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Abstract: Offshore oil spills have the potential to inflict substantial ecological damage, underscoring
the critical importance of timely offshore oil spill detection and remediation. At present, offshore
oil spill detection typically combines hyperspectral imaging with deep learning techniques. While
these methodologies have made significant advancements, they prove inadequate in scenarios
requiring real-time detection due to limited model detection speeds. To address this challenge, a
method for detecting oil spill areas is introduced, combining convolutional neural networks (CNNs)
with the DBSCAN clustering algorithm. This method aims to enhance the efficiency of oil spill
area detection in real-time scenarios, providing a potential solution to the limitations posed by
the intricate structures of existing models. The proposed method includes a pre-feature selection
process applied to the spectral data, followed by pixel classification using a convolutional neural
network (CNN) model. Subsequently, the DBSCAN algorithm is employed to segment oil spill areas
from the classification results. To validate our proposed method, we simulate an offshore oil spill
environment in the laboratory, utilizing a hyperspectral sensing device to collect data and create a
dataset. We then compare our method with three other models—DRSNet, CNN-Visual Transformer,
and GCN—conducting a comprehensive analysis to evaluate the advantages and limitations of
each model.

Keywords: offshore oil spill; artificial neural network; hyperspectral image

1. Introduction

During the course of marine oil exploration, development, and transportation, un-
foreseen accidents and spills can have profound repercussions. These incidents result
in substantial harm to the marine environment. Simultaneously, the oil contains volatile
organic compounds, and their evaporation contributes to atmospheric pollution. This
destruction and pollution not only pose significant threats to marine ecosystems but also
directly jeopardize human economic activities and health [1–3]. Upon the occurrence of an
oil spill incident, the necessity arises to implement appropriate measures for its mitigation,
thereby reducing its environmental repercussions. The timely and accurate detection of
offshore oil spills assumes paramount importance in the domain of emergency response
and the effective management of offshore oil spill incidents. Upon the occurrence of an
oil spill incident, it is imperative to implement measures aimed at mitigating its adverse
environmental effects. The timely and precise detection of marine oil pollution assumes
utmost importance in the context of emergency response and the effective management of
offshore oil spill events. Currently, offshore oil spill monitoring predominantly hinges upon
data acquisition conducted by vessels, aircraft, and remote sensing satellites, subsequently
followed by oil spill detection through data analysis algorithms [4]. Remote sensing ex-
hibits a multitude of advantages, including a wide array of data sources and extensive
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monitoring capabilities. Nonetheless, it is susceptible to the influence of weather conditions
and cloud cover, and it faces challenges in detecting smaller-scale oil spill areas. In contrast,
close-range monitoring conducted by vessels or low-altitude aircraft is less susceptible
to the interference of weather conditions and cloud cover [5]. Moreover, it demonstrates
heightened sensitivity to small-scale oil spill areas. In the context of offshore oil spill
response operations, vessels are typically equipped with hyperspectral sensing devices.
Their primary mission is the precise detection and identification of small-scale oil spill
areas, coupled with the requirement for the real-time monitoring of these regions. In such
circumstances, algorithmic precision and performance take on increased significance [6]. In
recent years, scholars have integrated hyperspectral data with machine learning and deep
learning methods, resulting in a series of significant accomplishments [7–12]. Wang Dawei
and his team introduced an improved deep learning model for oil spill detection called
BO-DRNet. This model classifies pixels in hyperspectral images to identify oil spill areas,
addressing issues such as insufficient feature extraction and fixed hyperparameters that
are prevalent in traditional models [13]. Furthermore, they investigated the application
of an improved semantic segmentation model called DRSNet based on support vector
machines in marine oil spill monitoring. This study provides valuable methods for en-
hancing offshore emergency management capabilities [14]. JunFang Yang et al. introduced
an oil spill detection model rooted in graph convolution architecture and spatial–spectral
information. Through a comparative analysis with the GCN and CEGCN models, this
approach demonstrated a notable enhancement in detection accuracy [15]. Seyd Teymoor
Seydi et al. utilized a one-dimensional multiscale residual convolutional neural network
to classify pixels based on the spectral features of oil spill region pixels, aiming to achieve
the detection of oil spill areas [16]. Saeid Dehghani-Dehcheshmeh et al. combined CNN
and Visual Transformer (ViT) methodologies to segment images into two categories: oil
spill and background, effectively achieving oil spill detection [17]. The aforementioned
methods have made significant advancements in the detection of oil spill areas in marine
environments, underscoring the immense potential of hyperspectral imaging in this do-
main. However, these methods have relatively complex model structures. The complexity
of these structures requires stronger computational power for model execution. In maritime
oil spill response operations, aircraft or vessels equipped with hyperspectral sensors find
it challenging to carry powerful computing systems, thus failing to meet the real-time
detection demands. This challenge has prompted researchers to continue exploring more
efficient algorithms and technologies to enhance the feasibility of hyperspectral imagery
in detecting oil spills in marine areas. This necessitates the development of lighter-weight
models or the adoption of more efficient analytical methods. Ongoing innovation in this re-
search field will contribute to better meeting the real-world demands of real-time detection
while continuing to leverage the crucial role of hyperspectral imagery in environmental
monitoring and oil spill emergency response.

