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Abstract: With the continuous operation of analog circuits, the component degradation problem
gradually comes to the forefront, which may lead to problems, such as circuit performance degrada-
tion, system stability reductions, and signal quality degradation, which could be particularly evident
in increasingly complex electronic systems. At the same time, due to factors, such as continuous
signal transformation, the fluctuation of component parameters, and the nonlinear characteristics
of components, traditional fault localization methods are still facing significant challenges when
dealing with large-scale complex circuit faults. Based on this, this paper proposes a fault-diagnosis
method for analog circuits using the ECWGEO algorithm, an enhanced version of the GEO algo-
rithm, to de-optimize the 1D-CNN with an attention mechanism to handle time–frequency fusion
inputs. Firstly, a typical circuit-quad op-amp dual second-order filter circuit is selected to construct a
fault-simulation model, and Monte Carlo analysis is used to obtain a large number of samples as the
dataset of this study. Secondly, the 1D-CNN network structure is improved for the characteristics
of the analog circuits themselves, and the time–frequency domain fusion input is implemented
before inputting it into the network, while the attention mechanism is introduced into the network.
Thirdly, instead of relying on traditional experience for network structure determination, this paper
adopts a parameter-optimization algorithm for network structure optimization and improves the
GEO algorithm according to the problem characteristics, which enhances the diversity of populations
in the late stage of its search and accelerates the convergence speed. Finally, experiments are designed
to compare the results in different dimensions, and the final proposed structure achieved a 98.93%
classification accuracy, which is better than other methods.

Keywords: analog circuits; fault diagnosis; improved GEO; 1D-CNN; attention mechanism

1. Introduction

Electrical equipment is widely used in nuclear power, the chemical industry, and other
high-security equipment fields, and its working environment is often in high-temperature,
high-pressure, high-humidity, and other harsh environments. As the system continues
to operate, the reliability of its internal circuit board cards decreases due to its operating
environment, which could ultimately lead to unanticipated downtime, increased economic
losses, and even production accidents [1–3]. Furthermore, statistics have shown that
although 80% of the board cards are digital, most failures occur in the analog section [4].
Therefore, the research on analog-circuit-fault-diagnosis methods has become a hot topic,
which is of great importance for improving the reliability and operational efficiency of
high-safety equipment, as well as efficient health management, remote operation, and
digital overhaul [5].
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Analog circuit faults can be classified into hard faults and soft faults based on the
characteristics of the analog circuit at the time of their occurrence [6]. Hard faults are
caused by short circuits or opens in components resulting in sudden changes in the circuit
performance or failures, whereas soft faults are caused by analog circuit components aging
over long periods resulting in parameter values outside of the allowable tolerance ranges.
Hard faults can be analyzed based on the basic mechanism of the circuit to locate the
faulty component and determine the type of fault, and research in this area has been
intensive and has achieved a relatively mature stage [7]. In contrast, soft faults have
infinite possibilities of fault values due to the continuity of component parameters and
the diversity of output signals in the normal state due to the influence of component
tolerances, making fault diagnosis difficult to realize, which is becoming a hot issue in
current research [8–10]. C. Alippi et al. [11] proposed a harmonic analysis-based method
for fault diagnosis in analog electronic circuits, using a “simulation before test” approach.
Through randomized algorithms, the method efficiently creates a fault dictionary and
selects optimal test inputs, applicable to various circuit complexities. Y. Deng et al. [12]
proposed a new method for locating parametric faults in nonlinear analog circuits using
subband decomposition and coherence functions. By analyzing the Volterra series with
wavelet packets and comparing them with fault signatures, the method accurately identifies
and locates faults, as demonstrated by simulations. Although fault-diagnosis methods
based on prior knowledge and mechanism analysis can yield effective results, the increasing
complexity of electronic systems presents new challenges. Analog circuits are inherently
highly nonlinear, with components that have varying tolerances and are susceptible to
noise interference. These characteristics significantly impact the effectiveness of traditional
machine learning methods, which alone are insufficient to meet the requirements of current
analog circuit fault-diagnosis tasks.

