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Abstract: As 5G networks become more complex and heterogeneous, the difficulty of network opera-
tion and maintenance forces mobile operators to find new strategies to stay competitive. However,
most existing network fault diagnosis methods rely on manual testing and time stacking, which
suffer from long optimization cycles and high resource consumption. Therefore, we herein propose
a knowledge- and data-fusion-based fault diagnosis algorithm for 5G cellular networks from the
perspective of big data and artificial intelligence. The algorithm uses a generative adversarial network
(GAN) to expand the data set collected from real network scenarios to balance the number of samples
under different network fault categories. In the process of fault diagnosis, a naive Bayesian model
(NBM) combined with domain expert knowledge is firstly used to pre-diagnose the expanded data
set and generate a topological association graph between the data with solid engineering significance
and interpretability. Then, as the pre-diagnostic prior knowledge, the topological association graph is
fed into the graph convolutional neural network (GCN) model simultaneously with the training data
set for model training. We use a data set collected by Minimization of Drive Tests under real network
scenarios in Lu’an City, Anhui Province, in August 2019. The simulation results demonstrate that the
algorithm outperforms other traditional models in fault detection and diagnosis tasks, achieving an
accuracy of 90.56% and a macro F1 score of 88.41%.

Keywords: 5G networks; graph convolutional neural network; generative adversarial network; naive
Bayesian model; fault diagnosis

1. Introduction

In recent years, mobile communication technology has rapidly evolved, and the scale
of communication networks continues to expand. Nowadays, 5G networks have densely
deployed nodes and a complex internal structure. In addition, Software-defined network
(SDN) and network functions virtualization (NFV) technologies have been introduced
to support network slicing to achieve new performances, such as elastic resource alloca-
tion and dynamic scheduling. Significantly, SDN constructs a centralized and controlled
network by separating the control plane and forwarding plane. However, by using network-
slicing technology to establish end-to-end logical networks and allocate network resources
reasonably, 5G networks become more complex and challenging to maintain. It has been
difficult to meet demand with traditional network operation and maintenance means. In
particular, the blossoming business ecology in the 5G era has put higher requirements on
the intelligence level of network operation and maintenance.

Network fault diagnosis is a common task undertaken by mobile communication op-
erators, aiming to analyze the root causes of faults in communication networks. Before the
widespread adoption of artificial intelligence and big data technologies, manual detection
and diagnosis of network faults were the most commonly used methods by operators. In
the early stages of research on network fault diagnosis, acquiring data sets of network faults
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was challenging and often required manually constructing relevant simulated network
scenarios to complete the task of collecting network fault data. In [1], the authors focused
on the study of self-healing functions in self-organizing networks (SONs) and proposed
a fundamental cause analysis system based on a genetic fuzzy algorithm. Fuzzy logic
can simulate the human thinking process by transforming input values into fuzzy sets
easily understandable by humans through heuristic rules (fuzzy rules). The authors of [2]
presented a design and evaluation method for a long-term evolution (LTE) network self-
healing system, which is divided into three stages: establishing fault models and collecting
labeled data, defining cause–symptom relationships, and designing a diagnostic system
based on the first two aspects. In [3], P. Szilagyi et al. proposed a network fault detec-
tion and diagnosis framework involving less domain expert knowledge, which used key
performance indicator (KPI) level as a measure of deviation from normal conditions and
calculated the score for each fault by counting the frequency of abnormal KPIs, then made
the final diagnosis decision based on the score. In [4], H. Mfula et al. studied an automatic
network fault root cause analysis method using Bayesian theory, which did not need to
be run manually and could combine domain expert knowledge for accurate and efficient
automated fault diagnosis. The authors of [5] took into account the temporal dependencies
between network metrics, explored the inter-dependencies between the network metrics
of the primary serving cell and neighboring cells in the presence of network faults, and
then compared them with stored historical faults to determine the root cause of faults.
However, traditional network fault diagnosis methods require operations and maintenance
personnel, along with relevant experts, to analyze and compare the collected network data
with historical fault data in databases based on their work experience to determine the root
causes of network faults. Nevertheless, when dealing with massive amounts of network
data, these approaches are no longer practical and cannot achieve real-time network fault
diagnosis. Additionally, relying solely on human knowledge for fault diagnosis may not be
entirely accurate. In typical scenarios, operations and maintenance personnel may consider
a specific KPI affected by network faults when it continuously exceeds a predefined thresh-
old over a period or surpasses the threshold a certain number of times. However, in the
context of modern communication networks with complex structures and large scales, this
simple threshold judgment is evidently not precise, as the occurrence of network faults is
no longer linearly mapped to individual KPIs. Finally, a fault diagnosis method completely
reliant on expert knowledge and manual intervention inevitably leads to significant cost
expenses. It is evident that traditional network fault diagnosis methods rely heavily on the
accumulation of manual testing, experience, and skills, consuming substantial human and
material resources, with lengthy optimization cycles that fall short of achieving the goal of
cost reduction and efficiency improvement in network optimization tasks. Therefore, the
adoption of intelligent methods, such as big data mining and machine learning in network
fault diagnosis, emerges as a future trend.

Currently, academia has undertaken extensive research, employing various artificial
intelligence and big-data-mining techniques to analyze network parameter data sets for
efficient network fault diagnosis [6–11]. In [6], A. Gómez-Andrades et al. proposed an
automatic LTE network diagnosis system based on unsupervised learning. It used self-
organizing maps (SOMs) with Ward’s method to guarantee the quality of the solution
through an iterative process. The authors in [7] introduced a data-driven methodology for
fault detection and diagnosis (FDD) by integrating principal component analysis (PCA)
with a Bayesian network (BN). In their approach, they employed correlation dimension
(CD) to automatically select principal components (PCs) and utilized Kullback–Leibler
divergence (KLD) and copula theory to develop a data-driven BN learning technique. The
authors of [8] combined SoftMax neural networks and support vector machine (SVM),
which could handle complex situations where multiple network faults exist simultaneously.
In [9], the authors primarily addressed the issue of imbalanced data distribution in fault
diagnosis. They present a novel imbalanced data classification method based on weakly
supervised learning. The approach involves utilizing the bagging algorithm to randomly
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sample majority data, generating several relatively balanced subsets for training multiple
SVM classifiers. Subsequently, these classifiers are employed to predict labels for unlabeled
data, and samples predicted as belonging to the minority class are added to the original data
set. An artificial intelligence network fault diagnosis system applied to LTE/5G wireless
KPI management was proposed in [10], which used machine learning and deep learning to
automatically detect wireless KPI statistics in specific cells with significant deviations in the
probability density function for the standard KPI and alerted the network administrator to
the possible causes of the related problems. In addition, Chen K. F. et al. delved into the
examination of multi-fault scenarios and the diagnosis of fault severity levels within SONs
in [11]. They employed a deep neural network featuring batch normalization to discern the
various faults and their respective severity levels.

