its toxic and carcinogenic properties, it is extremely important that PA
can be detected even in trace amounts [7,8]. Picric acid may cause damage to the eyes
and skin, anemia, liver injury, and respiratory system damage [7,9]. For male and female
F344 rats, the LD50 doses for oral administration of PA were determined to be 290 and
200 mg/kg respectively [10]. It has been reported that ingestion of 1 to 2 g of picric acid
causes severe poisoning in humans [11].

Due to the relatively high solubility of picric acid in water, even the smallest con-
centration of PA in water is intolerable. Maximum permissible concentrations have been
established for this compound, e.g., by the National Institute for Occupational Safety
and Health (NIOSH) and the Occupational Safety and Health Administration (OSHA)—
according to the TWA method, the contamination of maximum PA in the air should not
exceed 0.1 mg/m3 [12].

The most commonly used methods for detecting PA include mass spectrometry [13],
the use of field-effect transistors [14], and fluorescence spectroscopy [15]. Unfortunately,
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the problem with the above methods is the structure of the compound. Due to the similarity
of the chemical structure of PA to the structures of other nitroaromatic compounds, it is
difficult to differentiate between them and PA when using, for example, photo-induced
electron transfer, resonance fluorescence energy transfer, or strong electrostatic interac-
tions [16]. These methods are, therefore, limited by their poor selectivity or complicated
procedures. Therefore, it is very important to develop a highly sensitive method for the
detection of PA.

Many examples of selective sensors for the detection of PA and other nitroaromatic
compounds have already been described in literature. These sensors are often based
on metal–organic frameworks [17,18] or carbon dots [19], even if other materials are also
applied for this purpose. The disadvantages of these sensors are the complex manufacturing
process and their high unit costs [20].

Molecular imprinting is a group of processing methods aimed at producing layers con-
taining pores, whose shape and size match that of a selected template molecule. Typically,
molecularly imprinted polymers (MIPs) are produced via the polymerisation of an adduct
between the template molecule and a monomer. The resultant polymers, after the removal
of the template molecule from the polymer matrix, allow for the specific adsorption of that
template, which is of great significance for producing highly selective sensors. Particular
research attention has been given to molecularly imprinted conjugated polymers, such as
polycarbazole or polypyrrole [21–23].

Efforts have also been undertaken to utilise MIPs for the detection of PA (Table 1).
Despite the existence of a few reports, no data about the effect of imprinting or comparisons
with bare electrodes have been provided, making it impossible to identify the effect of
molecular imprinting on the detection parameters of these sensors.

Table 1. Example of MIP sensors reported for the detection of PA.

MIP Receptor Layer Media LOD Ref.

MIP/rGO/PGE a Water and soil 1.4 µmol/L [24]

BTAM b Acetonitrle-to-toluene
(95:5) 0.2 ng/L [25]

N-CDs@MIP c Water 0.15 nM [26]
a Pyrrole (MIP), reduced graphene-oxide-coated pencil graphite electrode. b Bis(2,2’-bithienyl)-(4-
aminophenyl)methane. c Bitrogen-passivated carbon dots infused with a molecularly imprinted polymer (3-
aminopropyltriethoxysilane).

To obtain selective (with a high response only to the intended analyte and preferably
no response to other analytes) [27] and sensitive (low LOD) [28] MIPs, it is important
to examine if the template is compatible with the monomer (i.e., if there are interactions
between them) [29]. The most common technique used to produce MIPs is the self-assembly
approach, followed by the polymerisation of the monomer, which relies on non-covalent
interactions, e.g., hydrogen bonds [30], ionic/hydrophobic interactions, etc. [31]. The
advantage of this type of interaction is the easy removal of the template from the template–
monomer complex, e.g., extraction with a solvent [32] or immersion in a solvent [33]. Due
to the fact that non-covalent interactions are easily disrupted, it is important to choose a
monomer–template pair that will create complex with strong interactions between them [34].
It has been confirmed that higher-energy bonding leads to the formation of an adduct with
stronger interactions, resulting in a more selective MIP [35].

In this work, we have provided theoretical background for the interactions between
picric acid (PA) and a conjugated monomer, i.e., carbazole, based on quantum-mechanical
calculations. We investigated the process of producing a MIP polycarbazole layer on
platinum and glassy carbon electrodes and investigated their performance in detecting PA.



