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Abstract: Occlusion in facial photos poses a significant challenge for machine detection and recog-
nition. Consequently, occluded face recognition for camera-captured images has emerged as a
prominent and widely discussed topic in computer vision. The present standard face recognition
methods have achieved remarkable performance in unoccluded face recognition but performed
poorly when directly applied to occluded face datasets. The main reason lies in the absence of identity
cues caused by occlusions. Therefore, a direct idea of recovering the occluded areas through an
inpainting model has been proposed. However, existing inpainting models based on an encoder-
decoder structure are limited in preserving inherent identity information. To solve the problem,
we propose ID-Inpainter, an identity-guided face inpainting model, which preserves the identity
information to the greatest extent through a more accurate identity sampling strategy and a GAN-like
fusing network. We conduct recognition experiments on the occluded face photographs from the LFW,
CFP-FP, and AgeDB-30 datasets, and the results indicate that our method achieves state-of-the-art
performance in identity-preserving inpainting, and dramatically improves the accuracy of normal
recognizers in occluded face recognition.

Keywords: occluded face recognition; identity-guided inpainting; image synthesis; generative adversarial
net (GAN)

1. Introduction

In recent years, occluded face recognition has become a research hotspot in computer
vision. Unlike unoccluded faces, occluded faces suffer from incomplete visual components
and insufficient identity cues, which lead to degradation in recognition accuracy by normal
recognizors [1–4]. Inspired by the recovery mechanism of the nervous system, researchers
have proposed two types of approach, i.e., occlusion-robust and occlusion-recovery.

The occlusion-robust approach attempts to improve the robustness of recognizers on
occluded faces by improving the “representation”. The latest work, FROM [5], proposed an
end-to-end occluded face recognition model to learn the feature masks and deep occlusion-
robust features simultaneously. However, compared with normal recognizers, it has
weakened generalization ability over datasets with wide age and angle differences, such as
the CFP-FP [6] and AgeDB-30 [7].

Unlike the occlusion-robust approach, the occlusion-recovery approach recovers the
occluded regions before recognition. GAN-based inpainting methods [8,9] have remarkably
improved realistic content generation. At the same time, identity-preserving inpainting
models [10–15] have been demonstrated to be effective for occluded face recognition. These
methods often adopt encoder-decoder-structured networks but with different identity loss
during training, as Figure 1 shows. Dolhansky et al. [10] imported identity features to
preserve identity information in eye regions by L2 feature loss, as Figure 1b shows. Inspired
by the perceptual loss [11,12,16] used identity loss which combined perceptual items and
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identity feature items, as Figure 1c shows. The perceptual item is computed with semantic
features from a low-level layer of the pretrained recognizer, while the identity feature
item is from the output of the top-level layer. Ge et al. [15] proposed an identity-diversity
loss that combines perceptual loss and identity-centered triplet loss to guide face recovery,
which achieved state-of-the-art performance in identity preserving inpainting, as Figure 1d
shows. Duan et al. [13] designed two-stage GAN models to deal with face completion and
frontalization simultaneously. However, these methods are also limited by the challenge
of preserving the inherent identity information against large occlusions. These methods
often utilize incomplete datasets to learn the identity distribution with the supervision of
identity and reconstruction loss functions, which makes the learned distribution deviate
from its real one. Then, the decoder generates a new face from sampling the biased identity
space, further enhancing the identity offset of the generated image.

Figure 1. Encoder-decoder-structured identity-preserving inpainting networks with different identity
training loss. C is an encoder-decoder-structured content inpainting network, and R is a pretrained
recognizer. fid, fo, fr are identity-centered features, occlusion-recovered features, and real face
features, respectively.

This work uses a GAN-like identity-guided inpainting model to solve occluded face
recognition. We refer to our method as ID-Inpainter for brevity. Instead of starting from
a Gaussian distribution, our model samples from an identity distribution learned with
an unoccluded dataset, which reaches closer to the real distribution than that with an
occluded dataset. The difference is shown in Figure 2. Our ID-Inpainter consists of a
content inpainting process and an identity fusing process. In the content inpainting process,
we train a content inpainter to implement a coarse recovery with structure consistency. In
the fusing process, we design a GAN-like identity fusor consisting of a series of adaptive
identity fusion blocks (AIFBs) to fuse the identity and attribute features. Through the
GAN-like fusor and specifically designed AIFBs, we achieve more efficient identity fusing
and obtain better attribute-consistent inpainting results.