Meanwhile, as a branch of deep learning, methods based on graph convolutional
network (GCN) have demonstrated outstanding performance in the field of fault diagnosis,
particularly excelling in big data processing. These approaches have been preliminarily
applied in the domain of mechanical fault diagnosis. In [12], GCN was used for fault
diagnosis of power transformers by first forming association graphs between dissolved gas
sample data using the k-nearest neighbor (KNN) method, and using the feature extraction
capability of GCN to obtain complex and complicated mapping relationships between
dissolved gas and fault types. Moreover, as one of the key technologies for achieving
cognitive intelligence, knowledge graphs (KGs) have gradually begun to be applied in
the field of fault diagnosis in recent years. The authors of [13] established a knowledge-
based question-and-answer system for fault diagnosis of the Electric Information Collection
System based on knowledge graph technology to meet the requirements of efficient and
intelligent decision making under massive operation and maintenance data. In [14], the au-
thors summarized the latest developments in knowledge-based fault diagnosis in industrial
Internet of things (IIoTs) systems through building knowledge bases with ontologies and
applying deductive/inductive reasoning. They also discussed unresolved issues regarding
future decentralized implementations of fault diagnosis. Considering the respective ad-
vantages of methods based on GCN and knowledge-based methods, the authors of [15]
integrated the prior knowledge of the system of interest with GCN for fault diagnosis.
They first employ the structural analysis (SA) method to pre-diagnose the fault and then
transform the pre-diagnosis results into an association graph. Subsequently, the graph and
measurements are fed into the GCN model for training.

Compared to traditional fault diagnosis methods, solutions integrating cutting-edge
technologies such as big data mining and machine learning into the fault diagnosis process
have significantly optimized the efficiency and performance of network fault diagnosis.
However, most current fault diagnosis methods based on knowledge, big data, or machine
learning still have some drawbacks. Firstly, data-driven methods often rely on large-
scale labeled data sets, and obtaining substantial labeled data in the field of network
fault diagnosis can be challenging, resulting in the underutilization of unlabeled data
and the waste of potential information. Secondly, relying solely on machine learning
methods, especially in the absence of domain-specific knowledge, may limit the model’s
generalization capability, thereby affecting the diagnostic effectiveness for new types of
faults or complex scenarios. Finally, the data in 5G communication networks is both vast
and complex, necessitating significant amounts of data and time for accurate fault diagnosis
using machine learning methods. The process of collecting data through drive test (DT)
techniques in the existing network and manually labeling categories can also be expensive
and time consuming. It is worth noting that as the uncertainty and complexity of mobile
communication networks increase, these solutions cannot be seamlessly transferred to the
current network environment. Therefore, it is significant to integrate knowledge-based and
data-based methods, leveraging their respective strengths while mitigating their individual
shortcomings, to enhance the efficiency and reliability of 5G communication network
fault diagnosis.
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To address these issues, we propose a knowledge- and data-fusion-based fault diagno-
sis method for 5G cellular networks. This method aims to accurately and quickly identify
possible network fault types and accelerate the recovery of network faults. We use GAN
to expand the real network data set and then use NBM combined with expert knowledge
to pre-diagnose the data set. Subsequently, a topological association graph is generated
based on the pre-diagnosis results, while improvements are made to the GCN model. This
enhancement enables the GCN to control both the pre-diagnosis results and the size of
the training data set during model training, allowing for an assessment of their respective
impacts on training accuracy. The main contributions of this study are as follows.

• To address the problems of sparse labeled samples and uneven distribution of sample
classes in the actual collected network parameter data set, we proposed a method
based on the generative adversarial network to expand the data set. It not only helps
balance the data set but also ensures that the subsequent model training aligns with
the demands of real-world dynamic network scenarios.

• In order to improve the accuracy of constructing the adjacency matrix using a single
GCN method, this paper introduces the naive Bayes method and expert knowledge to
construct a topological correlation graph. The traditional topological correlation graph
generated based on the Euclidean distance between individual nodes is not entirely
accurate. Therefore, we use the pre-diagnosis result set to enhance the accuracy of the
topological correlation graph and make the model more interpretable.

• A GCN-based fault diagnosis model is constructed by inputting the generated topo-
logical association graph and the expanded training data set into the GCN model for
model training. The GCN realizes information aggregation between nodes and their
neighboring nodes by using the graph convolution layer with strong learning capabil-
ity to obtain new feature representations of nodes and learn the complex non-linear
relationships between network KPI parameters and fault types based on these higher-
order features. Meanwhile, the GCN model can adjust the impact of pre-diagnostic
prior knowledge and training data set size on the accuracy of the GCN model
during training.

The remainder of this paper is organized as follows. In Section 2, we provide a detailed
description of the considered network scenario and the network parameter data set. In
Section 3, based on the overall framework of the proposed algorithm, we first introduce
how to preprocess the original data set in Section 3.1. Subsequently, in Section 3.2, we
propose a GAN-based approach to expand the original data set and balance the number
of samples for different fault types. Following that, in Section 3.3, we suggest using NBM
combined with expert knowledge to pre-diagnose the network fault data set and generate
the corresponding topological association graph between the data. Next, in Section 3.4,
we construct a GCN-based fault diagnosis model. In Section 4, we present the simulation
results of our proposed algorithm and compare its accuracy with other algorithms. Lastly,
in Section 5, we conclude this paper.

2. System Model

In this paper, we consider the network application scenario of a dense heterogeneous
5G cellular network consisting of one high-power macro base station and many low-
power micro base stations, as shown in Figure 1, in which the proposed algorithm is used
to accurately detect faults and find out the root cause of network faults, to prevent the
continuous negative impact on network operation caused by network faults.



Sensors 2024, 24, 401 5 of 20

Core Network

Internet

Figure 1. Dense heterogeneous cellular network.

To avoid the over-idealization of model diagnosis results caused by using a simulation
data set to train the model, we use the data set collected by minimization of drive tests
(MDT) technology under real network scenarios, which is the real user-side data collected
by the company concerned in Lu’an City, Anhui Province, in August 2019. According
to the network optimization rules of the company’s network optimization staff and the
relevant definitions in the problem point list, the network faults in the data set are divided
into a total of eight categories, namely signal leakage of the indoor distribution system,
measurement threshold abnormality, large station spacing, mode-3 interference, handover
threshold abnormality, pilot pollution, overlapping coverage, and missing neighbor.