The emergence of deep learning has brought new possibilities and perspectives to
analog circuit fault diagnosis, providing new tools and methods to tackle various challenges
in complex electronic systems and analog circuits through its powerful data-processing
and automatic feature-extraction capabilities. H. Jung et al. [13] proposed an algorithm
that employs frequency analysis and artificial intelligence, specifically convolutional neural
networks (CNNs), to detect failures in industrial rotors. By converting rotor fault sounds
into spectrograms and analyzing them with CNNs, the system achieves over 99% accuracy
in distinguishing between normal and faulty states. G. Puvaneswari et al. [7] proposed
a faster regional-convolutional-neural-network-based method for test node selection in
complex analog circuits, optimizing fault dictionary techniques. Simulations consider both
hard and soft faults, and the proposed method achieves a computational time of 0.2 s and
an accuracy rate of 97.4%, outperforming other techniques in various metrics. J. Yang
et al. [14] proposed an attention-weighted graph convolution network (Att-GCN) method
for diagnosing incipient faults in analog circuits, which are challenging due to subtle fault
features. The Att-GCN, combining spatial-domain graph convolution with an improved
self-attention mechanism, extracts comprehensive fault features. A multisample dropout
method prevents overfitting. Testing on various circuits, the method shows improved
accuracy in detecting incipient faults in analog systems.

Due to the characteristics of the soft fault itself, when processing the output signals
of each fault state and normal state, the extracted fault characteristics are prone to over-
lapping, which makes it difficult to locate the location of the faulty component. Therefore,
traditional methods that rely on experience to determine network structure are no longer
applicable. Employing parameter-optimization algorithms to determine the optimal struc-
ture of the model can effectively enhance the feature-extraction capability of the machine
learning model. Y. Li et al. [15] proposed a novel CNN model, named GA-CNN, for hyper-
spectral image (HSI) classification. Tested on four HSI datasets, the GA-CNN surpasses
conventional CNNs in classification accuracy with fewer parameters. W. Lu et al. [16]
proposed a hybrid model named GA-CNN-LSTM to predict daily tourist flow at China’s
Huangshan Scenic Spot, recognizing the challenges posed by the nonlinear characteristics
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of tourist flow data. Compared to other models, like CNN-LSTM, LSTM, CNN, and BPNN,
GA-CNN-LSTM outperforms, with an MAPE improvement of approximately 8.22% over
CNN-LSTM.

In this paper, a novel intelligent fault-diagnosis method is proposed to address the
aforementioned challenges in analog circuit fault diagnosis, as illustrated in Figure 1, with
the main steps being as follows:
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(1) A Pspice model was built for typical analog circuits, and a variety of fault injections
closer to the real situation were carried out, experimental data were obtained using
Monte Carlo analysis, and the training and test sets were divided.

(2) The fault injection method is closer to the actual situation, which leads to the ag-
gravation of the fault features’ overlapping, which brings more challenges to the
fault feature extraction. To solve this problem, the proposed method does not rely
on experience to design the network structure, but selects the GEO algorithm and
improves it according to the characteristics of deep learning network structure design,
adding a chaos operator to solve the problem of decreasing population diversity in
the late stage of optimization, as well as strengthening the search strategy to enhance
the convergence speed and is named ECWGEO; the results show that the optimized
algorithm has a certain advantage in both the convergence speed and the selection of
the final results. Result selection has certain advantages.

(3) To further explore the potential value of the data and enhance the fault-diagnosis
ability of the model, the one-dimensional convolutional algorithm was improved
by adopting the joint input mechanism in the time–frequency domain and adding
the attention mechanism. The results show that the joint input mechanism provides
richer features for the network, the existence of the attention mechanism improves
the feature-selection ability of the model, and the proposed network achieves good
results.

The organization of the paper is as follows. The second part of this thesis describes
the methodology used to construct the model, which includes the GEO and attention
mechanism. The third part explains the proposed method, detailing the improvements
made to both the GEO and network structure. In the fourth part, the process of building
the simulation model and acquiring the dataset is described. The fifth part consists of
evaluating and comparing the constructed models. Finally, the conclusion is presented in
the last part.

2. Related Research

In this section, this article focuses on some algorithmic models and optimization
methods related to the proposed fault-diagnosis model.

2.1. Golden Eagle Optimizer

The Golden Eagle Optimizer (GEO) is a new meta-heuristic algorithm proposed by
Mohammadi-Balani et al. [17]. The algorithm performs a parameter search by simulating
learning the behavior of golden eagle predation in nature. The GEO consists of three parts:
parameter initialization, exploration, and exploitation. Exploration and exploitation are
implemented using attack vectors and cruise vectors [18–20]. Figure 2 is the schematic
diagram of the attack and cruise vectors of the golden eagle in the 2D case.
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2.1.1. Parameter Initialization

The GEO begins with random initialization, like the majority of population-based
optimization algorithms. The population initialization for mongoose candidate solutions
is X in Equation (1), as specified in the first step in the GEO. This population is produced
randomly between the lower and upper bounds of a particular problem.