Sensors 2024, 24, 424 3 of 20

2. Materials and Methods

The following reagents were used in this work: acetylsalicylic acid (>99%, Sigma-
Aldrich, St. Louis, MO, USA), sulfuric acid (>95%, Chempur, Karlsruhe, Germany), potas-
sium nitrate (>95%, POCH S.A, Gliwice, Poland), carbazole (>97%, TCI, Tokyo, Japan), and
tetrabutylammonium tetrafluoroborate (Bu4NBF4) (>98%, TCI).

2.1. Synthesis of 2,4,6-Trinitrophenol

Sulphuric acid (60 mL, 1.12 mol) was introduced into a three-necked flask equipped
with a mechanical stirrer. Next, acetylsalicylic acid (6 g, 0.03 mol) was added in small
portions over the course of approximately 60 min. After the addition of acetylsalicylic acid,
the mixture was heated for 60 min at 115–120 ◦C. Next, the reaction mixture was cooled to
approximately 70 ◦C, and potassium nitrate (13.5 g, 0.134 mol) was introduced in small
portions, resulting in the temperature rising to 80–95 ◦C and being kept in that range. After
all of the potassium nitrate had been added, the reaction mixture was heated up to 120 ◦C
and stirred for 20 min. Following this, the heating was disengaged. After the mixture had
cooled to room temperature, the contents of the flask were transferred to a tall beaker of
deionised ice water. The precipitate was filtered under a vacuum and rinsed twice with
small amounts of deionised water. Next, the raw product was recrystallized from deionised
water. After the mixture cooled, the precipitate was filtered off and dried, resulting in
2,4,6-trinitrophenol (4.71 g, 0.021 mol). A summary of the reaction is presented in Figure 1.
The yield of the reaction was 70%. PA melting point: 122.5 ◦C (capillary method), 1H
NMR (300 MHz, DMSO-d6) δ (ppm): 8.59 (s, 2H, Ar-H). IR-ATR (diamond) (Figure A2):
3108 cm−1 ν (O-H) 2870 cm−1 νs (C-H), 1630 cm−1 ν as (NO2), 1606 cm−1 ν (C=CAr),
1341 cm−1 νs (C-N), 1275 cm−1 ν (C-O), 1154 cm−1 ν (C-H) in-plane bending, 779 cm−1

ν (C-NO2), 703 cm−1 ν (C-H out-of-plane bending, 663 cm−1 ν (C-NO2 wagging. Raman
spectroscopy (laser 840 nm) (Figure A3) : 1636 cm−1 C-C ring str., 1348 cm−1 ν NO2asym,
1280 cm−1 ν NO2sym, ν C-N str, 831 cm−1 σ NO2 in plane (scissoring).

Figure 1. Schematic representation of the synthesis of PA.

2.2. Electrochemical Investigations

Molecularly imprinted polymer (MIP) and non-imprinted polymer (NIP) layers were
produced via electrochemical polymerisation. Electrochemical polymerisation was con-
ducted using cyclic voltammetry in acetonitrile solutions containing 0.1 M tetrabutylammo-
nium tetrafluoroborate (Bu4NBF4/MeCN) as a supporting electrolyte and 20 mM carbazole
as the monomer. NIP films were produced directly from this solution, whereas the MIP
layers were produced from solutions supplemented with 80 mM PA.

For electrochemical polymerisation, constant-surface-area electrodes made out of ei-
ther platinum or glassy carbon were utilised as working electrodes. A platinum coil was
used as the counter-electrode, and silver wire was used as the pseudoreference electrode.
In the cases of both NIP and MIP layers, the parameters of the cyclic voltammetry experi-
ments were identical and were as follows: the applied working electrode potential range
was −0.5 V to +1.85 V, the potential scan rate was 0.1 V/s, and 10 potential cycles were
conducted.
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The synthesized MIP and NIP layers were investigated in PA solutions of varied
concentrations via differential pulse voltammetry (DPV). The initial potential in DPV was
0.2 V, and the final potential was −2 V. The step potential was −0.005 V, the modulation
amplitude was −0.035 V, the modulation time was 0.05 s, and the interval time was
0.5 s. The electrode setup that was utilised was identical to that described above for the
electrochemical polymerisation experiments.