In this study, we simulated offshore oil spills in the laboratory and used a hyperspectral
sensing device to capture images, validating our method. To address the issue of slow
detection speeds resulting from overly complex models, this paper proposes an oil spill
monitoring method based on convolutional neural networks (CNNs) and the DBSCAN
clustering algorithm. The method includes a pre-feature selection step that eliminates
spectral features with minimal contributions to the model. This enables the model to
concentrate specifically on oil spill area detection. Leveraging the oil spill hyperspectral
images that we collected, we selected three models—DRSNet, CNN-Visual Transformer,
and GCN—for comparative analysis against the method proposed in this study. The
method proposed in this paper features lower complexity than the other models, achieving
a similar recognition accuracy and demonstrating a faster detection speed. Due to the lower
model complexity and faster detection speed of the method proposed in this study, it meets
the requirements of real-time detection scenarios.



Sensors 2024, 24, 411 3 of 15

2. Data Acquisition and Preprocessing

In this study, data collection was carried out by simulating offshore oil spill scenarios
and employing hyperspectral sensing equipment. The essential experimental apparatus
included a wave pool (Figure 1), a hyperspectral camera, and a computer. The study
categorized experiments into four groups based on the presence of oil and the existence of
waves, collecting a total of 504 hyperspectral image samples. In our experiments, we were
able to simulate different wave parameters by adjusting the main fan speed and controlling
valves. Our experimental equipment is capable of measuring wave parameters, including
wave height, wavelength, wave period, and wave speed. As a method for simulating
marine environments, it has inherent limitations. The size of the water tank is relatively
small compared to the real environment, making it challenging to simulate large-scale
waves. Additionally, variations in water depth in the natural ocean may influence the
propagation and shape of waves, whereas the experimental environment maintains a
fixed water depth. Furthermore, the wind in the real environment affects waves, but due
to experimental constraints, we could not simulate the effects of wind. Natural waves
also exhibit nonlinear characteristics, making it difficult to simulate such complexity in
experiments. Due to these factors, we opted to simulate smaller-scale regular waves in our
experiments, with a wave height of 0.2 m, a wavelength of 2 m, a wave period of 2 s, and a
wave speed of 1 m per second. These parameters closely resemble calm waves under light
wind conditions.
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Figure 1. Wave pool.

We randomly selected a portion of hyperspectral images from each group to create the
training dataset, while the remaining images were reserved for evaluating our constructed
models. The dataset division is detailed in Table 1. Given the nature of hyperspectral
images, it is essential to extract spectral data on a per-pixel basis. Consequently, from the
hyperspectral images used to build the training dataset, we extracted 500 pixel-based spectral
data samples from both the oil spill and non-oil spill regions, with corresponding annotations.

Table 1. The partitioning of hyperspectral image samples.

Experimental Conditions
of the Simulation

Number of Hyperspectral Images

Training Set Validation Set Test Set Total

No oil spill and no wave 20 15 15 50
No oil spill and waves 20 15 15 50
oil spill and no wave 142 40 20 202
oil spill and waves 142 40 20 202

Total 324 110 70 504
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3. Theoretical Framework and Method Design
3.1. Method Design