Since the data set considers the influence of neighboring base stations on the current
base station, the data set also contains the values of relevant KPI parameters of neighboring
base stations of the main service base station recorded by the measurement terminals. After
removing the geographic location parameters such as latitude (LAT) and longitude (LNG)
of the measurement terminals and the network-optimization-independent parameters such
as mobile network code (MNC), 14 KPIs are retained, which are RSSI, RSSI0, RSSI1, RSRP,
RSRP0, RSRP1, RSRQ, RSRQ0, RSRQ1, SINR, SINR0, SINR1, RSRQ_1, and RSRP_1. Taking
RSRP as an example, RSRP, RSRP0, and RSRP1 indicate the value of the primary service
base station received at the current measurement terminal, channel 0 and channel 1 in the
terminal, respectively. RSRP_1 indicates the RSRP value of the largest neighboring base
station received by the measurement terminal. Table 1 shows the explanations of relevant
KPI parameters.

Table 1. Explanations of relevant KPI parameters.

KPI Parameters Value

RSSI Received Signal Strength Indicator
RSSI0 the Received Signal Strength Indicator value at channel 0
RSSI1 the Received Signal Strength Indicator value at channel 1
RSRP Reference Signal Received Power
RSRP0 the Reference Signal Received Power value at channel 0
RSRP1 the Reference Signal Received Power value at channel 1
RSRQ Reference Signal Received Quality
RSRQ0 the Reference Signal Received Quality value at channel 0
RSRQ1 the Reference Signal Received Quality value at channel 1
SINR Signal-to-Interference-Plus-Noise Ratio

SINR0 the Signal-to-Interference-Plus-Noise Ratio value at channel 0
SINR1 the Signal-to-Interference-Plus-Noise Ratio value at channel 1

RSRP_1 the maximum Reference Signal Received Power value
RSRQ_1 the maximum Reference Signal Received Quality value

3. Knowledge- and Data-Fusion-Based 5G Network Fault Diagnosis Algorithm

The overall flow of the proposed algorithm’s operation is shown in Figure 2. The actual
network parameter data set collected with few labeled samples is firstly preprocessed. The
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data are input into GAN in turn according to the fault category to obtain a large amount
of labeled simulated data under different network fault categories, and the actual and
simulated data sets are merged to obtain the expanded data set. Next, we perform fault
diagnosis. The fault diagnosis process is divided into two stages: In the first stage, the data
set is pre-diagnosed with a classification task using NBM, and then the adjacency matrix A
of the data set is obtained based on the results of the pre-diagnosis. In the second stage,
the trained GCN network model is obtained by using the adjacency matrix A combined
with the GCN model for training. According to the GCN model, the final network fault
diagnosis is performed on the data set, and the diagnosis results of the network fault
are output.

Original 
data set

Discriminator

Generator
Random 

noise

Discrimination 
results

Expanded 
data set

naive Bayesian model

Build topology 
association diagram

Obtain 
pre-diagnostic results

Adjacency 
matrix A

Train the GCN 
model

Training 
data set

Test data set

GCN model 
convergence

Network fault diagnosis results

Step 0: GAN-Based data set expansion

Step 1: naive Bayesian model-based 
fault pre-diagnosis

Step 2: GCN-based 
                 fault diagnosis

Input

Output

Merge

Normalization

Data 
preprocessing

Feedback results

Figure 2. Fault diagnosis algorithm flow diagram.

3.1. Data Preprocessing

Some data samples in the actual data set have duplicate or missing problems, so these
useless data need to be removed from the data set. XGBoost [16] integrates the prediction
results of many single-tree models to improve its performance and then evaluates the
importance of the feature parameters according to the splitting times of feature attributes
in each tree, making the feature selection results more reasonable. Therefore, we choose
XGBoost to address the optimal combination of feature parameters. As shown in Figure 3,
by constructing multiple decision tree models, we obtain corresponding importance scores
for each feature parameter and subsequently rank all feature parameters in descending
order. Ultimately, different numbers of feature combinations are selected based on the
ranking results to achieve the optimal feature combination selection for the data set.

Data Input

Feature importance score calculation

Feature importance score ranking

Feature selection 

End

Data Cleaning

XGBoost Framework

Figure 3. Flow diagram of data preprocessing.

Assuming the original data set has a total of d feature parameters, after employing
XGBoost for feature selection, the number of feature parameters becomes d0(0 < d0 < d).
Simultaneously, normalization is performed on the data set after feature selection before
training the GCN model, mapping the values of each feature parameter to the [0,1] interval.
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This process helps prevent higher values of feature parameters from dominating the entire
model training process. In this paper, the maximum-minimum normalization is performed
for each feature parameter as

x̃i =
xi −min(xi)

max(xi)−min(xi)
, i = 1, 2, . . . , z0, (1)

where xi and x̃i denote the i-th feature before and after normalization, and max(xi) and
min(xi) denote the maximum and minimum values of the i-th feature attribute, respectively.

We define the preprocessed network fault data set as {(x1, y1), (x2, y2), . . . , (xn, yn)},
where xi = [KPIi,1, KPIi,2, . . . , KPIi,d0 ] ∈ Rd0 denotes a vector of characteristic parameters
reflecting the network condition in the current environment through d0 KPIs with corre-
sponding network fault category label yi ∈ Y. Y = {y1, y2, . . . , yL} is the set of network
fault categories, where L = 8 according to the previous section, representing eight different
network fault categories defined in the data set.

3.2. GAN-Based Sample Expansion and Balance

The original data set has limitations, including limited sample size, uneven distribu-
tion of data samples, and scarcity of labeled data for certain categories. Therefore, this
paper utilizes GAN-based methods to enhance real data sets. GAN was first proposed
as a generative model by Ian Goodfellow [17]. It has attracted much attention upon its
introduction and has been shown to perform well in expanding data sets to improve model
classification accuracy [18]. The GAN model requires only a certain number of actual
data samples. By reasonably training the GAN model, simulated network parameter data
matching the real network failure scenarios can be generated. Moreover, after using the
GAN model to expand the data under each network failure category, we try to make the
number of samples under each category as balanced as possible.