Figure 2. We get the recovered result closer to the ground truth by sampling from a closer distribution,
which is learned with an unoccluded dataset.
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2. Related Work
2.1. Occluded Face Recognition

Face recognition is a computer vision task that recognizes the identity among multiple
face images. It is closely related to feature extraction, classification [17], and detection [18]
technology. As one of the most successful practical cases, face recognition has a long history
of research which has extended to various application scenarios [15,19,20] . Traditional face
models are designed for unoccluded face images (see, for example, [1,2]). When they are
applied directly to occluded datasets, their accuracy drops dramatically. There are two
main approaches to solving the problem: occlusion-robust and occlusion-recovery.

The occlusion-robust approach reduces the accuracy drop by improving the robustness
of recognizers on occluded faces. One idea is to improve the “representation”. Refs. [21–23]
report various kinds of representation methods for facial features. The latest work called
FROM [5] is an end-to-end occluded face recognition model to learn the feature masks
and deep occlusion-robust features simultaneously and achieved the SOTA result on the
occluded LFW dataset.

Unlike the occlusion-robust approach, the occlusion-recovery approach recovers the
occluded facial regions and then performs recognition on the recovered faces. Ge et al. [15]
proposed an identity-diversity inpainting network to facilitate occluded face recognition. It
improved the recovery step by integrating GAN with a novel CNN network, which used
identity-centered features as supervision to enable the inpainted faces to cluster towards
their identity centers. In [14], occlusions were removed with a CNN-based deep inpainting
network. However, these methods are also limited by the challenge of preserving the inher-
ent identity information against large occlusions. The core reason lies in the insufficient
transformation of identity information. So, if we can improve the identity information trans-
formation in the inpainting phase, we will further improve the performance of occluded
face recognition.

2.2. Identity-Preserving Face Inpainting

A simple approach for face inpainting is to borrow general deep learning inpainting
methods directly, which are good at rebuilding the overall structure of the face. For example,
generative inpainting methods [9,24] involve the design of attention layers to improve
the global structure consistency and fidelity and have performed well in face inpainting.
Although these methods have been shown to maintain the consistency of facial structure,
they showed limited improvement in occluded face recognition. So, some researchers have
turned their attention to identity-preserving face inpainting.

Identity-preserving face inpainting attempts to perceive the identity information from
the uncorrupted region. Some attempts, e.g., [14,15,25], imported identity loss to solve
the problem and were demonstrated to be effective for occluded face recognition, but not
significantly. For example, Ge et al. [15] proposed an identity-preserving face completion
model that combined a CNN network and a third recognizer player to complete identity-
diversity inpainting. It was designed explicitly for occluded face recognition but failed
to improve performance on large-size occlusions. The main reason is that the traditional
encoder-decoder network trained on occluded datasets can not build real identity space,
leading to a prominent identity offset in the inpainting process. Li et al. [26] creatively
combined a general inpainting network with AAD-generator [27] to solve identity-guided
inpainting tasks, regenerating missing content from a pretrained identity distribution.
However, there is still a certain distance in style and structure between the generated face
and the ground truth face. Although an additional Poisson blending module is used to
repair the style difference, the structure bias cannot be erased.

2.3. Normalization Layers

GAN is powerful in generating photo-realistic results based on distribution sam-
pling. There have been broad investigations of the normalization layers [26–29] in GANs
to improve the prediction performance. Among them, spatially adaptive denormaliza-
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tion (SPADE) [28] and adaptive attentional denormalization(AAD) [30] are related to our
AIFB. By relying on the prelearned identity distribution and AIFBs, our method can effec-
tively fuse the identity information into the missing area and maintain a high degree of
structural consistency.

3. Proposed Method

For occlusion-recovery face recognition, the recovery model inpaints the occluded
face to meet structure consistency and identity preservation. Instead of using a traditional
encoder-decoder generator, we utilize a GAN-like identity-guided face inpainting network
for the inpainting, as shown in Figure 3. Our method consists of two phases: the verification
phase and the training phase. In the training phase, we use occlusion-free faces as the
reference image while adopting the masked face as the reference in the verification phase.

Figure 3. The overall pipeline of our approach. It is divided into verification and training phases. The
verification phase consists of two modules: ID-Inpainter I and recognizer R. ID-Inpainter I consists of
three sub-networks, i.e., content inpainter C, identity sampler S, and identity fusor F. In the training
phase, ground truth faces Xg, occlusion masks M, and reference images Xs are put into I to train an
identity-guided inpainting model. In the verification phase, the masked face is used as the reference
face to implement identity-preserving inpainting. Finally, the inpainted result is recognized by a
normal recognizer R.