For detecting oil spill areas from the collected hyperspectral images, our proposed
oil spill area detection method primarily utilizes a convolutional neural network (CNN)
classification model and the DBSCAN clustering algorithm. CNN is a widely used model
for classification tasks, leveraging convolutional and pooling layers to effectively capture
meaningful features of pixel spectra. The convolutional operations enable adaptability to
features of different scales. The DBSCAN clustering algorithm is well suited for regions
with significant density variations. It excels in adapting to differences in density across
various areas in an image, requiring no predetermined number of clusters. This algorithm
can identify clusters of arbitrary shapes and exhibits robustness to noise. By combining the
advantages of CNN and the DBSCAN clustering algorithm, our method is better suited
for segmenting hyperspectral images. In accordance with Figure 2, our devised method
for oil spill area detection from the collected hyperspectral images encompasses three
primary steps:

(1) The extraction of pixel spectra from hyperspectral images and feature selection to
construct pixel spectral samples.

(2) The classification of pixel spectral samples using a convolutional neural network
(CNN)-based model.

(3) The segmentation of oil spill area from the classification results using the DBSCAN
algorithm.
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In the detection process, the CNN model is responsible for pixel classification, while
the DBSCAN clustering algorithm is tasked with segmenting the oil spill areas from the
classification results. Due to the robustness of the DBSCAN algorithm to noise, it can
effectively ignore noise pixels resulting from CNN classification errors. Therefore, there is
no need for a highly accurate CNN classification model to precisely detect oil spill areas
from hyperspectral images. Because a high-precision CNN model is not required, we can
adopt a simpler structure. Additionally, the parallel processing nature of CNN enables
the rapid processing of large-scale hyperspectral image data. Furthermore, DBSCAN is an
unsupervised learning algorithm that does not require prior labels, making it suitable for
real-time detection scenarios.
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3.2. Spectral Feature Selection

In the oil spill simulation experiment, we collected spectral reflectance data in the range
of 400 to 1000 nm, comprising a total of 256 spectral features. Figure 3 illustrates two spectral
reflectance intensity curves obtained during the experiment. The dashed line represents the
spectral reflectance intensity curve for the non-oil spill area, while the solid line represents
the reflectance intensity curve for the oil spill area. Upon observation, the spectral data
exhibit a high dimensionality, with significant differences in spectral characteristics between
the oil spill and non-oil spill areas apparent only in specific bands. As shown in Figure 3,
there are two peaks in the spectrum of the oil spill area, one at 449.1 nm and the other in the
range of 539.6 to 579.1 nm. Oil contains various compounds, mainly aromatic compounds,
hydrocarbons, asphaltene, and some heavy oil. These compounds exhibit different spectral
characteristics to water, so these two peaks may be attributed to the influence of these
compounds present in oil and natural light. In practical machine learning applications,
datasets typically comprise a multitude of features. Among these features, there may be
many unimportant ones, which can easily lead to the following two shortcomings [18]:

(1) A large number of features can increase the model’s training time, affecting its efficiency.
(2) A large number of features can lead to the “curse of dimensionality”, increasing the

model’s complexity and weakening its generalization capability.
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Therefore, we need a method to reduce the dimensionality of the dataset, filtering
out features that are not helpful for problem solving. This can enhance the efficiency and
generalization ability of the model. The Random Forest (RF) algorithm is a commonly used
feature selection method in feature engineering. It provides a method to measure feature
importance [19,20], and the steps are described as follows:

(1) Calculate the baseline accuracy: Before constructing the Random Forest, start by
calculating the baseline accuracy, which is the accuracy of the model when no features
are considered.

(2) Rank a specific feature: For each feature, randomly shuffle its order, disrupting its
relationship with the target variable.

(3) Recalculate accuracy: Train the model using the shuffled feature and calculate the
new accuracy.

(4) Compute the decrease in accuracy: The decrease in accuracy is equal to the baseline
accuracy minus the new accuracy obtained using the shuffled feature.

(5) Repeat steps 3 and 4: Repeat the process multiple times, permuting the same feature
multiple times, and calculate the Mean Decrease Accuracy, which is the average
decrease in accuracy.
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Mean Decrease Accuracy (MDA) is a relative indicator used to assess feature impor-
tance, and it can be described using Equation (1):

