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Abstract: With the deterioration of bridge performance and ever−increasing amounts of traffic, 

bridge safety is becoming a concern for the engineering community. A method that can assess a 

bridge’s condition in real time is urgently needed. The main factors that hinder bridge condition 

assessment are the uncertain operational environments. A new moving principal component anal-

ysis (MPCA)−based method is developed for structural damage detection in bridges in operational 

environments in this paper. Two main operational environmental factors, the environmental tem-

perature and traffic loads, are studied in the assessment process to verify the robustness and prac-

ticality of the proposed method. The numerical and experimental results show that the proposed 

method is effective and accurate in assessing the bridge’s condition in operational environments. 
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1. Introduction 

Bridges are key components of transportation infrastructure that are crucial for a so-

ciety to function well. They are under increasing pressure from continuing deterioration 

due to ageing and operational and environmental loading as a result of population 

growth and climate change. The real−time assessment of a bridge’s status is urgently re-

quired for structural safety. Structural health monitoring (SHM) provides a practical tool 

to assess and predict the structural performance of bridges. SHM is a multi−disciplinary 

field involving data collection using sensor networks and the diagnosis of structural 

health based on the collected data [1]. The collected data are processed to extract features 

that can be analysed through model−based or data−driven techniques to enhance decision 

making for structural condition assessment [2–4]. The key factors that hinder a reliable 

bridge condition assessment are the various operational and environmental factors, espe-

cially traffic excitation and environmental temperature [5]. Bridge condition assessment 

under operational environments has drawn enormous attention from researchers and 

practical engineers [6]. 

There are two main research trends used to deal with uncertain operational environ-

ments, e.g., elimination and utilisation. Different methods have been developed to sepa-

rate the temperature−induced response from the structural response and to predict the 

temperature−induced response [7]. Modal parameters are widely used for structural dam-

age detection. The change in modal parameters due to temperature variations is differen-

tiated and eliminated during the process of damage detection [8,9]. An artificial neural 

network model for the temperature−induced response is trained using a large amount of 

data, and the model is used to compensate for the temperature effect [10,11]. The Kalman 

filter is adopted to eliminate the change due to environmental variations [12]. A two−stage 
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procedure based on adaptive Mahalanobis−squared distance and one−class K−nearest 

neighbours (KNN) is used to remove the environmental variability [13]. A long period of 

monitoring data (e.g., for months) is used to construct the prediction model of structural 

response under operational environments for structural damage detection [14,15]. The 

above data−driven methods under changing temperature conditions reveal great poten-

tial for practical use with high robustness. These methods can identify, eliminate, or utilise 

the influence of the environmental temperature on the bridge’s response. The biggest ob-

stacle to the performance of these methods comes from the availability of the data for all 

possible operational environments in bridge health monitoring. The performance of the 

regression models or neural networks has been affected by high−quality, long−term mon-

itoring data. 

The utilisation, known as the ambient vibration survey (AVS), aims to use dynamic 

responses under natural excitations, such as traffic loads, wind, and micro−tremors [16]. 

The AVS is an economical, convenient, and time−saving approach as it does not require a 

special excitation on structures. For bridge engineering, the vehicle–bridge interaction is 

a common problem that will affect the accuracy of dynamic analysis. A great effort has 

been made to fully understand its mechanism for practical applications [17]. Based on 

these studies, the bridge information could be extracted from the traffic−induced response 

using the vehicle–bridge interaction model. Recently, moving−load−driven bridge dam-

age detection has drawn much attention. The moving vehicle could be an exciter and a 

moving sensor for real−time monitoring of the bridge [18,19]. The duration of a vehicle 

passing the bridge is short, and the change due to the temperature effect is relatively small 

within this short time period. The traditional moving−load−driven methods have good 

interpretability, as these methods are based on the accurate vehicle–bridge interaction 

model [20]. These methods are suitable for controlled environmental conditions, but it is 

laborious and time consuming to ensure their performances due to their limited anti−noise 

ability [21]. 

The principal component analysis (PCA) is one of most widely used data−driven 

methods. It is based on an orthogonal decomposition of the covariance matrix of the pro-

cess variables along the direction that explains the maximum variation in the data. The 

PCA has been used to separate the structural damage features from those of the environ-

mental changes, and then the environmental effects are eliminated during the process of 

bridge condition assessment [22]. The PCA has been used to reduce the size of feature 

vectors [23], eliminate the operational and environmental effects [24,25], and reduce the 

noise effect [26] for structural damage detection. With the traditional PCA, the whole time 

series of measured responses is analysed, and it cannot reflect the instant status of the 

structure [27]. Also, the computational cost of the covariance matrix will be increased with 

the number of measurements and the length of the time series [28]. Posenato et al. [29] 

proposed a data−driven method named moving principal component analysis (MPCA) 

for long−term structural monitoring. MPCA calculates the covariance matrix in a 

fixed−length window. Lanata et al. [28] used MPCA to capture the correlation in each 

small cluster obtained using the K−means method for structural damage detection. Cava-

das et al. [30] compared the performance of structural damage detection using MPCA and 

robust regression analysis (RRA). Zhu et al. [31] proposed a temperature−driven damage 

detection approach for bridges considering the temperature variations and traffic loads 

using MPCA. Jin et al. [32] compared the performance of the modal−analysis−based dam-

age detection method under changing temperatures using PCA or MPCA. The results re-

vealed that MPCA has more anti−noise ability with lower false alarm rates than PCA. 