The imprinting factor (IF) was calculated as the ratio of the peak current observed for
the MIP layer to the peak current observed for the NIP layer. The IF values were calculated
for layers deposited on Pt that were used to detect PA, as well as the two selected interfering
agents. The IF values were also determined for PCz layers deposited on the GC electrodes
used for the detection of PA.

For the purpose of conducting cross-selectivity investigations, nitrobenzene (9 mM)
and nitromethane (18 mM) were used as interfering agents. The cross-selectivity was
investigated via DPV by utilising the same experimental parameters as in the case of the
measurements conducted for the detection of PA.

2.3. Quantum Chemical Calculations

For the calculations, DFT/TDDFT (Time-Dependent Density Functional Theory) was
used with the B3LYP [36] hybrid functional combined with the 3–21 G(d) basis set. For
all optimised structures, the frequency calculations were systematically achieved (at the
same level of theory) to confirm the minimum nature of the optimised geometries. All
calculations in this work were performed using the ORCA 4.1.1 [37] package programs.
Input files and molecular orbital plots were prepared with the Gabedit 2.4.7 software [38].

2.4. SEM Analyses

The morphology of MIP PCz and NIP PCz layers deposited on the Pt electrodes was
investigated using a Phenom ProX (Waltham, MA, USA) scanning electron microscope
(SEM). The basic SEM operation parameters were the following: The working distance was
10–11 mm, the acceleration voltages of the incident electron were 15 kV, and images were
recorded at a 6000× and 15,000× magnification.

3. Results and Discussion
3.1. Investigation of Polymer Layers Deposited on Platinum Electrodes

SEM investigations revealed that the inclusion of PA as the template molecule during
polymerisation had a slight effect on the overall morphology of the polymer films produced
via electrochemical polymerisation (Figure 2). More relevantly, the polymerisation of
carbazole in the presence of PA resulted in a lower degree of coating on the electrodes than
in the case of polymerisation conducted without the presence of PA. This is indicative of
the electrochemical polymerisation being hampered due to interactions that stabilised the
monomer and hindered its oxidation. This was in line with the results of the quantum
chemical modeling, which predicted the formation of a hydrogen bond between carbazole
and picric acid.

Regardless of whether a modified or unmodified electrode was used, the voltammo-
grams of the PA solutions contained current signals corresponding to the electrochemical
reduction of PA. Due to the fact that acetonitrile is a polar aprotic solvent, this reduction
was expected to take place with the transformation of the nitro functionality not into an
anionic species, expected based on literature [39], but into a hydroxylamine functionality
due to the self-protonation of picric acid originating from its highly acidic phenol hydroxyl
group [40].

In the case of the unmodified Pt electrodes (Figure 3A), three distinct electron transfer
stages were observable at −0.38 V, −0.64 V, and −0.94 V, respectively, corresponding to the
irreversible reduction of each nitro group, which was corroborated by cyclic voltammetry
(Figure A1).
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Figure 2. SEM images of NIP PCZ/Pt (A,C) and MIP PCz/Pt electrodes (B,D); magnification:
(A,B) 6000×; (C,D) 15,000×.

DPV measurements, conducted for a range of PA concentrations (Figure 3), evidenced
the expected decrease in the peak current with decreasing PA concentration. In the case
of PA at a concentration of 0.10 mM, a shift in the observed peak potential towards more
negative potentials (Figure 3C) and towards more positive potentials (Figure 3A) was
observed. In the case of the unmodified Pt electrode, this was likely due to the occurrence
of the specific adsorption of PA, resulting in most of the active sites on the electrode being
occupied above a certain PA concentration in the working solution. Once a sufficiently low
PA concentration was employed, the number of adsorbed PA molecules no longer exhausted
the number of active sites on the electrode, leading to a decrease in the “overpotential”
caused by the saturation of active sites.
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Figure 3. Differential pulse voltammograms recorded for (A) unmodified Pt electrodes, (B) NIP
PCz/Pt electrodes, and (C) MIP PCz/Pt electrodes. The voltammograms were recorded in
Bu4NBF4/MeCN solutions containing 0.05–0.80 mM PA.
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In the case of the MIP PCz/Pt electrode, the strong interactions between PA and
carbazole are likely to hinder the desorption of even the reduced form of PA from the
polymer surface. Due to this, at a sufficiently low concentration of PA in the working
solution, all electrode active sites may become occupied by the reduced form of PA, which
undergoes further reduction at more negative potentials, contributing to the observed shift
in the peak potential.