3.1. Problem Definition

Given a ground truth face xg and its occluded version xm, our goal is to inpaint the
occluded image with structure-consistent and identity-preserving content to make it easier
to be recognized by normal recognizers. During the inpainting process, we use a mask
M to indicate the occluded areas, and a reference face xs to guide the identity-preserving
inpainting. As Figure 3 shows, our ID-Inpainter I consists of a content inpainter C, an
identity sampler S, an attribute extractor A, and an identity fusor F. In the training phase,
we obtain content recovered outputs Xa by Xa = C

(
X̃m, M

)
, the identity embeddings zid

by zid = S(Xs), and the multi-scaled attribute embeddings za by za = A(Xa). Then, the
{za, zid, M, Xa} are delivered to the identity fusor F to obtain the Yf . According to our goal,
we need to maintain the structure consistency between Yf and Xg, while maximizing the
identity similarity between Yf and Xg. The process can be formulated as

Yf = F(A(C(Xm, M)), S(Xs), Xm, M) (1a)

A
(
Xg
) .
= A

(
Yf

)
(1b)

S
(
Xg
) .
= S

(
Yf

)
(1c)

where .
= means “equivalence” in some metric.



Sensors 2024, 24, 394 5 of 12

However, the Xg is unknown in the verification phase. Assuming that we can find an
alternative Xs which is very similar in identity to Xg, we could update Equation (1c) as

S(Xs)
.
= S

(
Yf

)
i f S(Xs)

.
= S

(
Xg
)
. (2)

Now, the questions are how to find the very similar Xs and how to transmit more
identity information to the fused result Yf with high structural consistency.

3.2. Identity-Guided Inpainting

To keep structural consistency, we implement the content inpainting module C by
rebuilding the network of DeepFill [8] to meet the input size of 112× 112. Inspired by
SPADE [31] and SwapInpaint [26], we utilize a GAN-like identity fusor to deal with identity-
guided inpainting. To fuse more identity information in the recovered result, we replace
the Gaussian space of the traditional GAN with the identity space and adopt a recognizer
trained with an occlusion-free dataset as the identity sampler. Here, we use an Arcface built
on ResNet50-IR [2] with a feature dimension of 256, with unoccluded CASIA-WebFace [32].
The identity fusor contains a series of modulation blocks with upsampling layers. Assuming
that we define the k-th modulation block as f k, the k-th fused output Yk

f is produced by

Yk
f = f k

(
Yk−1

f ↑ ; zk
a, zid, Xm, M

)
, k ∈ {1, 2, · · · , 7} (3)

where Yk−1
f ↑ is the upsampled result of Yk−1

f to match the k-th level. Y0
f is the output of a 2×

deconvolution on the zid. Similar to SwapInpaint [26], the attribute extractor A is a UNet A
to convert the Xa into multi-scaled attributes za.

To decrease the structure and style differences in inpainting scenarios, we improve
the AAD [27] to the attribute and identity fusing block (AIFB), which combines SPADE
and AAD into a residual block. As Figure 4 illustrates, each AIFB is divided into ID-fusion
and reconstruction paths. The ID-fusion path consists of two AADs responsible for the
fusion of zid and zk

a, while the reconstruction path utilizes a SPADE module to rebuild the
unoccluded region of the input image Xa.

It may be noted that, according to Equation (2), in the verification phase, we need to
find a reference image xs, which should be as close to the ground truth xg as possible in
identity space. From the quantitative comparisons, we find that some normal recognizers
still maintain certain generalizations on occluded images; for example, the ArcFace [2]
can reach a verification accuracy of 85.28% on 64 random occluded LFW [33]. Therefore,
it is reasonable to infer that various occluded versions of the same image still have cohe-
sive properties in identity space and can be used directly as the reference image in the
verification phase.

Figure 4. The structure of k-th AIFB. Each block consists of an ID-fusion path and a reconstruction path.
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3.3. Training Process

For the content inpainter C, the training process is the same as DeepFill [8]. For the
identity fusor, which we call ID-Fuser for short, we train the attribute extractor A and
the fusor F jointly. The training set is

{
Xg, Xs, M

}
. Xs is randomly set to be the same or

different from the Xg. As for the loss function, we use a reconstruction loss to train the
attribute extractor and the reconstruction path when the reference images are the same as
the ground truth images, i.e.,

Lrec =

{
1
2

∥∥∥Yf − Xg

∥∥∥2

2
i f Xg = Xs;

0 otherwise.
(4)

For the ID-Fusion path, we use l2 loss between the attribute embeddings to maintain
the attribute consistency, which is formulated as

Latt =
1
2

∥∥∥A
(

Yf

)
− A

(
Xg
)∥∥∥2

2
. (5)