As shown in Figure 4, GAN is essentially an adversarial process generated by two neu-
ral network models competing with each other. The generator G generates fake simulated
data after inputting raw random noise obeying a specific distribution. The discriminator D
tries to perform a binary classification task to distinguish actual data from the fake data
generated by the generator. There is no fixed choice of neural network models for the
generator and discriminator, and two multilayer perceptrons are chosen in [17] to complete
the training of the GAN by updating the network parameters. When training the GAN,
the discriminator D is generally trained first, and the generator G is trained alternatively.
According to [17], the objective optimization function of the GAN can be expressed as

min
G

max
D

V(D, G) = Ex∼Pd(x)[log D(x)] + Ez∼Pz(z)[log(1− D(G(z)))], (2)

where Pd(x) is the probability distribution of the real data x, which in this paper is denoted
as the probability distribution of the KPI parameters in the actual network scenarios. Pz(z)
is the probability distribution of the random noise z input to the generator.

Generator 

G

Discriminator 

D

Random 

Noise

z

Real Data 

x

Discrimination 

results

Feedback results

Figure 4. The GAN framework.

It can be observed that the objective function of GAN is a minimax optimization
problem, essentially composed of the superposition of the loss functions of the generator
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and discriminator. Specifically, the loss functions for the generator G and the discriminator
D are defined as follows:

LG = Ez∼Pz(z)[log(1− D(G(z)))],

LD = −(Ex∼Pd(x)[log D(x)] + Ez∼Pz(z)[log(1− D(G(z)))]),
(3)

On the one hand, for the generator G, if the current data are virtual data generated
by the generator based on z, the generator aims for the discriminator’s output probability
D(G(z)) to tend towards a positive judgment of 1, thereby deceiving the discriminator and
minimizing log(1− D(G(z))).

On the other hand, for the discriminator D, if the current data are real, the discriminator
expects to provide a positive judgment close to 1, maximizing log(D(x)). If the current data
are virtual data generated by the generator, the discriminator expects to give a negative
judgment close to 0 for fake data, maximizing log(1− D(G(z))).

However, GAN also has some problems. In the actual training process of GAN,
assuming that the discriminator has first reached the approximate optimal state, GAN will
introduce Jensen–Shannon divergence, a distance metric, to rewrite the loss function of
the generator, and the optimization goal of the generator is equivalent to minimizing the
Jensen–Shannon divergence between the distribution of actual data and generated data.
Since the generation level of the generator is poor in this case, it is challenging to generate
a non-negligible overlap between the distribution of generated simulated data and the
actual data, and the Jensen–Shannon divergence is equal to a constant. Moreover, the
generator will experience gradient disappearance in the process of optimization. It cannot
be further trained without getting gradient information updates, which eventually leads to
the difficulty of GAN convergence.

To solve this problem, WGAN proposed replacing the Jensen–Shannon divergence in
the original optimization objective by minimizing the Wasserstein distance between the
generated and actual samples [19]. The Wasserstein distance is smoother and provides
continuous and effective gradients during the training process, thus fundamentally solving
the problem of GAN gradient disappearance. Since it is difficult to compute the lower
bound when solving the Wasserstein distance in practice, WGAN indirectly satisfies the
1-Lipschitz restriction by ensuring that the parameters of the discriminator network are
bounded during the training process, thus achieving the goal of simplifying the compu-
tation of the Wasserstein distance. Finally, the discriminator is re-modeled as a neural
network used to fit the Wasserstein distance between the generated data and the actual
data distribution.

Since WGAN limits the range of values of the discriminator network parameters in
updating the parameters of the neural network model, it will make the neural network
unable to learn complex function expressions and significantly reduce the performance
capability of the discriminator. Therefore, WGAN-GP proposes to avoid the weight restric-
tion on the discriminator network by adding a gradient penalty term to the original WGAN
discriminator loss function (the generator loss function is not modified) [20], while ensuring
that the 1-Lipschitz restriction is satisfied. Specifically, according to [20], the discriminator
loss function in WGAN-GP is improved as follows:

LD = Ex̃∼Pg [D(x̃)]− Ex∼Pd [D(x)] + ρEx̂∼Px̂ [(∥∇x̂D(x̂)∥2 − 1)2], (4)

where Pg is the distribution of the generator-generated data, ρ ∈ [0,+∞) is the penalty term
coefficient, and we take the default value of 10 referring to [20]. Px̂ is the distribution of
the sampled data in the penalty term, and the sample x̂ is obtained by linear interpolation
sampling between the real sample x and the generated sample x̃, thus avoiding traversing
the whole sample space for sampling. Ex̂∼Px̂ [(∥∇x̂D(x̂)∥2 − 1)2] is the penalty term, which
will force the discriminator’s gradient ∥∇x̂D(x̂)∥2 at the sample point x̂ to be as close to 1
as possible during the training process of WGAN-GP so that the discriminator network
satisfies the 1-Lipschitz constraint.
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The implementation of WGAN-GP is described in Algorithm 1, where the number of
discriminator training iterations with the fixed generator is ncritic , and the size of the batch
is m. The network parameters of generator and discriminator are optimized in WGAN-GP
by using Adam’s algorithm, where the hyperparameters of Adam’s algorithm are defined
as follows: α is the learning rate, β1 is the exponential decay rate of first-order moment
estimation, and β2 is the exponential decay rate of second-order moment estimation. In
this paper, we specify ncritic = 100, α = 0.001, β1 = 0.9, and β2 = 0.999.

Algorithm 1 WGAN-GP.

1: Initialize: discriminator parameter w0, generator parameter θ0.
2: while generator parameter θ has not converged do
3: for t = 0, . . . , ncritic do
4: for i = 1, . . . , m do
5: Sampling real data x ∼ Pr, latent variable z ∼ p(z), a random number ε ∼ U[0, 1]

6: x̃ ← Gθ(z) //Generated data for generator
7: x̂ ← εx + (1− ε)x̃ //Sampling data in penalty term
8: L(i) ↔ Dw(x̃− Dw(x) + ρ(∥∇x̂Dw(x̂)∥2 − 1)2 //Calculate the discriminator

//loss function
9: end for

10: w← Adam(∇w
1
m ∑m

i=1 L(i), w, ff, fi1, fi2)//Update discriminator parameter
11: end for
12: Sample a batch of latent variables {z(i)}m

i=1 ∼ p(z)
13: θ ← Adam(∇w

1
m ∑m

i=1−Dw(Gθ(z)), θ, α, β1, β2)//Update Generator parameter
14: end while

3.3. Naive-Bayesian-Model-Based Fault Pre-Diagnosis
3.3.1. Naive Bayesian Model

A Bayesian Network (BN) [21] is an acyclic directed graph with the advantage of using
probabilistic statistics to classify sample data, thus effectively modeling the uncertainty
inherent in human reasoning. Moreover, as a probabilistic model, BN is suitable for
handling extensive data sets with complex probabilistic combinations, such as the network
parameter data set. According to [21], BN can be represented as