X =

x1,1 · · · x1,d
... xi,j

...
xn,1 · · · xn,d

, (1)

X is the set of current candidate populations, which are created at random using
Equation (2), Xi,j stands for the position of the jth dimension of the ith population, n stands
for population size, and d stands for the dimension of the problem.

Xi,j = unifrnd(VarMin, VarMax, VarSize), (2)

VarMin and VarMax are the problem’s lower and upper bounds, respectively, and
unifrnd is a random number with a uniform distribution. VarSize refers to the problem’s
dimensions or the decision variables’ size. The best solution obtained in each iteration is
the best solution obtained thus far.

2.1.2. Exploitation and Exploration

The attack process of the golden eagle is described by Equation (3), where Ai is the
attack vector of the ith eagle, X∗

f is the optimal solution currently found by golden eagle f,
and Xi is the current position of golden eagle i.

Ai = X∗
f − Xi, (3)

The cruise vector is the tangent vector to the circle, perpendicular to the attack vector.
To compute the cruise vector, one must first compute the equation of the tangent hyperplane.
Equation (4) represents the scalar form of the hyperplane equation in n-dimensional space.

h1x1 + h2x2 + · · · + xnhn = d ⇒
n

∑
j=1

hjxj = d (4)

where
→
H = [h1, h2, · · · , hn] is the normal vector and the hyperplane in which the cruise

vector is located and can be computed using Equation (5).

n

∑
j=1

ajxj =
n

∑
j=1

at
j x

∗
j (5)

where
→
Ai = [a1, a2, · · · , an] is the attack vector, X = [x1, x2, · · · , xn], and X∗ =

[
x∗1 , x∗2 , · · · , x∗n

]
is the position of the selected predator. In GEO, the index of the selected fixed vector is
denoted by y. Meanwhile, the remaining n − 1 free vectors are assigned random values.
The value of the fixed variable is then determined using Equation (6).

cy =
d−∑ j,j ̸=ybj

by
(6)

among others, cy is the yth element of ci the yth element of bj, and by are the jth and
yth elements of Ai the jth and yth elements of D. D is the value of the right-hand side of
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Equation (3). Once the fixed variables of the cruise hyperplane are established, the cruise
vector is defined by Equation (7).

Ci =

(
c1 = random , c2 = random , . . . , cy =

d − ∑ j,j ̸=ybj

by
, . . . , cn = random

)
, (7)

2.1.3. Move to a New Position

The position update of the golden eagle is determined based on the attacking behavior
and the cruising behavior. The step size of the two behaviors of the ith golden eagle in
iteration t is denoted as Equation (8), where r1 and r2 are hyperparameters in the range of 0
to 1, and the pt

a and pt
c are calculated using Equations (9) and (10), which are the coefficients

of the attack vector and the coefficients of the cruise vector in iteration t. T is the maximum
number of iterations. ∥ Ai ∥ and ∥ Ci ∥ are the Euclidean norms of the attack vector and
the cruise vector, computed based on Equations (11) and (12).

∆xt
i = r1pt

a
Ai

∥ Ai ∥
+ r2pt

c
Ci

∥ Ci ∥
(8)

pt
a = p0

a +
t
T

∣∣∣pT
a − p0

a

∣∣∣ (9)

pt
c = p0

c −
t
T

∣∣∣pT
c − p0

c

∣∣∣ (10)

∥ Ai ∥ =

√√√√ n

∑
j=1

a2
j (11)

∥ Ci ∥ =

√√√√ n

∑
j=1

c2
j , (12)

As Equation (13) shows, the position of golden eagle i in round t + 1 is its position in
round t plus the step vector in round t.

xt+1
i = xt

i + ∆xt
i (13)

2.2. Related Works on the GEO

In response to the evolving needs and challenges in the field of the parameter search,
a substantial body of work has been dedicated to enhancing the standard GEO algorithm.
This section delves into the pivotal contributions and methodologies that have shaped the
current landscape of GEO algorithm improvements.