At the same time, an identity loss is used to fuse the identity information of the
reference face. It is computed as

Lid = 1− cos
(

S
(

Yf

)
, S(Xs)

)
, (6)

where cos(·, ·) represents the cosine similarity of two embeddings.
Furthermore, we need a multi-scale GAN loss [27] to make the result realistic. Then,

the final loss is formulated as

L = λ1Lrec + λ2Latt + λ3Lid + Lgan (7)

4. Experiment Results
4.1. Experiment Settings

We take CelebA [34], which is a large-scale face attributes dataset with more than 200 K
celebrity camera-captured photos as the training datasets for all the comparison models,
while LFW [33], CFP-FP [6], AgeDB-30 [7], and FaceScub [35] are used as the test datasets.
The faces are aligned for all datasets and cropped to 112× 112 resolution. The occluded
versions are synthesized as in [9]. We extract 2 k images for validation; the others are used
for training. For the loss weights, which are set by default as λ1 = λ2 = 10, λ3 = 5, we
gradually increase the value of λ3 during training from 5 to 10. When training, the ratio
of the same to cross-identity paires is set to 1:1. All models use the Adam optimizer with
the beta parameter set as [0.1, 0.999], and the learning rate as 10−4. ID-Fuser is trained for
100, 000 iterations in total, while the content inpaintor and other inpainting models for
comparison are all trained for 500, 000 iterations. We implement our model with PyTorch
1.7.1 on a single NVIDIA V100 with a batch size of 16.

4.2. Comparison Experiments
4.2.1. Face Inpainting

We compare the proposed ID-Inpainter based on the content inpainter of PIC and CA
with PIC [9], CA [8], CA with cosine identity loss (the same as ExGAN [10]), and CA with
central-diversity loss (the same as ID-GAN [15]) on face inpainting in Figure 5. It can be
seen that our ID-Inpainters achieve better visual quality than the others. Moreover, our
models achieve better inpainting quality and higher identity similarity, as shown in Table 1.
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Figure 5. Inpainting results generated by different models. In each row, from left to right, they are
the masked face, inpainting result by PIC [9], CA [8], CA with cosine identity loss (CA-cos), and CA
with central-diversity loss [15] (CA-div), ID-Inpainter on PIC (PIC-F), ID-Inpainter on CA (CA-F),
and the ground truth (GT).

Table 1. Quantitative performance on inpainting results. Arrows indicate whether larger is better or
smaller is better, and bold indicates the optimal value.

Model SSIM ↑ PSNR ↑ FID ↓ Identity ↑

PIC 0.8764 26.2543 3.6883 78.38
CA 0.8902 27.0059 3.5340 81.10

CA-cos 0.8898 27.2068 3.3807 81.76
CA-div 0.8876 27.0058 3.0075 81.46

PIC-F (Ours) 0.8844 27.0531 2.9969 82.76
CA-F (Ours) 0.9091 28.8303 2.7254 85.55

4.2.2. Face Recognition

We evaluate the recognition performance of PIC [9], CA [8], CA-cos, CA-div, and
ID-Inpainter on the occluded LFW dataset. All experiments are performed on the random
block of 48× 48, the random block of 64× 64, and the random-part occlusions. The random
block is implemented by placing block occlusion at a random location, including the mouth,
left eye, right eye, nose, left face, right face, upper face, two eyes, and lower face. The
results in Table 2 demonstrate several essential observations. First, structure consistency
plays a role in improving the recognition accuracy. For content inpainting, CA performs
better than VAE-based PIC. Second, the area of missing blocks has a significant influence
on recognition. Lastly, compared with CAs built with an encoder-decoder network, our
ID-Inpainter achieves a higher score for occluded face recognition.
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Table 2. Verification accuracy (%) of occlusion-recovery methods. Bold indicates the best value.

Mask Occ. PIC PIC-F
(Ours)

CA CA-cos CA-div CA-F
(Ours)

R-block (48) 95.03 96.30 96.85 96.31 97.39 97.24 97.58
R-block (64) 85.28 89.97 93.08 91.92 92.19 92.53 94.13

R-part 91.46 92.96 95.03 95.00 93.80 95.20 96.65

4.3. Analysis of the Framework
4.3.1. Effects of Different Occluded Areas

From existing research, we know that different occluded areas affect the recognition
differently. In this experiment, we quantitatively evaluate the influence on the LFW dataset.
We explore occlusion types of the left eye, right eye, mouth, nose, two eyes, left face, right
face, upper face, and lower face. The results in Table 3 show that occluded areas have the
same effects on our method. For example, our method achieves high accuracy in the mouth
area but suffers from sharp degradation in the eyes areas. At the same time, it demonstrates
that our ID-Inpainter contributes to an accuracy increase in every part.