Regardless of the choice of electrode and its modification, the reduction peaks are no
longer observed for PA concentrations of 0.05 mM. Due to this, solutions containing even
lower PA concentrations were not investigated.

Based on the recorded DPV results, the NIP PCz/Pt electrode showed the least sensi-
tivity to PA (Figure 3B). Moreover, the peak current observed when using this electrode
is not proportional to the changing PA concentration, as a higher current is repeatably
observed for solutions containing 0.50 mM PA than for solutions containing 0.80 mM PA.
The performance of each system can also be evaluated by using a model of the data based
on, e.g., a logarithmic dependence in the form of y = b·ln(x − a) (Figure 4). In the case
of the NIP PCz/Pt electrode (Figure 4B), the b factor in the modeled equation, which
translates to the scale of the response of the electrode to a unit PA concentration, is the least
favourable and equals 3.8 × 10−7. The highest sensitivity to PA was observed in the case
of the unmodified Pt electrodes (Figure 4A), with a b factor equal to 9.8 × 10−7, with the
performance of the MIP PCz/Pt electrode exhibiting average performance, contrary to the
expectations.

This trend is mirrored in the limit of the detection values calculated for each of the
investigated electrodes (Table 2). It should be noted that in the case of Pt, molecular
imprinting resulted in an approximately threefold reduction in the LOD in comparison
with the NIP PCz/Pt electrode. However, due to the fact that platinum is an effective
catalyst of redox reactions, far more so than polycarbazole, the lowest LOD value was
observed in the case of unmodified Pt electrodes.

Table 2. Summary of the calculated values of the limit of detection for PA and the b factors in the
modeled dependence for each of the investigated electrodes.

Electrode b Factor a Limit of Detection (LOD) b

Unmodified Pt 9.8 × 10−7 0.09 mM
NIP PCz/Pt 3.8 × 10−7 0.62 mM
MIP PCz/Pt 7.6 × 10−7 0.26 mM

Unmodified GC 5.4 × 10−7 0.11 mM
NIP PCz/GC 1.4 × 10−7 0.12 mM
MIP PCz/GC 1.4 × 10−7 0.57 mM

a Calculated based on modeling the experimental data using the following function: y = b·ln(x − a). b Calculated
from LOD = 3σ/s, where σ is the standard error of the estimate and s is the slope of the curve.

3.2. Investigation of Polymer Layers Deposited on Glassy Carbon Electrodes

DPV measurements were also conducted using modified and unmodified GC elec-
trodes (Figure 5). Contrary to what was observed for Pt electrodes, no significant potential
shift of the current peaks was observed. Although specific adsorption is also expected to
take place on the GC electrode, it will occur on a much smaller scale than in the case of plat-
inum. In the case of the MIP PCz/GC electrode, the potential shift caused by interactions
between PA and carbazole is only marginal due to the incomplete coverage of the electrode
with the polymer layer.

In the case of NIP PCz/GC electrodes, two peaks are observed (Figure 5B) at potentials
corresponding to the peaks observed for unmodified GC electrodes (Figure 5A) and for
MIP PCz/GC electrodes (Figure 5C), respectively. This is attributed to the NIP PCz/GC
electrodes having only partial coverage of the polymer film, possibly due to the degradation
of the polymer film during the prolonged electrochemical polymerisation. In this case, PA
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will interact and undergo electrochemical reduction simultaneously in areas where the GC
electrode was exposed and on the surface of the polymer layer.