Fan et al. [21] have enhanced the position update mechanism of the traditional GEO.
Their improvement addresses the slowing down of the algorithm’s convergence speed
when nearing the global optimum and its inefficiency in multimodal functions. They
introduced a new mechanism called “Stooping” behavior. This approach draws inspiration
from the way eagles dive rapidly and powerfully during hunting. It simulates this stooping
action in the algorithm’s position-updating phase. By incorporating this behavior into
a mathematical model, the strategy effectively speeds up the algorithm’s convergence
when it is close to finding the global optimum. It also ensures that the algorithm retains
its ability to explore effectively. Under this new strategy, the algorithm switches from its
traditional update mode to the Stooping mode. This switch occurs when certain conditions
are fulfilled, such as the algorithm getting close to its prey or reaching a predetermined
number of iterations.

Panneerselvam et al. [22] focused on enhancing the global search capabilities of algo-
rithms. They identified a key limitation in the traditional Golden Eagle Algorithm: a lack
of flexibility and adaptability in exploring and exploiting the search space. This limitation
resulted in reduced efficiency in finding global optima. To address this, they made improve-
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ments to the GEO. These improvements involved introducing new adaptive features. These
features significantly enhance the algorithm’s efficiency in navigating unknown search
spaces. The adaptive nature of these features allows the algorithm to dynamically adjust
its strategies. This adjustment is based on the current state of the search. It leads to an
improved balance between exploration, which is the global search, and exploitation, which
is the local search.

Deng et al. [23] made significant improvements to the traditional GEO algorithm.
In the process of population initialization, they introduced the Arnold Chaotic Map to
generate a more diversified initial position, thereby enhancing the global search capability
of the algorithm. To better balance the abilities of exploration and exploitation, a nonlinear
convex decreasing weight was incorporated. This adjustment enables the algorithm to
modify its search behavior according to different phases. Additionally, they revised the
position update formula of the GEO, integrating a global optimization strategy. In each
iteration, the best-performing individual is selected for the interaction, thus improving the
algorithm’s efficiency in solving complex optimization problems.

In response to specific needs across different application domains of the GEO algo-
rithm, numerous researchers have implemented targeted modifications and optimizations,
resulting in enhanced performance in various aspects. Given the characteristics of the
optimization problem addressed in this paper, we aim to increase the convergence speed
of the algorithm and seek solutions that are more aptly suited to these issues. Detailed
descriptions of these improvements and their impacts on optimization performance will be
elaborated on in the subsequent sections.

2.3. Attention Mechanism

In a one-dimensional convolutional neural network (1D-CNN), each feature channel is
usually considered to be of equal importance, although the importance of the information
they carry may differ. This equal treatment of channel importance lacks rationality. There-
fore, the SEnet proposed by Hu et al. [24] provides a way to adaptively recalibrate channel
feature responses by explicitly modeling the dependencies between channels. Each feature
channel can be regarded as a specialized detector in this architecture, and the importance
of each channel is evaluated through compression and excitation operations, which enable
an explicit correlation of the relationships between different feature channels. Figure 3 is a
schematic representation of the attention mechanism.
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First, the input tensor is compressed using global average pooling and global maxi-
mum pooling; see Equations (14) and (15). N is the length of the single-channel data, and
the Aavg and xi are the compressed eigenvalues and the data of the ith channel [25].

Aavg =
1
N

N

∑
i=1

xi (14)

Amax = maxN
i=1xi, (15)

Subsequently, both Aavg and Amax are fed into the fully connected layer FC for pro-
cessing, e.g., Equations (16) and (17).

Wavg = FC2
(
FC1

(
Aavg

))
(16)

Wmax = FC4(FC3(Amax )), (17)

The two weights obtained are summed and passed through a sigmoid activation
function, which is subsequently multiplied by the original input tensor to obtain the tensor
Output, which is then fed into the next layer of the model [26].

Wcombined = Wavg + Wmax (18)

W = sigmoid(Wcombined ) (19)

Output = W ⊙ x (20)

3. The Proposed Method

In this section, we will detail how innovative modifications have been made to the
GEO algorithm, as well as the CNN algorithm.

3.1. Enhanced Chaos-Weighted GEO (ECWGEO)

The traditional GEO suffers from two main shortcomings: a lack of population di-
versity and slow convergence. These problems are particularly evident in application
scenarios used for network structure optimization in the pre-training phase. A lack of pop-
ulation diversity directly affects the optimization of the network structure, which reduces
the accuracy of the fault diagnosis model, while the low convergence speed significantly
increases the computational burden. To solve the above problems, the ECWGEO incorpo-
rates chaos operators and enhanced predation strategies. Figure 4 is the flow chart of the
ECWGEO algorithm.