MDAC(j) = 1
T

T
∑
t

 1
|Dt |

 ∑
Xi∈Dt

I(P(Xi) == yi)− ∑
X j

i∈Dj
t

I
(

P
(

X j
i

)
== yi

) (1)

where T: the number of random trees constructed in Random Forest (RF).
Xi, yi: Xi represents the input samples, and yi represents the corresponding sample

categories or labels.
Dt: sample set out of pocket for random tree T.
Dj

t: the sample set formed after exchanging the j-th feature.
P(Xi): the predicted outcome for sample Xi.
I(P(Xi) == yi): indicator function, which returns 1 if the predicted outcome is the

same as the true category and 0 otherwise.
Equation (1) reflects the degree to which the accuracy of the model’s classification

decreases when random exchanges are made on the data in the j-th feature dimension.
This calculation is based on the out-of-bag data for each tree. If the accuracy significantly
decreases after random exchanges, it is considered that the corresponding feature is im-
portant. Therefore, Mean Decrease Accuracy (MDA) is regarded as a measure of feature
importance. We extracted 500 samples of pixel spectra from oil spill areas and 500 samples
from non-oil spill areas in the hyperspectral images. Following the steps of the Random
Forest algorithm as mentioned above, we computed the importance of 256 wavelength
features, and the results are shown in Figure 4. Based on the results of the Random Forest
algorithm, we excluded features with importance less than 0.001. The features marked
in red in Figure 4 represent the retained 88 features. These 88 wavelength features are
used in the subsequent model construction process. The complexity of the model is mainly
determined by the number of model parameters and the model structure. By reducing
the number of input features from 256 to 88, the quantity of model parameters is directly
reduced, leading to a decrease in model complexity.

3.3. CNN Classification Module

In the field of deep learning, a popular neural network architecture is the convolutional
neural network (CNN), which is widely used for classification and image recognition
tasks [21]. A CNN mainly consists of four key layers: an input layer, convolutional layer,
pooling layer, and fully connected layer. The general process of a CNN is as follows:

(1) Data normalization: First, normalize the input data to accelerate model training and
reduce the impact of noisy data on the model.

(2) Feature extraction through convolution: The convolutional layers employ convolu-
tional kernels to extract relevant features from the input data.

(3) Pooling down-sampling: The pooling layer reduces the dimensions of the output
data from the convolutional layers, preserving essential features while compressing
the data.

(4) Classification through the fully connected layer: The primary role of the fully con-
nected layer is classification. It aggregates, classifies, and adjusts network weights
based on neuron feedback, ultimately generating the classification results.

In the proposed method of this research, the role of the CNN model is to classify pixels
based on their spectral features. Compared to other classification models, the core strength
of CNN lies in its convolutional layers, which can rapidly extract classification features. This
advantage becomes particularly pronounced in scenarios with high-dimensional feature
spaces where classification efficiency is crucial. After feature selection, there are now only
88 features remaining in the spectral data. These features contribute significantly to pixel
spectral classification, so the input for the CNN model should consist of these 88 feature
data points to form a feature vector. The CNN classifier structure is as shown in Figure 5.
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The model comprises one input layer, four convolutional layers, two pooling layers, and
three fully connected layers. The convolutional layers employ 1 × 4 convolutional kernels,
and the pooling layers have a stride of 2. Table 2 provides a detailed list of the parameters
for each layer in the model.
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Table 2. Structural parameters of CNN.

Layer Convolution Kernel Step Size Activation Function

Conv1D 1 × 4 1 1 × 88 Relu
Conv1D 1 × 4 1 1 × 87 Relu

MaxPooling 2 1 × 44
Conv1D 1 × 4 1 1 × 43 Relu
Conv1D 1 × 4 1 1 × 42 Relu

MaxPooling 2 1 × 22
Flatten
Dense Relu
Dense Relu
Dense Relu
Dense Softmax
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Upon the completion of the CNN pixel spectral classifier, the next step involves
establishing a pixel classification module for hyperspectral image classification. Since the
simultaneous classification of every pixel in hyperspectral images is required, it is essential
to develop a parallel pixel spectral classification method. This module consists of two main
processes: the first one is the extraction of pixel spectra, and the second is the classification
of these pixel spectra. If these two processes are carried out sequentially, it will lead to a
significant increase in time consumption and a failure to fully maximize computational
resources. As each pixel’s classification is an independent process, the extraction and
classification of pixel spectra can be conducted simultaneously, as depicted in Figure 6.
The pixel spectral extraction process comprises two stages: spectral extraction and feature
selection. Spectral samples, after undergoing feature selection, enter the pixel spectral
container and await classification by the CNN classifier. The spectral extraction process and
the classification process occur concurrently. Once all pixel classifications are completed,
the classification results can be input into the semantic segmentation model to segment the
oil spill areas.
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3.4. Image Segmentation Based on the DBSCAN Algorithm