Figure 4. Calibration curves for the detection of PA using the investigated electrodes: (A) unmodified
Pt electrode; (B) NIP PCz/Pt electrode; (C) MIP PCz/Pt electrode.
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Figure 5. Differential pulse voltammograms recorded for (A) unmodified GC electrodes, (B) NIP
PCz/GC electrodes, and (C)MIP PCz/GC electrodes. The voltammograms were recorded in
Bu4NBF4/MeCN solutions containing 0.05–0.80 mM PA.
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Similarly to the case of the Pt electrodes, the unmodified GC electrode shows the
highest sensitivity to PA, as seen by its comparatively lowest LOD and best b factor (Table 2).
Despite its b factor value being similar to that of the NIP PCz/GC electrode (Figure 6), the
MIP PCz/GC electrode shows the lowest LOD among the three GC-based electrodes.

Figure 6. Calibration curves for the detection of PA using the investigated electrodes: (A) unmodified
GC electrode; (B) NIP PCz/GC electrode; (C) MIP PCz/GC electrode.
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3.3. Investigation of Electrode Cross-Selectivity

Investigation of cross-selectivity was conducted using two potential interferents: ni-
trobenzene and nitromethane, respectively deviating slightly and highly from the topology
of picric acid (Figure 7). Cross-selectivity studies were conducted in DPV experiments
analogous to the investigation of the response of the electrodes to PA, utilising higher
concentrations of the interferents, so as to serve as benchmarks against the response of PA.
The obtained results (Table 3) show that for the MIP layers deposited on Pt (Figure 8) and
GC (Figure 9) electrodes, selectivity against nitromethane is high in both cases, but the high
current signals observed for nitrobenzene indicate that for this interfering agent selectivity
is limited.

Figure 7. Schematic representation of the molecular structures of PA and selected interfering agents.
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Figure 8. Differential pulse voltammograms recorded for MIP PCz/Pt electrodes. The voltammo-
grams were recorded in Bu4NBF4/MeCN solutions containing (A) 9 mM nitrobenzene or (B) 18 mM
nitromethane.
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Interestingly, in the case of the NIP layer on Pt electrodes (Figure 10), a higher degree
of selectivity against nitrobenzene is observed than in the case of the MIP layer, but lower
selectivity to nitromethane is, in turn, observed. The fact that the NIP layer, whose pores
are subject to a random size distribution, showed better selectivity to nitrobenzene than the
MIP layer may stem from the fact that the pores of the MIP layer are tuned to the topology
of PA. However, upon repeated doping and de-doping of the MIP, the shape of these pores
deviates, becoming able to match both PA and the topologically similar nitrobenzene. This
deviation, however, is insufficient to accommodate nitromethane, leading to the observed
higher selectivity of the MIP than of the NIP against this interfering agent.
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Figure 9. Differential pulse voltammograms recorded for MIP PCz/GC electrodes. The voltammo-
grams were recorded in Bu4NBF4/MeCN solutions containing (A) 9 mM nitrobenzene or (B) 18 mM
nitromethane.
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Table 3. Comparison of reduction current values observed during DPV measurements of PA, ni-
trobenzene, and nitromethane reduction.

Compound NIP Cz/Pt MIP Cz/Pt IF Pt MIP Cz/GC IF GC

PA (0.8 mM) 0.235 µA 0.416 µA 1.77 0.099 µA 0.95
Nitrobenzene (9 mM) 0.056 µA 0.319 µA 5.70 0.616 µA -

Nitromethane (18 mM) 0.136 µA 0.080 µA 0.59 0.060 µA -
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Figure 10. Differential pulse voltammograms recorded for NIP PCz/Pt electrodes. The voltammo-
grams were recorded in Bu4NBF4/MeCN solutions containing (A) 9 mM nitrobenzene or (B) 18 mM
nitromethane.

3.4. Calculation of the Interactions between the Template and Monomer

Quantum chemical calculations were performed so as to investigate the possible
existence of interactions between the model structures of carbazole and PA. Three systems
were optimised: (1) isolated carbazole, (2) isolated PA, and (3) carbazole in the presence of
PA. The total energies of these systems were compared. We observed that the total energy
of the combined system (Carbazole + PA) was lower than the sum of the energies of the
isolated molecules (E3 < E1 + E2), indicating a stabilising interaction between carbazole
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and picric acid. Geometry optimisation of the combined system (3) revealed the formation
of a hydrogen bond between the oxygen atom in the nitro group of picric acid and the
hydrogen atom attached to the nitrogen atom of carbazole, as illustrated in Figure 11.