BN = (GB, P), (5)

where GB denotes an acyclic directed graph, the nodes in the chart are usually represented
by a set of attribute variables X = {X1, X2, . . . , Xn}, and the edges in the graph represent
the dependencies between these attributes. The network parameter P consists of the
probability distributions of all nodes in the chart, representing the dependent probability of
each node under the influence of its parent node. Each node corresponds to a conditional
probability table, which can be expressed as P(Xi|π(Xi)), where π(Xi) denotes the set
of parents of the attribute variable Xi. Thus, the set P defines a unique joint probability
distribution over X, which is denoted as

P(X) = P(X1, . . . , Xn) =
n

∏
i=1

P(Xi|π(Xi)). (6)

Once the structure GB and parameter P of the BN are determined, the construction
of the BN is completed. Then, the joint probability of the BN can be used for subsequent
posterior probability inference to complete tasks such as attribute value prediction and
category classification.

The BN structure used in this paper is naive Bayes [22]. The reason why naive
Bayes is chosen as the algorithm used in the first stage of the pre-diagnosis process is that
the relationship between multiple possible causes that lead to network faults in cellular
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networks is uncertain. Therefore, these causes of network problems can be expressed in
terms of probabilities, and naive Bayes is suitable for dealing with this kind of situation.

The NBM consists of a single parent node Y and M child nodes X = {X1, X2, . . . , Xd0}.
In the network fault diagnosis scenario of this paper, the parent node can be modeled as
the network faults present in the network Y = {y1, y2, . . . , yL}. At the same time, the child
nodes X1, X2, . . . , Xd0 represent each KPI feature parameter variable in the data set after
feature selection, respectively. According to [22], naive Bayes is a probabilistic model based
on Bayes’ theorem, which can be expressed as

P(yi|X) =
P(yi)P(X|yi)

P(X)
, (7)

where P(yi|X) is the posterior probability, which represents the probability of occurrence
of yi given the observed X. P(X|yi) is the likelihood probability, which represents the
probability of occurrence of X given the already observed yi. P(yi) represents the prior
probability. P(X) is the full probability formula concerning X.

Since P(X) is constant in the calculation of all parts of Equation (7), it can be ignored.
In addition, since the naive Bayes makes a strong assumption of conditional independence
on the conditional probability distribution, Equation (7) can be further expressed as

P(yi|X) ∝ P(yi)
M

∏
j=1

P(xj|yi), (8)

where xj denotes the specific value taken in X under the j-th feature parameter. From
the perspective of network fault diagnosis, given the vector of input feature parameters
representing the network state, for the defined set of fault causes Y = {y1, y2, . . . , yL}, each
posterior probability distribution P(yi|X) is calculated using the NBM, and the network
fault category that makes the maximum posterior probability is selected as the network
fault h∗(X) suffered by the current network. Therefore, h∗(X) is defined as

h∗(X) = arg max
yi∈Y

P(yi)
M

∏
j=1

P(xj|yi). (9)

In reality, solving Equation (9) will involve multiplying multiple conditional probabili-
ties, which are usually smaller probability values. Therefore, to avoid underflow errors, we
convert Equation (9) into the logarithmic form:

h∗(X) = arg max
yi∈Y

[log P(yi) +
M

∑
j=1

log P(xj|yi)]. (10)

The two items P(xj|yi) and P(yi) denote the evidence used in the process of naive
Bayesian inference. To avoid bias in the calculation of probabilities and the situation where
the probability value is equal to zero, we estimate the prior probability P(yi) and the
conditional probability P(xj|yi) by Laplacian smoothing:

P(yi) =
Dyi + 1
Dt + L

, (11)

P(xj|yi) =
Dyi ,xj + 1

Dyi + Sj
. (12)

where Dt is the total number of samples contained in the training data set; Dyi is the total
number of samples in the training set that are in the yi case of network failure; Dyi,xj denotes
the total number of samples in the training set that are in the yi case of network failure, and
the j-th KPI parameter takes the value xj; L is the total number of previously defined network
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failure categories; and Sj is the total number of all possible values of the j-th KPI number
of values, assuming that in our data set, a specific discrete KPI attribute parameter can be
measured by three discrete values of high, medium, and low. In this case, Sj = 3.

It is worth pointing out that the main difficulty in the process of fault pre-diagnosis
based on naive Bayes is that the KPIs in the data set used in this paper are all continuous-
type variables, so the conditional probability density function of the continuous-type
KPIs needs to be known when calculating the conditional probability P(xj|yi). However,
this is often difficult to obtain in reality. In addition, considering the sample data are
relatively small, using discrete KPI fetches would make the diagnosis of the naive Bayes
more accurate than using the continuous probability density function of the KPI, which is
also more reasonable for the actual network parameter data set [23]. Therefore, we need to
choose a discretization method to determine the threshold value of the KPI first, and then
map the continuous KPI to a discrete interval to achieve the discretization of the KPI. In
this paper, we use the expert’s empirical knowledge for the task of KPI discretization, and
the specific discretization rules will be given and explained in Section 4.

Finally, according to the discretized KPI attributes, the naive Bayes classifier is trained by
reasonably dividing the training data set, and the trained NBM is used to classify the remaining
data to obtain the total pre-diagnosis result label set Ĉ = {ĉ1, ĉ2, . . . , ĉN} in the first stage,
where N denotes the total number of samples in the data set after the WGAN-GP expansion.

3.3.2. Topological Association Diagram Construction

After obtaining the pre-diagnostic result set Ĉ, we construct the topological association
graph. The topological association graph is mathematically represented by the adjacency
matrix A, which can intuitively reflect the connection relationship between nodes in the
diagram and plays an essential role in the subsequent training process of the GCN model.

It is noteworthy that since the pre-diagnosis results derived from the naive Bayes are
not entirely accurate, Ĉ will not be directly used as the final diagnosis result in the next part
of this paper, nor will the data with the labeling information derived from the pre-diagnosis
be used as the labeling training data for the subsequent GCN. The pre-diagnosis results are
only used for the construction of A.