In the standard Golden Eagle Optimization (GEO) algorithm, the positions of golden
eagles are updated by simulating their natural behaviors (e.g., observing, chasing, and
feeding). As the number of iterations increases, the golden eagles may cluster around one
or a few locally optimal solutions, which reduces the population diversity and hence the
ability of the algorithm to jump out of the local optimal solutions; and since the update
formula depends on the distance when most golden eagles are close to the globally optimal
solution, the search space will become finite, resulting in the algorithm having difficulty in
finding a better solution again. Inspired by the literature [27–29], the article introduces a
chaotic weighting factor that generates random and unordered values between −1 and 1,
and it is defined as Equation (21). This chaotic weight operator is introduced to the process
of initialization of the golden eagle population and the process of the global parameter
search. Equation (22) describes the process of parameter initialization; for each golden
eagle i and each dimension j, the initial position Xij can be updated by introducing the
chaos operator mapij Equation (22) after the re-updating of the equation. The new position
xt+1 is updated using Equation (23).

mapt+1 = sin
(

c × π

mapt

)
, map1 = 0.7 (21)
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Xij = VarMin + (VarMax − VarMin)×
mapij+1

2
(22)

xt+1 = xt + mapt∆xt
i , (23)Sensors 2024, 24, x FOR PEER REVIEW 9 of 20 
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Figure 5 demonstrates that the chaos operator has strong fluctuation and randomness.
In the image, the stars represent the values of the chaos operator ‘mapt’ at iteration ‘t’.
The use of its nonlinear property for position initialization can significantly improve the
randomness of the initial population. At the same time, as a perturbation factor for position
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updating, it can increase the diversity of the population at the later stage of iteration, so
that the population does not easily fall into the local optimum.
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In the standard GEO, the local search is mainly based on updating the position
based on the distance between each golden eagle and the current optimal solution. This
mechanism could be effective for the global search in the initial stages. However, it can
be particularly detrimental when applied to computationally complex scenarios, such as
deep learning structure optimization requiring fast convergence, which is a result of the
slow convergence rate caused by the greatly increasing amount of computation. To address
this challenge, this paper draws on the ideas of the literature [30,31] and designs a new
position update formula Equation (24), which strengthens the local search capability of the
algorithm and significantly enhances the convergence speed of the algorithm.

X = Gbest + mu × ((Varmax − Varmin)× rand + Varmin)× Dir (24)

Dir = sgn(rand − 0.5) (25)

mu = γ× e(−(α× t
T )

β
), (26)

where Dir controls the direction of search, mu is a nonlinear parameter, t is the current
number of generations, T is the maximum number of search generations, and γ, α, and β

are three constants used to control the algorithm exploration and exploitation capabil-
ities, and in this study, after empirical testing, we set the values of the parameters as
γ = 3, α = 3.5, and β = 2.5.

3.2. Attention Time–Frequency Convolution Neural Network (ATFCNN)

To solve the problem of fault feature aliasing due to the characteristics of analog
circuits themselves, such as high nonlinearization, component tolerance, and susceptibility
to noise interference, this article makes some improvements to the CNN and proposes the
ATFCNN algorithm.

The overall ATFCNN is shown in Figure 6. The algorithm consists of a time–frequency
conversion layer, a convolutional layer, a pooling layer, a channel attention layer, a fully
connected layer, and a dropout layer. Before the convolution operation, the time-domain
signal is preprocessed, the frequency-domain features are obtained by FFT, and then, the
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time–frequency input signal obtained based on fusion with the time-domain signal can
contain richer features, which effectively enriches the information captured by the model,
and the attention mechanism is added to the subsequent network structure, which makes
the more important features have greater weight and the secondary information have a
lower weight, to improve the classification accuracy.
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are automatically determined based on a parameter-optimization algorithm. For the se-
lection of the activation function, we chose ReLU which ensures effective gradient propa-
gation of the network in the deep layers, thus preventing the problem of gradient vanish-
ing and accelerating the convergence of the model, due to its linear non-saturation. 
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The raw voltage signal is preprocessed before it is fed into the convolutional part.
The input voltage signal is subjected to a Fast Fourier Transform to extract key features
in the frequency domain, capturing periodicity and other non-temporal properties of
the voltage signal. The original time-domain signal is then spliced with its frequency-
domain representation to generate a fused feature layer, which serves as the input to the
convolutional layer.