The energy of this hydrogen bond was calculated to be 31.43 kJ/mol by using the
following equation: ∆E = E3 − E1 − E2. This result suggests a relatively strong interac-
tion between these two molecules. It is worth noting that in the case of polycarbazole,
one molecule of picric acid may form multiple hydrogen bonds with different carbazole
repeat units.

Figure 11. Calculated hydrogen bond between carbazole and PA using the B3LYP 3–11 G(d) function.

4. Conclusions

Quantum-mechanical calculations indicated that PA interacts strongly (31.43 kJ/mol)
with both carbazole (monomer) and the repeat units of polycarbazole, which is typically
sufficient for achieving a significant increase in the sensitivity of sensors due to molecular
imprinting. Despite the existence of these interactions, the electrochemical detection results
show only a marginal effect of molecular imprinting in the case of modified Pt electrodes
(LODs of 0.26 and 0.62 mM, respectively, for MIP PCz/Pt and NIP PCz/Pt), translating into
an imprinting factor of 1.77. Conversely, in the case of modified GC electrodes, molecular
imprinting appeared to be counter-productive (IF = 0.95), as it results in an increase in the
LOD values (0.57 and 0.12 mM, respectively, for MIP PCz/GC and NIP PCz/GC).

The very minor improvement of PA detection upon molecular imprinting likely stems
from the fact that not only are the conjugated polymer chains highly rigid, but upon
doping and de-doping, they undergo dearomatisation and rearomatisation, significantly
changing their arrangement in space. This process likely leads to the gradual deformation
of any pores remaining after the removal of the template, translating into a decrease in the
performance of the MIP over time down to the NIP performance baseline.

The deformation of pores hypothesis is also supported by the results of cross-selectivity
investigations, as the NIP layers show higher selectivity towards nitrobenzene than the
MIP layers. The IF value calculated for the layers deposited on Pt and used to detect
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nitrobenzene is 5.70, much higher than the value of 1.77 observed for PA. Conversely, the
IF observed in the case of nitromethane is 0.59. These results indicate that while molecular
imprinting increased the response of the layer towards nitroaromatics in general against
nitroalkanes, it is not sufficiently selective to differentiate between nitrobenzene and PA.
This feature can be attributed to the change in the shape of the pores present in the MIP
layers, as contrasted to the random distribution of pore sizes in the NIP layers. Where the
random distribution in the NIP layers allows pores of different sizes, imprinting increases
the share of pores with sizes roughly corresponding to the size of the template molecule.
Consequently, even though the pore shape begins deviating due to repeated doping and
de-doping, pore size will remain roughly similar, explaining the observed IF values that
were >1 for PA and nitrobenzene, as well as the IF < 1 value for nitromethane.

The lower performance of electrodes modified with either NIP or MIP PCz layers in
comparison to that of the unmodified electrodes may be caused by the relatively lower
conductivity of the conjugated polymer layers in comparison with either Pt or GC electrodes.
Moreover, polycarbazole typically produces layers that vary significantly in thickness, due
to its nucleation mode, which may also hinder the adsorption of the planar and highly
polar PA molecules on the surface of this polymer in comparison with the highly planar PT
and GC electrode surfaces.

Taking the above into consideration, two main factors necessary for the successful
use of molecularly imprinted conjugated polymers can be postulated. Firstly, during
electrochemical polymerisation, the precipitating polymer film must not undergo repeated
doping/de-doping, as this process appears to distort the size and shape of the existing pores,
as discussed above. This is evidenced by the fact that molecularly imprinted polycarbazole
derivatives were utilised as receptor layers for sensors when their electrodeposition did
not involve their de-doping [41]. This factor can also explain the very broad application of
polypyrrole-based MIP sensors, as polypyrroles undergo de-doping only at very strongly
negative potentials, usually exhibiting a similar doping state across the typical conditions
of their electrosynthesis process. Secondly, a conjugated polymer with a nucleation mode
more suited to the template molecule should be used so as to promote the adsorption of
the template onto the surface of the molecularly imprinted conjugated polymer film.
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Appendix A

Figure A1. Cyclic woltammetry of 5 mM PA in 0.1 M Bu4NBF4/MeCN. The voltammogram was
recorded at a potential range of 0.2 to −1 V, and the potential scan rate was 0.1 V/s.