DBSCAN is a density-based spatial clustering algorithm that is robust to noise. This
algorithm treats regions with sufficient density as distance centers and continually expands
these regions. The algorithm is based on the fact that a cluster can be uniquely determined
by any of its core objects. It utilizes the concept of density-based clustering, which requires
that the number of objects contained within a certain region (eps) in the clustering space is
not less than a given threshold (minPts). And it can discover clusters of arbitrary shapes in
spatial data with noise. It connects adjacent regions with sufficiently high density, making
it effective for clustering and handling outliers [22]. From an intuitive standpoint, this
clustering algorithm can effectively identify dense regions within the sample points and
offers the following advantages:

(1) Cluster analysis can be performed without the need to specify the number of clusters
in advance.

(2) Cluster analysis can be applied to dense datasets of arbitrary shapes.
(3) Anomalous data points are unlikely to exert a substantial impact on the clustering

results and can be discerned during the clustering process.

In hyperspectral images, the shape and quantity of oil spill areas are both unknown.
Additionally, due to imaging conditions and potential errors in the CNN classifier, noise is
prevalent. In such a scenario, the application of the DBSCAN algorithm in oil spill detection
holds significant value. It helps mitigate the impact of both inherent noise and CNN
classification errors. The DBSCAN clustering algorithm process is depicted in Figure 7.
This algorithm commences from an unvisited data point and identifies all adjacent points
within a distance less than or equal to eps. If the count of neighboring points is greater than
or equal to minPts, the current point initiates a cluster with its neighbors and marks the
starting point as visited. Subsequently, all unvisited points within the cluster undergo the
same process, resulting in the expansion of the cluster. If a cluster expands to a sufficient
size where all its points are marked as visited, the same steps will be applied to other
unvisited points. In this study, due to the presence of inherent noise and classification
errors of the CNN classifier, there are some pixels within the samples for clustering that
do not belong to the oil spill region. However, their distribution in the image is relatively
sparse. Therefore, selecting a smaller eps and a larger minPts effectively mitigates the
impact of these noise points.
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4. Experimental Results and Evaluation

This study introduces a novel method for oil spill area detection. We designed two
sets of experimental processes to assess its performance. First, we compared it with other
oil spill detection methods by establishing multiple oil spill detection approaches on the
same dataset and comparing these models using predefined evaluation criteria. Second, we
retrained the model with a reduced number of training samples to validate its robustness.

4.1. Evaluation Methods

We applied the method proposed in this study to a simulated oil spill hyperspectral
image dataset and compared it with three other models: DRSNet, CNN-Visual Transformer,
and GCN. The evaluation of these methods was based on five metrics: Pixel Accuracy (PA),
Oil Spill Class Pixel Accuracy (OSCPA), Non-Oil Spill Class Pixel Accuracy (NOSCPA),
Mean Pixel Accuracy (MPA), and their mean detection time (MT). The metrics PA, OSCPA,
NOSCPA, and MPA were calculated based on the confusion matrix, as shown in Table 3.
The confusion matrix contains four types of data [23]:

(1) TP: Pixels classified as oil spill areas and are indeed oil spill area pixels are referred to
as True Positives.

(2) FP: Pixels classified as oil spill areas but, in reality, are non-oil spill area pixels are
referred to as False Positives.

(3) TN: Pixels classified as non-oil spill areas and are indeed non-oil spill area pixels are
referred to as True Negatives.

(4) FN: Pixels predicted as non-oil spill area pixels but are actually oil spill area pixels are
referred to as False Negatives.

Table 3. The confusion matrix for oil spill areas and non-oil spill areas.

Predict

Oil Spill Non-Oil Spill

Actual
Oil Spill TP FN

Non-Oil Spill FP TN

Here are the definitions for PA, OSCPA, NOSCPA, and MPA based on the confusion
matrix, as given in Equations (2)–(5):

PA =
TP + TN

FP + FN + TP + TN
(2)

OSCPA =
TP

TP + FP
(3)

NOSCPA =
TN

TN + FN
(4)

MPA =
1
k
×

(
TP

TP + FP
+

TN
TN + FN

)
(5)

where k is the number of classes.
To assess the detection speed of the method proposed in this study, we used the test

samples that were divided in the first part, comprising a total of 70 hyperspectral image
samples. We applied this method and three comparative models to detect oil spill areas
in these hyperspectral images. According to Equation (6), we calculated the average time
required for each of the four models to detect a single hyperspectral image. This evaluation
was conducted to assess the recognition speed of the method.