Now, let us obtain A of the sample node data in the data set based on Ĉ. In this paper,
it is specified that in Ĉ, data diagnosed as having the same network fault type are connected
in the graph, while data with different network fault types are not connected, which means
the element in A can be expressed as

Ai,j =

{
1, if ĉi = ĉj and i ̸= j

0, otherwise.
(13)

According to Equation (13), the topological association graph is a graph composed of
L mutually independent subgraphs, and L is the number of previously predefined network
fault types.

3.4. GCN-Based Fault Diagnosis Model

We will focus on constructing a GCN-based network fault diagnosis model. First, as
shown in Equation (14), the feature matrix X ∈ Rn×d0 can be constructed based on the
data set obtained after data preprocessing in Section 2, where n denotes the number of
data samples and assumes that the first l data xi(1 ≤ i ≤ l) in the data set are labeled data
with category label yi, while the remaining data xi(l + 1 ≤ i ≤ n) are unlabeled data with
category label yi = 0.
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X =



KPI1,1 KPI1,2 · · · KPI1,d0
...

. . .
...

KPIl,1 KPIl,2 · · · KPIl,d0
KPIl+1,1 KPIl+1,2 · · · KPIl+1,d0

...
. . .

...
KPIn,1 KPIn,2 · · · KPIn,d0


n×d0

. (14)

Next, the feature matrix X and the adjacency matrix A obtained in the previous section
are used as inputs to the GCN:

input = (X, A). (15)

In addition, according to the encoding rules as shown in Table 2, we encode the
category labels of all labeled data in the data set, while the category labels of all unlabeled
data are represented as zero vectors. Based on this, the label vectors of all data are combined
into a label matrix Y ∈ Rn×c, which is used for subsequent computation of the cross-entropy
loss function. Here, c is the predefined number of network failure categories, and in this
paper, c = 8, as described in Section 2.

Table 2. Network fault types codes.

Category Label Type of Network Failure Code

1 signal leakage of the indoor distribution system 1 0 0 0 0 0 0 0
2 measurement threshold abnormality 0 1 0 0 0 0 0 0
3 large station spacing 0 0 1 0 0 0 0 0
4 mode-3 interference 0 0 0 1 0 0 0 0
5 handover threshold abnormality 0 0 0 0 1 0 0 0
6 pilot pollution 0 0 0 0 0 1 0 0
7 overlapping coverage 0 0 0 0 0 0 1 0
8 missing neighbor 0 0 0 0 0 0 0 1

In the GCN, the forward excitation propagation formula defined in the single-layer
graph convolution layer is:

H(l+1) = σ

(
D̃−

1
2 ÃD̃−

1
2 H(l)W (l)

)
, (16)

where σ is the activation function, D̃ is the degree matrix of matrix Ã, and each element
on its main diagonal is obtained by summing all elements of the corresponding row in
matrix Ã, while all elements outside the main diagonal are zero. W (l) is the trainable
weight matrix in layer l, which is essentially the convolutional kernel filter parameter
matrix. The parameters in W (l) can be updated during the training process of GCN by
error back-propagation and according to the gradient descent method. H(l) is the input
node feature matrix of the l-th layer graph convolution layer. For the input layer, H(0) is
equal to the initial node feature matrix X. In addition, the matrix Ã is defined as

Ã = A + λIn, (17)

where A is the adjacency matrix, In is the unit matrix, and λ is the weight coefficient that is
positively correlated with the size of the training set, which is specifically defined in this
paper as λ = 1 + rer, where r denotes the proportion of the labeled training set to the size
of the total data set.

Finally, we obtain the output matrix Z ∈ Rn×c
r of the graph convolutional neural

network. Additionally, to comprehensively illustrate the network structure and processing
procedure of the GCN in this paper, Figure 5 presents a GCN model consisting of two
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graph convolutional layers. For ease of explanation, in the actual GCN model, we refer to
the 0-th graph convolutional layer as the first graph convolutional layer and so forth.

ReLU SoftMax
Input

GConv_1 GConv_2

Input layer Output layer

(1,0,0,...,0)

(0,1,0,...,0)

(0,0,0,...,1)

1
1y =

1
1y =

2
2y =

2
2y =

n
y c=
nn

Figure 5. Graph convolutional neural network model.

As shown in Figure 5, we first calculate Â = D̃−
1
2 ÃD̃−

1
2 in Equation (16), where Â

represents the normalized symmetric adjacency matrix, addressing numerical instability
in the convolution operation. Analysis reveals that the matrix Â contains association
information for each node and its neighboring nodes. Therefore, ÂX is utilized to aggregate
the feature attributes of each node and its neighbors. Subsequently, by multiplying it with

the trainable weight matrix W (0), a new set of node features, ÂXW (0), is obtained. Finally,
an activation function is selected for the new feature matrix to get the output feature matrix
H(1) of the first graph convolution layer. The new node feature representation learned by
the first graph convolution layer is:

H(1) = ReLU(ÂXW (0)
). (18)

Stacking multiple graph convolution layers allows the aggregation of feature attribute
information from neighboring nodes in higher-order neighborhoods. Therefore, we use
the output H(1) of the previous graph convolution layer as the input for the next graph
convolution layer. After the second graph convolution layer, another set of node features,
ÂH(1)W (1), is learned. It is noteworthy that the GCN constructed in Figure 5 uses only two
graph convolution layers. Thus, the output feature matrix of the second graph convolution
layer should have the same size as the label matrix Y , indicating a change in the feature
vector dimension of nodes in the graph. Finally, the feature matrix is processed through the
SoftMax activation function to obtain the ultimate output:

Z = SoftMax(ÂH(1)W (1)), (19)

where W (1) is the weight matrix of the second graph convolution layer. The SoftMax
activation function needs to be applied to each row of the feature matrix ÂH(1)W (1).

Since we consider the network fault diagnosis task as a node classification task using
GCN, we finally need to output a category label for each node. Therefore, the structural
design of the network does not need to use the full connected layers like the traditional
CNN but only needs to set the activation function on the last layer of the graph convolution
layer as a SoftMax function.

The output result matrix Z = [Z1, Z2, . . . , Zn], and its representation is similar to
the label matrix Y . Each row vector Zi(1 ≤ i ≤ n) in Z corresponds to the predicted
final network failure class of the sample node xi in the original data set. Specifically, for
Zi = [Zi,1, Zi,2, . . . , Zi,c], the predicted label of the sample node xi is ỹi = arg max

1≤j≤c
Zi,j.