Figure A2. IR-ATR spectrum of PA.



Sensors 2024, 24, 424 17 of 20

Figure A3. Raman spectrum of PA.

Table A1. Optimised coordinates (XYZ in Angstroms) for carbazole.

Carbazole

N 0.02981 1.82223 −0.00815
C −1.11644 1.02826 −0.00910
C −0.71386 −0.34060 −0.01061
C 0.74168 −0.35128 −0.01054
C 1.16430 1.01151 −0.00900
C 2.51851 1.35112 −0.00852
C 3.45290 0.31688 −0.00961
C 3.05074 −1.03126 −0.01113
C 1.69857 −1.37045 −0.01161
C −1.68551 −1.34569 −0.01177
C −3.03260 −0.98678 −0.01142
C −3.41495 0.36711 −0.00993
C −2.46558 1.38760 −0.00875
H −2.76961 2.42780 −0.00760
H −4.46861 0.62305 −0.00968
H −3.79597 −1.75596 −0.01231
H −1.39387 −2.39031 −0.01294
H 4.51023 0.55737 −0.00926
H 2.83764 2.38678 −0.00735
H 1.39172 −2.41065 −0.01280
H 3.80272 −1.81159 −0.01195
H 0.03719 2.83358 −0.00696
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Table A2. Optimised coordinates (XYZ in Angstroms) for PA.

Picric Acid

C 0.00945 3.33411 0.03651
C −1.17395 2.54845 0.02991
C −1.12209 1.17076 0.02080
C 0.10007 0.51084 0.01801
C 1.28347 1.21765 0.02437
C 1.23781 2.60246 0.03349
N 2.49980 3.30598 0.04006
N −2.51177 3.15454 0.03243
N 0.13368 −0.94626 0.00818
O −2.59304 4.42698 0.04244
O −3.50351 2.33420 0.02650
O −0.99687 −1.54952 0.00292
O 2.47491 4.62626 0.04753
H −2.04592 0.61352 0.01596
H 2.23067 0.70114 0.02231
O −0.01358 4.66298 0.04530
H 0.98294 4.97739 0.04855
O 3.57888 2.63791 0.03726
O 1.29258 −1.49580 0.00624

Table A3. Optimised coordinates (XYZ in Angstroms) for the investigated PA–carbazole complex.

Carbazole + Picric Acid

C 0.78977 3.54467 2.65822
C −0.62494 3.42763 2.71890
C −1.39194 3.36173 1.57606
C −0.79390 3.39592 0.32093
C 0.57713 3.48852 0.20030
C 1.35118 3.57474 1.34362
N 2.77608 3.71222 1.16349
N −1.34928 3.37843 3.99743
N −1.61719 3.36607 −0.86974
O −0.66607 3.42812 5.07247
O −2.62944 3.28279 3.91711
O −2.87847 3.25082 −0.71841
O 3.53374 3.77284 2.23971
H −2.46434 3.29022 1.67508
H 1.05438 3.49186 −0.76596
O 1.54920 3.62212 3.74411
H 2.53593 3.70336 3.41606
O 3.25032 3.76931 −0.01722
O −1.01095 3.48576 −2.01032
C 0.77076 7.08961 −1.22926
N −0.20516 6.21119 −1.69641
C −1.41935 6.88531 −1.82469
C −1.22820 8.24325 −1.43832
C 0.17149 8.37596 −1.05892
C 0.94539 9.44130 −0.58998
C 2.29053 9.22493 −0.29392
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Table A3. Cont.

Carbazole + Picric Acid

C 2.86441 7.95078 −0.45292
C 2.11506 6.86993 −0.91808
C −2.66552 6.40365 −2.23297
C −3.72888 7.30395 −2.26060
C −3.55676 8.65113 −1.88917
C −2.31301 9.12582 −1.47445
H −2.18901 10.16273 −1.18224
H −4.40587 9.32389 −1.92215
H −4.70834 6.95814 −2.57062
H −2.79492 5.36025 −2.49568
H 2.90159 10.04348 0.06773
H 0.50375 10.42276 −0.45749
H 2.56567 5.88758 −1.00781
H 3.90976 7.80228 −0.20651
H −0.08465 5.24726 −1.98864
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