Zhang et al. [33] deployed MPCA for damage detection on a rigid frame bridge under 

seasonal temperature variations with space and time windows. Jin and Jung [34] com-

pared modified MPCA with the static linear principal component analysis (SPCA) and 

incremental linear principal component analysis (IPCA) on a Z24 bridge dataset using 

k−means clustering with the Linde–Buzo–Gray algorithm (KMC−LBG) and Bayesian in-

formation criterion (BIC) to choose the window size of MPCA. Nie et al. [27] developed a 
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narrow moving window for MPCA and successfully detected the real−time change of an 

actual suspension bridge. The window’s size is decided based on the cumulative contri-

bution ratio with a convergent spectrum. As stated above, MPCA has a great potential for 

early warning and damage detection as it can reveal the data’s inherent correlation and 

structure in detail. The length of the moving window significantly affects the effectiveness 

of the MPCA−based method. How to select the appropriate window length is still a big 

challenge. The loading forms and the causes of bridge anomalies (e.g., damage) are often 

inconsistent. This inconsistency means the results of MPCA are not interpretable.  

This paper aims to develop a new method for bridge condition assessment under 

operational environments. A new damage−sensitive feature (DSF) based on moving prin-

cipal component analysis (MPCA) has been proposed. Two main environmental factors, 

e.g., the temperature variations and traffic loads, are considered. The numerical and ex-

perimental studies have been conducted to verify the performance of the proposed 

method. In the numerical study, the vehicle–bridge interaction system is modelled as a 

simply supported Euler–Bernoulli concrete beam subjected to a moving load. The bridge 

damage is simulated using a breathing crack. The temperature influence is considered as 

the variation in the beam’s parameters and the thermal stress induced by the vertical tem-

perature difference. The results show that the vehicle’s mass and the temperature do not 

have an effect on the accuracy of structural damage identification. The changing pattern 

of the proposed DSF reflects different damage locations. The experimental study of a 

T−section reinforced concrete beam subjected to moving vehicles with different weights 

has been conducted in the laboratory. A new type of window for MPCA is proposed to 

filter out the effect of measurement noise and vehicle–bridge interaction. The results show 

that the proposed method is robust and accurate in detecting the crack damage of the 

bridge under operational environments.  

2. Theory 

PCA and MPCA are briefly introduced in this section. Detailed information can be 

found in the textbook [35]. Then, the main target for current, existing data processing al-

gorithms is discussed.  

2.1. Principal Component Analysis (PCA) 

As the foundation of MPCA, PCA is a statistical learning method that decomposes 

the original data into linearly uncorrelated vectors, principal components (PCs), accord-

ing to the maximum variance’s direction. At the same time, the new coordinate axis’s di-

rection should be orthogonal to all previous coordinate axes’ directions. This transfor-

mation ensures that the selection of the coordinate axis’s direction can make each PC con-

tain as much information as possible. It is widely used in data compression and feature 

extraction. 

In this study, the singular value decomposition (SVD) method is adopted for PCA. 

Considering a data (signal) matrix 𝐗𝑚×𝑛 with the k−order PCs, suppose the matrix’s rank 

is r (that is, greater than or equal to ki). The matrix 𝐗𝑚×𝑛 can be factorised according to 

truncated SVD as 

𝐗𝑚×𝑛 ≈ 𝐔𝑘𝚺𝑘𝐕𝑘
𝑇         (1) 

where 𝐔𝑘 is the 𝑚 × 𝑘 matrix, 𝐕𝑘 is the 𝑛 × 𝑘 matrix, and 𝚺𝑘 is the diagonal matrix of 

the order 𝑘. 𝐔𝑘  and 𝐕𝑘  are, respectively, taken from the first 𝑘 columns of matrices 

𝐔, 𝐕, which are singular vectors of the matrix 𝐗𝑚×𝑛. 𝚺𝑘 is obtained from the first 𝑘 diag-

onal elements of matrix 𝚺, which is the singular value matrix of the matrix 𝐗𝑚×𝑛. 

Before using PCA, the data in the matrix 𝐗𝑚×𝑛 need to be standardised to obtain the 

matrix 𝐗′ as 

𝑥𝑖𝑗
∗ =

𝑥𝑖𝑗−𝑥𝑖

√𝑠𝑖𝑖
  (2) 
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where 𝑥𝑖 = 
1

𝑛
∑ 𝑥𝑖𝑗
n
j=1 , 𝑖 = 1,2, . . . , 𝑚 and 𝑠𝑖𝑖 =

1

𝑛−1
∑ (𝑥𝑖𝑗 − 𝑥𝑖)

2n
j=1 , 𝑖 = 1,2, . . . , 𝑚. 𝑥𝑖𝑗  is the 

𝐗𝑚×𝑛’s element at row 𝑖 and column 𝑗. 𝑥𝑖𝑗
∗  is the standardised matrix 𝐗′’s element at 

row 𝑖 and column 𝑗. 𝑥𝑖 is the average value in row 𝑖 of the matrix 𝐗′. 