In the GCN training process, it is finally necessary to calculate the cross-entropy loss
function from the labeled samples in the training set and perform the error backward
propagation to optimize the weights of the weight matrix in each graph convolution
layer according to the gradient descent method. The cross-entropy loss function can be
expressed as

L = −
l

∑
i=1

c

∑
j=1

Y i,j ln Zi,j, (20)
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where l is the number of samples with labels, c is the total number of network fault
categories defined before, and Y is the label matrix of nodes defined before.

This paper uses accuracy and macro F1 score as two commonly used evaluation
metrics. Macro F1 score is a performance indicator that combines accuracy and recall.
Accuracy represents the accuracy between the predicted value and the label value. Recall is
the calculation of the proportion of correctly predicted categories, subsequently taking the
average of the proportions of all categories. The calculation formula is as follows:

Accuracy =
TP + TN

TP + TN + FN + FP
,

Recall =
TP

TP + FN
,

Macro F1 = 2 ∗ Accuracy ∗ Recall
Accuracy + Recall

.

(21)

where TP represents the predicted fault-free situation for samples without faults, FP
represents the predicted fault-free situation for samples with faults, FN represents the
predicted fault-free situation for samples without faults, and TN represents the predicted
fault-free situation for samples with faults.

4. Simulation Results and Discussion
4.1. Feature Selection Results

In this paper, the importance score of each feature is obtained through the feature
importance ranking function of XGBoost, with which descending ranking is performed.
The experimental results are shown in Figure 6.
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Figure 6. The feature attributes importance scores.

Next, the optimal subset of network feature parameters needs to be selected based on
the importance scores of the network parameters shown in Figure 6. In the feature selection
process, XGBoost will continuously increase the feature selection threshold according to
the obtained network parameter importance scores and keep the feature parameters whose
feature importance score is higher than the threshold; otherwise, it will discard them. In this
way, the accuracy of the XGBoost model with different feature combinations is obtained.
Finally, the model accuracy and the number of features is judged to obtain the optimal
network feature parameter subset. The diagnostic accuracy of the XGBoost model under
different numbers of features is shown in Table 3.

It can be seen that the model can obtain better diagnostic accuracy when eight features
are selected, and it also achieves the purpose of feature selection. Therefore, in the following
simulation experiments of this paper, only the top eight KPI parameters in Figure 6 are set
as the KPI parameters.
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Table 3. Diagnostic accuracy of the model with different numbers of features.

Feature Selection Threshold Number of Features Accuracy

190 14 86.54%
199 13 86.76%
209 12 86.60%
230 11 86.52%
253 10 86.12%
266 9 86.30%
281 8 86.70%
284 7 85.44%
302 6 84.35%
302 5 83.39%
331 4 81.53%
376 3 81.17%
449 2 79.60%
715 1 77.01%

4.2. GAN-Based Data Generation and Data Set Description

In the WGAN-GP model of this paper, the batch size is 50 and the number of iterations
is 5000. The specific network parameter settings are shown in Table 4.

Table 4. WGAN-GP parameter settings.

Model Number of Layers Weight Matrix Offset Vector Length

Generator
G

1 14 × 32 32
2 32 × 128 128
3 128 × 14 14

Discriminator
D

1 14 × 128 128
2 128 × 32 32
3 32 × 1 1

As described in Section 3.2, we generate a large amount of simulated data that match
the actual data distribution using WGAN-GP. In the training process of WGAN-GP, the
model’s training process can be intuitively reflected by the loss function diagram of the
discriminator and the generator. When WGAN-GP is used to fit the actual network data
under the network fault scenario of “large station spacing” in the original data set, the loss
function of the generator and the discriminator are shown in Figure 7. If the loss value
of the discriminator tends to converge, it means that the better the WGAN-GP is trained,
the higher the quality of the generated simulated data samples is, and the closer to the
distribution of the actual data samples. As seen in Figure 7, the loss function value of
the discriminator has a large oscillation at the beginning, then oscillates slightly after it
quickly converges. It indicates that the model is in the learning stage at this time, and the
model has not yet found the optimal solution direction. After about 2000 training cycles,
the model gradually becomes stable, and the gap between generated and real samples
gradually decreases. The discriminator gradually cannot distinguish between real and
generated samples, and the performance in the graph is gradually becoming stable.

In this paper, we defined eight common faults based on the network optimization
rules and fault issue checklist provided by a company’s network optimization personnel.
The generated simulated data are merged with the actual data in the original data set to
obtain the expanded data set, shown in Table 5. As can be seen from Table 5, the original
actual data set is raised to about three times its original size by using WGAN-GP, containing
a total of 2657 labeled data. It is noteworthy that when expanding the data for each type of
network failure, we try to make the number of samples under each category account for the
same proportion of the total number of samples as much as possible so that the samples’
distribution in each category is more uniform. The expanded data set will be applied to
the model training process in the subsequent simulation experiments, and the actual data
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will be selected as the test data set to test the diagnostic accuracy of the model as much
as possible.

Figure 7. Loss function diagram.

Table 5. Data distribution of the data set after expansion with WGAN-GP.

Category Label Type of Network Failure Number of Samples

1 signal leakage of the indoor distribution system 347
2 measurement threshold abnormality 342
3 large station spacing 239
4 mode-3 interference 356
5 handover threshold abnormality 300
6 pilot pollution 214
7 overlapping coverage 413
8 missing neighbor 446

4.3. Continuous KPI Discretization Rules

As mentioned in Section 3.3, since the KPI parameters in the data set obtained through
MDT are all continuous-type attributes, if we want to use these data directly for pre-
diagnostic classification in the first stage of the naive Bayesian pre-diagnosis process,
we need to know the conditional probability density function that the KPI obeys under
each network fault state, which is usually challenging to obtain in reality. Hence, the
feature parameters need to be further processed, and continuous KPIs are mapped to
discrete intervals by reasonably setting thresholds to minimize the missing data information.
Thresholds can be defined by experts or learned from training data. Still, in the absence
of sufficient data available for training, the former will produce a more accurate model
than the latter, so we use expert knowledge to discretize the KPIs. As shown in Table 6,
the threshold partition rules are the results of discussions with the company’s network
optimization engineers and refer to [4] for some relevant content. In this paper, the KPI
feature attributes in the data set are discretized according to the rules in Table 6, after
which the likelihood function can be easily calculated by statistical counting based on the
frequency of occurrence of the KPI values taken in each network fault state in the training
data set, which leads to the final pre-diagnostic classification results in the first stage.

Table 6. KPI discretization rules.