Table 3. Results for the effect of our ID-Inpainter with different recognizers. The results are measured
by verification accuracy (%).

Data Mouth Left
Eye

Right
Eye Nose Left

Face
Right
Face

Upper
Face

Two
Eyes

Lower
Face

ArcFace (GT: 99.30)
Occluded. 98.58 97.40 98.16 95.03 93.34 95.86 83.76 89.20 92.03
Inpainted 99.36 98.92 98.85 98.93 98.13 98.05 91.75 94.22 93.50

Improvement +0.8 +1.5 +0.7 +3.9 +4.8 +2.2 +8.0 +5.0 +1.5

4.3.2. AIFBs

We propose an AIFB to shorten the distance between the inpainted result and the ground
truth in style and structure. Here, we compare our results with the AAD-Generator [27], which
uses the ID-fusion path only, and SwapInpaint [26] without post-processing. As shown in
Figure 6, AAD-Generator and SwapInpaint effectively transfer identity information but
can not keep the unoccluded region unchanged.

4.3.3. Identity Space

To explore the influence of ID-Inpainter on occluded face recognition, we compare the
identity distributions among four test datasets, i.e., the ground truth (GT), occluded (Occ.),
CA, and ID-Inpainter. Five classes with 20 samples for each in FaceScub [35] are randomly
picked and are projected to a 256D identity space by ArcFace [2]. After that, we use
t-SNE [36] to reduce the dimensions from 256 to 2 and visualize them after normalization,
as in Figure 7. The highly aggregated features on ground truth are dispersed due to
occlusions. CAs mitigate some dispersion but still fail to tell these classes apart. However,
ID-Inpainter makes the features more cohesive based on CA and distinguishes these classes
with more apparent margins.

4.3.4. More test datasets

We report the verification experiment results for LFW-112, CFP-112, and AgeDB-112
in Table 4. Each dataset is compared with FROM [5], ArcFace [2], and our ID-Inpainter on
different occlusions. These results demonstrate that our approach still works for the test
datasets that vary widely in age and angle.
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Figure 6. Inpainting results from different modulation modules.

Figure 7. Visualization of feature distributions by converting 256D to 2D with t-SNE [36] and
following normalization. Different markers with color represent different classes. Zoomed in for
better view.

Table 4. Results for LFW, CFP-FP, and AgeDB-30. The results are measured by verification accuracy
(%). Bold indicates the best value.

Dataset Occlusion FROM ArcFace ID-Inpainter

LFW
R-block(48) 98.43 95.03 97.58
R-block(64) 97.15 85.28 94.13

R-part 97.53 91.46 96.65

CFP-FP
R-block(48) 55.58 83.43 89.78
R-block(64) 54.12 69.45 77.56

R-part 54.06 79.26 84.40

AgeDB-30
R-block(48) 51.85 79.90 87.87
R-block(64) 51.62 67.71 77.73

R-part 51.26 74.51 84.03
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5. Conclusions

We proposed ID-Inpainter, a new identity-guided face inpainting network for occluded
face recognition. It achieves maximum identity preservation through a GAN-like fusing
network. However, many challenges remain to be tackled when it is applied in real-world
scenarios. For example, we can not use it directly in real occlusions. When we meet
real occlusion datasets, such as RMFRD [37], Bus Violence [38], CrowdSim2 [39], etc., we
must combine it with an automatic occlusion detector. At the same time, the existing face
occlusion detectors do not always perform perfectly to obtain the occlusion masks, which
may negatively impact the subsequent inpainting process. Most occlusion detectors are
built on a segmentation model and trained with synthesized datasets, which perform poorly
in detecting real images. Appropriate improvements in datasets and algorithm strategies
can significantly improve the accuracy of occlusive masks, thus ensuring recognition
performance. For example, they could increase the proportion of real occluded images
in the training dataset or improve the algorithm to obtain the occlusions indirectly based
on detecting the face background. Another obvious challenge is the balance of structure
consistency and identity preservation. A set of appropriate loss weight settings and
the ratio setting of the same-identity pairs in the training dataset are needed to obtain
optimal performance.

Combined with occlusion detectors, our model can play an essential role in various
occluded face recognition scenarios, such as suspect retrieval, access verification, etc. In
the future, we plan to extend our work to blind inpainting, which will rely little on the
occlusion detector and is anticipated to be more effective when applied practically.
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