The convolutional part consists of two consecutive convolutions and a maximum
pooling operation. Key parameters, such as the size and number of convolution kernels, are
automatically determined based on a parameter-optimization algorithm. For the selection
of the activation function, we chose ReLU which ensures effective gradient propagation
of the network in the deep layers, thus preventing the problem of gradient vanishing and
accelerating the convergence of the model, due to its linear non-saturation.

The pooled feature maps are fed into the attention mechanism layer for processing
and subsequently fed into a fully connected layer, which integrates these features into a
final output for fault diagnosis. The central goal of this book is to highlight the features
that are most useful for fault diagnosis by dynamically assigning different weights to each
channel and to reduce the influence of other less relevant features.

4. Experiment

To verify the effectiveness of the proposed ECWGEO-ATFCNN for solving analog
circuit troubleshooting, this paper adopts the four-op-amp biquadratic filter circuit, a highly
common and representative circuit in the field of analog circuit fault diagnosis [14,32], as
shown in Figure 7.
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Figure 7. Schematic for the four-op-amp biquadratic filter circuit.

In the daily use of the circuit board, the capacitor may be degraded by the dielectrics
after many charge/discharge cycles, resulting in a decrease in the capacitance value and a
decrease in resistance due to soldering. The capacitance value decreases while the resistance
may increase due to poor soldering or oxidation of the soldering points, resulting in an
overall increase in the resistance value. In addition, the prolonged operating tempera-
ture and humidity, mechanical stress, or external environmental factors may also lead to
changes in component parameters. Therefore, the sensitivity analysis of the circuit leads
to the selection of C1, C2, R1, R2, R3, and R4 as the faulty components. Accurate fault
simulations and injections based on actual board operating scenarios have been performed,
as Table 1 shows.

Table 1. Fault classes for the four-op-amp biquadratic high-pass filter.

Fault Name Incipient Fault Class Nominal Value Fault Value

F0 NF / /
F1 C1 5 nF 3 nF
F2 C2 5 nF 3 nF
F3 R1 6.2 kΩ 7.44 kΩ
F4 R2 6.2 kΩ 7.44 kΩ
F5 R3 6.2 kΩ 7.44 kΩ
F6 R4 1.6 kΩ 1.92 kΩ

The flow of the proposed ECWGEO-ATFCNN model is shown in Figure 8.
Simulation experiments for the former circuit were completed in PSPICE(16.6). The

tolerance of resistance and capacitance were set to 5% and 10%. The circuit was given a
10 us 5 V square wave excitation signal, the sampling time was set to 1 ms, the sampling
interval was set to 1 us, and 200 Monte Carlo analyses were performed for each fault
category. To avoid biased models due to data imbalance, 80% of the data was randomly
selected for training and 20% of the data was randomly selected for testing for each category.
The data were randomly selected for testing.
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Figure 8. The flowchart of the proposed method.

After completing the training set partitioning, the model enters the pre-training phase,
and the main parameters of ECWGEO are set as follows: the number of filters in the first
convolutional layer (16–64), the number of filters in the second convolutional layer (64–256),
the size of the convolutional kernel (2–8), the learning rate (0.0001–0.1) and dropout rate
(0–0.5), and the population size is set to 30 and maximum iteration is set to 100. Twenty
epochs are used for model training, the batch size is 32, and the fitness function is set as
shown in Equation (27).

Fit =
1
N

N

∑
p=1

√(
Ppo1 − Tpo1

)2
+

(
Ppo2 − Tpo2

)2
+ . . .+

(
Ppo7 − Tpo7

)2, (27)

In the above equation, M represents the number of samples; Ppox and Tpox represent
the predicted output value and expected output value, respectively, of the pth sample in
the 1, 2· · · 7 neurons of the output layer.
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After the pre-training completes the network structure optimization, the model enters
the formal training phase; the model training uses 100 epochs, the batch size is set to 32,
and the network structure takes the optimal structure found based on the pre-training.

5. Result

The results of the experiments, as well as the comparisons, are shown and discussed
in detail in this section, which contains four parts: parameter optimization validation,
network structure validation, small sample validation, and a comparison of the rest of
the algorithms, which demonstrate the effectiveness of the proposed algorithms in the
comparison with each other from multiple dimensions.