MT =
1
p
×

p

∑
i=1

Timei (6)
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where p represents the number of samples in a hyperspectral image, and Time represents
the time consumed for sample detection.

4.2. Results and Comparative Analysis

In Figure 8, we present the detection results of the method proposed in this study
and three comparative methods on partial test samples. Group ‘a’ represents the original
samples, while groups ‘b’, ‘c’, ‘d’, and ‘e’ correspond to the results of the model proposed
in this study, DRSNet, CNN-Visual Transformer, and GCN, respectively. In Figure 8, it can
be observed that the method proposed in this study, along with the other three methods,
exhibits similar oil spill detection capabilities. All four methods can effectively detect
the main oil spill areas. Compared to the original samples, CNN-DBSCAN appears to
be more sensitive to oil spill areas. It accurately identifies even smaller oil spill areas
but may also misclassify some non-oil spill areas as oil spill areas. In contrast, the other
three methods exhibit fewer misclassifications of oil spill areas, but they perform slightly
worse in recognizing small-scale oil spill areas. Among them, the GCN model shows a
more noticeable weakness, with more small-scale oil spill areas being missed. Considering
the recognition performance for both oil spill and non-oil spill areas, the four methods
demonstrate similar capabilities in detecting oil spill areas. However, the model proposed
in this study excels at detecting smaller oil spill areas.
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In the previous sections, we presented the performance of the four methods on a subset
of samples and provided a qualitative analysis of the comparison between the method
proposed in this paper and the other three methods. To quantitatively demonstrate the
performance of the four methods, we use the five metrics mentioned earlier to showcase
the test results: Pixel Accuracy (PA), Oil Spill Class Pixel Accuracy (OSCPA), Non-Oil Spill
Class Pixel Accuracy (NOSCPA), Mean Pixel Accuracy (MPA), and their mean detection
time (MT). First, each of the four methods is applied to detect the 70 samples in the test
set. Subsequently, the confusion matrix parameters TP, FP, TN, FN, and the time required
to complete the detection for these 70 samples are recorded and analyzed. Then, the
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performance metrics, including PA, OSCPA, NOSCPA, MPA, and MT, are calculated for
each of the four methods using Equations (2)–(6). The results are presented in Table 4.

Table 4. Performance metrics for the four methods.

Method PA (%) OSCPA (%) NOSCPA (%) MPA (%) MT (ms)

CNN-DBSCAN 90.69 89.21 96.31 92.12 696
DRSNet 91.31 95.11 89.97 92.84 2386

CNN-ViT 91.93 93.09 90.81 91.57 1893
GCN 90.74 90.96 92.59 91.54 1509

The Pixel Accuracy (PA) for all four methods is consistently above 90%. Specifically,
DRSNet and CNN-Visual Transformer exhibit slightly higher PA than the method proposed
in this study, while GCN’s Pixel Accuracy is on par with that of the proposed method.
For oil spill area detection, the objective is to detect as many oil spill areas as possible.
Therefore, Class Pixel Accuracy (CPA) is a more important metric for evaluating accuracy.
The method proposed in this study has an OSCPA of 89.21%, slightly lower than the other
three methods. However, NOSCPA is significantly higher than that of the other three
methods, and MPA is comparable to that of the comparative methods. In addition to
comparing class-specific pixel accuracy, the Class Average Pixel Accuracy (MPA) is also an
important evaluation metric. Comparing the MPA of the four methods, we observe that
both CNN-Visual Transformer and GCN have slightly lower MPA, but the difference is
not substantial. Based on the comparison of the PA, OSCPA, NOSCPA, and MPA metrics,
we find that the model proposed in this study has an overall oil spill detection capability
that is roughly on par with that of the other models, with slight differences in some details.
However, it also has significant advantages. The oil spill detection capabilities of the four
models are quite similar, but there is a significant difference in their detection speed. The
MT metric in the table shows that the method proposed in this study has a clear advantage,
with an average detection time of only 696 ms per sample compared to the other three
comparative methods.