Discretization Code RSRP(dBm) RSRQ(dB) RSSI(dBm) SINR(dB)

1 ≤−115 ≤−20 ≤−100 ≤3
2 (−115,−105] (−20,−15] (−100,−85] (3, 10]
3 (−105,−95] (−15,−10] (−85,−70] (10, 15]
4 (−95,−85] >−10 (−70,−55] (15, 25]
5 >−85 / >−55 >25
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4.4. Overall Performance Evaluation and Results

The GCN models in this paper are implemented based on the Keras version, and
the simulation experiments are run under the configuration environment of Dell Intel(R)
Core(TM) i5-8265U CPU @ 1.60 GHz Round Rock in USA. As described in Section 3.3, the
topological association graph between the data obtained based on the pre-diagnosis results
has good characteristics and solves the problem of selecting the number of layers of the
graph convolution layer in the GCN structure, so the hidden layer depth of all GCN models
in the experiments is set to 2. The input feature dimension of the sample data are 8, and
the final output feature dimension is 8. The specific GCN network architecture is shown in
Table 7. The size of the convolutional filter is selected as 10 and 8, respectively. The learning
rate is set to 0.01, the probability of the dropout layer is set to 0.25, and the maximum
number of iterations of the neural network training is 200. The L2 regularization parameter
is set to 1× 10−5. The output of the neural network is completed by propagating the
forward excitation to the input. At the same time, the weights W (0)and W (1) are updated
according to the error back-propagation using batch gradient descent.

Table 7. Graph convolutional neural network architecture.

Number of Layers Layer Type Output Feature Size

1 Input layer 2657 × 8
2 Dropout layer 1 (rate = 0.25) 2657 × 8
3 Graph Convolutional Layer 1 2657 × 10
4 Dropout layer 2 (rate = 0.25) 2657 × 10
5 Graph Convolutional Layer 2 2657 × 8
6 SoftMax layer 2657 × 8

To demonstrate the effectiveness of the proposed algorithm, we compare it with
other algorithms. We compared the parameter settings of CNN [24], KNN [25], and
GCN [15] separately. The parameter setting method for naive Bayes has been introduced
in Section 4.3. Since the proposed method uses a combination of naive Bayes and graph
convolutional neural networks, it is also necessary to compare it with these two algorithms
separately. We carry out a total of six groups of experiments; the size of the training
set used in each group is 32, 64, 128, 256, 512, and 600, respectively. In the simulation
experiments, the model’ s performance will be represented by the accuracy and macro F1
values. Accuracy assesses the overall correctness of a diagnostic model, representing the
proportion of correctly classified samples in the predictions. Macro F1, considering the
predictive performance for each class and suitable for imbalanced data sets, is the harmonic
mean of accuracy and recall. Meanwhile, to reduce the experimental error, the results of
each group of experiments are averaged after ten repetitions, and the simulation results are
shown in Figure 8a,b.

(a) (b)

Figure 8. (a) Comparison of fault diagnosis accuracy for different algorithms. (b) Comparison of fault
diagnosis macro F1 for different algorithms.
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As can be seen in Figure 8a,b, the proposed algorithm can achieve good accuracy
and macro F1 values compared with other algorithms in each group of experiments: the
algorithm exhibits a remarkable accuracy of 90.56% and a macro F1 score of 88.41%. It is
noteworthy that the proposed algorithm shows better performance compared with either
the GCN-based or the naive-Bayes-based network fault diagnosis algorithms alone because
the proposed algorithm combines the advantages of the two algorithms and solves their
shortcomings in a complementary way.

Next, to verify the impact of the expanded data of the GAN on the accuracy of the
overall algorithm model, we conducted experiments based on the original data set and
the data set expanded by WGAN-GP to compare the diagnostic accuracy of the proposed
algorithm under different situations. The final simulation results are shown in Figure 9a. It
can be seen that when using the expanded data set, the simulated data generated by the
GAN is indeed consistent with the distribution of actual data in reality, so the algorithm
model can obtain sufficient and accurate label information during the training process,
which makes the diagnostic accuracy of the model higher.

(a) (b)

Figure 9. (a) The diagnostic accuracy of the proposed algorithm. (b) Influence of the weighting
coefficient λ on the model.

Finally, we consider the effect of weight coefficient λ on the accuracy of the proposed
algorithm. We construct two fault diagnosis models for two groups of experiments, using
the same data set expanded by WGAN-GP. The adjacency matrix A used in both sets of
experiments is based on the pre-diagnosis results of the first stage of naive Bayes; the only
difference is that in the first set of experiments, λ equals 1 (i.e., matrix Ã = A + In) and
then records its accuracy in the training data sets respectively containing 200, 400, 600,
and 800 labeled samples. Meanwhile, the forward propagation formula of GCN in the

second set of experiments is H(l+1) = σ

(
D̃−

1
2 (A + λIn)D̃−

1
2 H(l)W (l)

)
, where λ = 1+ rer

is derived from the ratio of the training data set to the total sample data. The results of the
experimental simulation are shown in Figure 9b. The results show that the accuracy of the
fault diagnosis model using GCN with λ improves slightly with the increase in the number
of samples in the training set, which is because the training set has a dominant influence on
the accuracy of the model when it is significant. In addition, when the number of labeled
samples in the training set is too small, the difference in the accuracy of the model in the
two sets of experiments is not significant, which is because the prior knowledge of the
pre-diagnosis results has a more significant impact on the accuracy of the model.

5. Conclusions

In this paper, we present a knowledge- and data-fusion-based fault diagnosis method
for 5G mobile communication networks. To enhance the model’s performance and align it
with real-world scenarios, we opt to employ a precise data set containing actual network
fault data for the network fault diagnosis task. Given the challenges of sparse labeled
samples and uneven distribution in the data set, we leverage GAN to generate synthetic
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data, thereby expanding the original data set. In the initial phase of the proposed method,
to create an accurate topological association graph among the data, we utilize NBM for pre-
diagnosing the entire data set and subsequently generate the association graph based on the
pre-diagnosis results. In the second phase, the generated association graphs, in conjunction
with the enhanced GCN, are employed for the final fault diagnosis of the network fault data
set. It is noteworthy that the improved GCN effectively manages and balances the impact
of pre-diagnosis results and training data set on the accuracy of the GCN model. The
simulation results demonstrate that the algorithm outperforms other traditional models in
fault detection and diagnosis tasks, achieving an accuracy of 90.56% and a macro F1 score
of 88.41%. Future research will conduct on-site investigations on various network scenarios
and expand the types of faults. This can be achieved by collecting more diverse data to
adjust and optimize the model and continuously improving the model’s generalizability
and robustness.
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