5.1. Parameter Optimization Validation

In this section, the main focus will be to verify the effectiveness of the proposed
parameter-optimization algorithm.

Figure 9 shows the process of network structure optimization in the pre-training
phase of the GEO and ECWGEO. It can be seen that compared with the traditional GEO,
which completes convergence in 55 generations, the ECWGEO completes convergence
23 generations earlier, and the value of the fitness is reduced by about 36.63%, which can
be reflected by the fact that the addition of the enhanced predation strategy makes the
algorithm explore the local solution space in a more in-depth and efficient manner, which
speeds up the algorithm’s convergence speed and finds a better solution. The results of
parameter optimization are shown inTable 2. To verify the effectiveness, we also compared
it with the ATFCNN model with empirical parameters set.
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Table 2. Parameter configurations for different models.

Filters in the First
Convolutional Layer

Filters in the Second
Convolutional Layer Kernel Size Learning Rate Dropout Rate

ATFCNN 64 128 5 0.01 0.4
GEO-ATFCNN 61 112 3 0.007011 0.0739

ECWGEO-ATFCNN 40 137 2 0.008407 0.3313

Figure 10 shows the classification effect under different network structures. The accu-
racy of ATFCNN with (a) as the standard parameter is only 91.07%, and the classification
result of ATFCNN with GEO optimization is shown in (b), which obtains a certain effect
enhancement and reaches an accuracy of 93.21%. After ECWGEO optimization a very good
classification result is achieved, as shown in (c), reaching a 98.93% correct classification
rate, with only three sets of data being misclassified. This is because the ECWGEO has a
more efficient and accurate parameter search capability and successfully locates a network
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structure that is more suitable for this task. This structure can dig deeper into the feature
differences between categories, thus achieving a significant improvement in classification
accuracy.
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5.2. Network Structure Validation

In this section, the superiority of the proposed network structure will be verified.
To verify the superiority of the proposed network structure, the proposed method is

compared with CNN and the time–frequency domain CNN. As Figure 11 shows, in the
early stages of training, (b) and (c) converge much faster than (a) in the initial training phase,
which proves that the time–frequency domain splicing provides the network with rich
information and helps it capture the data characteristics more easily. Comparing the average
loss, (c) shows a decrease in 42.54% compared to (b), which is attributed to the addition of
the attention mechanism, which enables the model to process the key information more
accurately and to visualize the effect of the attention mechanism; Figure 12 is a visualization
of the t-SNE dimensionality reduction of the layers before and after the attention mechanism
layer, and it can be seen that the addition of the attention mechanism has significantly
improved the situation of multi-category aliasing, and only category 6, category 2, and
category 0 are still aliased. Figure 13 shows the confusion matrices of the three network
structures, and the accuracy of this method is as high as 98.93% compared to 88.21% for
1D-CNN and 94.64% for the time–frequency domain CNN.
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5.3. Small Sample Validation

This section aims to verify the performance of the proposed fault diagnosis model
in small-sample scenarios. This further demonstrates the robustness and efficiency of the
method. The model is particularly advantageous in practical applications where fault
data resources are limited. Figure 14 shows the performance of the network when the
test set is unchanged and the training set is changed to 25%, 50%, 75%, and 100% of the
original samples. When the amount of data is changed to 25%, the accuracy of the CNN
model is 60.36%, TFCNN reaches 85.71%, and the method proposed in this paper reaches
93.13%. This indicates that CNN makes it difficult to capture key features when facing
limited data, while the splicing of time–frequency domain data and the addition of the
attention mechanism significantly enhance the feature-extraction ability to accurately locate
and process the key features, thus obtaining a higher accuracy rate under the same data
conditions. As the amount of data increases, the accuracy of all three models improves,
with a significant growth rate for the CNN and a slow growth rate for the remaining two
models, and when the amount of data exceeds 75%, the growth of accuracy for all three
models becomes slow, which means that with the support of enough data, the models begin
to approach the upper limit of performance in that state, but the method in this paper still
maintains a significant advantage.
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5.4. Comparison of the Rest of the Algorithms