To further verify the robustness of the method proposed in this study, 600 and
200 randomly selected pixel spectral samples were taken from the collected 1000 sam-
ples, and the models were retrained with these different training sample quantities. The
results of testing the models retrained with three different sample sizes are shown in
Figure 9.
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Reducing the numbers of spectrum samples for training does lead to a decline in the
performance of the method to some extent. When the numbers of spectrum samples for
training are reduced to 600, the oil spill area detection performance of this method is almost
unaffected, maintaining Class Pixel Accuracy at 95.63% and 88.37%. However, when the
numbers of spectrum samples are further reduced to 200, there is a noticeable decline in
performance, but it still maintains a Class Pixel Accuracy of over 70%. This indicates that
the model proposed in this study retains some oil spill detection capability even when
facing a shortage of training datasets.

5. Discussion

This study is based on hyperspectral image samples created in the laboratory and es-
tablishes and validates an oil spill area detection method that combines CNN and DBSCAN
algorithms. However, this study has certain limitations due to constraints in the experimen-
tal environment. In a real marine environment, the scale and complexity of waves cannot
be fully simulated in the laboratory, leading to unpredictable effects on hyperspectral
images and detection methods. Additionally, factors such as lighting, weather conditions,
and atmospheric interference can impact hyperspectral data, causing variations in the
spectral characteristics of the same substance and affecting the detection performance of
the method. To address these limitations, in subsequent research, we plan to move beyond
the laboratory environment and collect hyperspectral images in real marine environments
under different lighting conditions and weather. By enriching our dataset with images
from diverse environments, the neural network model can learn deeper features, mitigating
the limitations mentioned above.

During the model evaluation, we established three alternative models for comparison
with the method proposed in this paper. In terms of detection accuracy, the method pro-
posed in this study is comparable to the other three models, but it exhibits faster detection
speed than the other three models. In real-time detection scenarios, only models with fast
detection speed can meet the requirements for real-time detection. During maritime oil spill
operations, discovering oil spill areas requires efficient and accurate detection methods.
The rapid spread of pollutants in marine environments makes the real-time detection of
oil spill areas crucial. If the detection speed is slow, it can increase the difficulty of oil spill
response operations. Therefore, the real-time detection of oil spill areas holds significant
importance. Vessels conducting operations at sea often struggle to accommodate high-
powered computers. Therefore, if the model’s computational efficiency is low, data need
to be transmitted to a processing center, making it challenging to meet the requirements
of real-time detection. Models with lower complexity can run on smaller computers with
lower computational power, allowing for direct detection. The method proposed in this
study has an advantage over the other models in this regard, providing a solution for
real-time offshore oil spill detection.

6. Conclusions

The transportation of oil by sea and offshore oil extraction, among other human
activities, inevitably increase the risk of oil spills into the ocean. The timely and precise
monitoring of offshore oil spill areas is crucial for responding to unexpected oil spill
incidents and managing already leaked oil. Hyperspectral sensing devices are widely
used in marine oil spill monitoring, but current methods face challenges in quickly and
efficiently detecting these spills. This study proposes an oil spill area detection method
based on the CNN model and DBSCAN algorithm. The method addresses the current issue
of models not meeting real-time detection requirements, providing insights for research in
this area. We simulated a maritime oil spill environment in the laboratory; created a dataset
for validating oil spill detection methods using equipment such as hyperspectral cameras;
and then compared three oil spill detection models, DRSNet, CNN-Visual Transformer, and
GCN, with the method proposed in this study.
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Based on the analysis of the experimental results, this study draws the following
conclusions:

(1) Compared to DRSNet, CNN-Visual Transformer, and GCN, the model proposed in
this study shows a similar level of accuracy in oil spill detection. However, it has a clear
advantage in terms of detection speed when compared to the other three methods.

(2) The proposed model demonstrates high detection accuracy, even with a small number
of training samples, which highlights its robustness.

(3) It outperforms the other three models in the detection of smaller oil spill areas.

The conclusions indicate that combining CNN with the DBSCAN algorithm can
achieve the high-precision detection of oil spill areas, and its detection speed is faster than
that of other models. This approach addresses the challenge of slow detection speeds in
other models, meeting the requirements for real-time detection. It provides a solution for
the real-time detection of oil spill areas at sea and can assist in remediation efforts. This has
a positive impact on reducing environmental damage to the marine ecosystem.
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