To further verify the effectiveness of the ECWGEO-ATFCNN fault diagnosis model,
this paper selects GEO, particle swarm algorithm [33] (PSO), quantum particle swarm algo-
rithm [34] (QPSO), and blue whale optimization algorithm [35] (WOA) for the comparison.
In the pre-training stage for adaptation evaluation, 20 epochs are trained, the algorithm is
trained for 100 iterations, and the network adopts the adaptation result as the evaluation
index. Since the algorithm has a certain degree of randomness, this paper conducted three
experimental validations, and the results of the best, worst, and average accuracy are listed.
Table 3 shows the performance of each arithmetic optimization algorithm; the ECWGEO
algorithm performs the best in all the tests, with a best fitness of 0.12925, and its average and
worst fitness is better than the other algorithms. QPSO performs relatively poorly with the
lowest fitness of 0.31562. The other three algorithms perform in between, while ECWGEO’s
fitness remains relatively stable in all three runs, with QPSO’s variation being the largest.
In summary, the ECWGEO shows the best performance in the task of network-structure
optimization.

Table 3. Performances of different parameter-optimization algorithms.

Algorithm ECWGEO GEO PSO QPSO WOA

Best 0.12925 0.20311 0.17731 0.21147 0.20938
Mean 0.13051 0.22158 0.22573 0.24894 0.22715
Worst 0.13177 0.24004 0.24400 0.31562 0.24389

To further validate the effectiveness of the ECWGEO-ATFCNN fault-diagnosis model,
this paper selected ATFCNN, CNN, Back-Propagation neural network [36] (BPNN), and
Recurrent neural network [37] (RNN) algorithms for the comparison. The algorithms
were trained for 100 epochs, and each algorithm was trained 35 times. Table 4 shows that
ATFCNN is ahead of the other three algorithms. It achieves the best performance of 98.93%,
and none of the other three algorithms’ best performance exceeds 91%. It is significantly
better than the other three algorithms. The best classification accuracy of BPNN exceeds
that of CNN and RNN, but its average and worst performance is not much different from
the other algorithms. The accuracy of RNN and CNN is similar, but RNN has a slight
advantage in the worst case. The performance fluctuation range of ATFCNN is 1.07%, while
the fluctuation ranges of RNN, CNN, and BPNN are 2.5%, 1.42%, and 5.35%, respectively,
indicating that ATFCNN is relatively more stable.
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Table 4. Performance of different models.

Algorithm ATFCNN CNN BPNN RNN

Best 98.93% 88.21% 90.71% 88.57%
Mean 98.45% 87.38% 87.98% 87.02%
Worst 97.86% 86.79% 85.36% 86.07%

6. Conclusions

In this paper, an analog-circuit-fault-diagnosis method based on ECWGEO-ATFCNN
is proposed, which takes into account the signal time–frequency domain feature infor-
mation and achieves the network structure preference and the circuit signal fault state
identification through the improved GEO algorithm and 1D-CNN fusion of the channel
attention mechanism, and the main conclusions are as follows:

1. In this study, an improved GEO algorithm is proposed to optimize the network
parameters in the pre-training stage of the 1D-CNN. The algorithm overcomes the
problem of insufficient population diversity in the late iteration of the traditional GEO
algorithm, and the chaos operator is used as a perturbation factor to improve the
population diversity. At the same time, to accelerate the convergence speed of the
algorithm, a strengthened search strategy is added based on the above for position
updating, which effectively improves the convergence speed of the algorithm and
reduces the amount of computation.

2. In this study, an improved 1D-CNN network structure incorporating the channel
attention mechanism is proposed. Considering that analog circuit signals contain
rich feature information in both time and frequency domains, the network fuses
time-domain signals and frequency-domain signals as network inputs. At the same
time, due to the different importance of information carried by different channels
in the 1D-CNN network, this paper introduces the channel attention mechanism to
dynamically fuse multi-channel feature information. The algorithm can extract fault
feature information more effectively and comprehensively and improve the network
diagnosis performance.

3. This paper takes the widely used four-op-amp biquadratic filter circuit in analog
circuit fault diagnosis as the research object. It makes a reasoned selection of fault
values and performs fault injection based on actual circuit component fault patterns,
enhancing the practical utility of the fault-diagnosis method.

4. To verify the effectiveness of the ECWGEO-ATFCNN algorithm, this paper designs
the verification experiments from the aspects of parameter optimization, the network
structure, small samples, and an algorithm comparison, respectively. The experiments
show that the algorithm proposed in this paper has a faster convergence speed of
parameter optimization, has a higher fault-diagnosis accuracy, is more sensitive to
small samples, and achieves the best fault-diagnosis effect compared to the traditional
algorithm, realizing a 98.93% correct fault-identification rate.
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