After obtaining the standardised data matrix 𝐗′, the traditional PCA uses the eigen-

value decomposition of the 𝐗′’s correlation matrix or covariance matrix to calculate the 

principal component matrix. According to the characteristic of SVD, the principal compo-

nent matrix can be obtained:  

𝐗″ =  
1

√𝑛−1
𝐗′𝑇   (3) 

𝐗″ =   𝐔𝚺𝐕𝑇  (4) 

𝐘𝑘×𝑛 = 𝐕
𝑇𝐗′  (5) 

where 𝐗″ is constructed for the truncated SVD. The row of 𝐕𝑇 is the eigenvector of the 

𝐗′’s covariance matrix. 𝐘𝑘×𝑛 is the principal component or score matrix. 𝐕𝑇 is the weight 

or coefficient matrix. 

2.2. Moving Principal Component Analysis (MPCA) 

For time series signals, the analysis within a sliding window can better excavate the 

features of the data. MPCA is a method that deploys PCA on the signal truncated into the 

window length instead of the full signal. The window is like a filter that slides and de-

composes the original signals along the time axis to different PCs. These PCs obtained 

from MPCA have more significant features than the PCs obtained from PCA. Likewise, 

the window expands the eigenvalues into a series of changing curves along the time axis. 

These curves can better reflect the inner variations of the data over time. The main differ-

ence between MPCA and PCA is that Equation (1) in MPCA is calculated over the signal 

of the window length, not over the entire signal. When the window moves from the initial 

time to the end, the eigenvalue vector and the PCs are calculated simultaneously at each 

corresponding time 𝑡 and saved consecutively in the eigenvalue matrix and the principal 

component matrix, respectively, according to the order of the time axis. The coordinate of 

the eigenvalue vector and the PCs obtained at each time 𝑡 from Equations (4) and (5) cor-

responds to the location of the window’s centre. t. The window moves along the time axis 

step by step from beginning to end. In each movement PCA is performed on the data 

segments intercepted within the window. The data obtained by performing PCA at each 

movement only retains the single data point at the centre of the window. This data point 

is stored on the time axis corresponding to the position of the window coordinates. These 

data points obtained by each window movement are concatenated one by one on the time 

axis to form the eigenvalue vectors and PCs. Figure 1 shows the schema of MPCA. 
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Figure 1. The schema of MPCA. 

3. Numerical Study 

In this section, the vehicle–bridge interaction model with the temperature change and 

the crack damage is first built. Dynamic responses of the bridge with different damage 

scenarios subject to a moving vehicle are simulated. The dynamic responses are analysed 

using PCA and MPCA for comparison. Then, the damage−sensitive feature is constructed 

based on the analysis. The influence of the crack’s location and the breathing crack mech-

anism on the damage−sensitive feature is discussed. 

3.1. Vehicle–Bridge Interaction Model 

3.1.1. Finite Element Model of a Beam Bridge 

The bridge is discretised as 𝑁 − 1 beam elements, and 𝑁 is the number of nodes. 

The element mass matrix and stiffness matrix of a beam element can be obtained as 

𝐌𝑒 =
𝜌𝐴𝑙

420
[

156 22𝑙 54 −13𝑙
22𝑙 4𝑙2 13𝑙 −3𝑙2

54 13𝑙 156 −22𝑙
−13𝑙 −3𝑙2 −22𝑙 4𝑙2

]  𝐊𝑒 =
𝐸𝐼

𝑙3
[

12 6𝑙 −12 6𝑙
6𝑙 4𝑙2 −6𝑙 2𝑙2

−12 −6𝑙 12 −6𝑙
6𝑙 2𝑙2 −6𝑙 4𝑙2

]  (6) 

where 𝜌, 𝐴, 𝑙 are the density, the section’s area, and the length of the beam element, re-

spectively.  

Figure 2 shows the ith beam element. The response at point 𝑥 and time 𝑡 can be 

obtained using the Hermite interpolation 𝐻(𝑥) from the node responses. The Hermite 

interpolation 𝐻(𝑥) is as follows: 
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𝐻1(𝑥) = 1 − 3 (
𝑥

𝑙
)
2

+ 2(
𝑥

𝑙
)
3

𝐻2(𝑥) = 𝑥 (1 −
𝑥

𝑙
)
2

𝐻3(𝑥) = 3 (
𝑥

𝑙
)
2

− 2(
𝑥

𝑙
)
3

𝐻4(𝑥) =
𝑥2

𝑙
(
𝑥

𝑙
− 1)

    (7) 

 

Figure 2. The Hermite interpolation on the beam element. 

The displacement at point 𝑥 and time 𝑡 is obtained as: 

𝜔𝑒(𝑥, 𝑡) = 𝐇(𝑥)𝑇𝐑(𝑡) = {𝐻1(𝑥) 𝐻2(𝑥) 𝐻3(𝑥) 𝐻4(𝑥)}

{
 
 

 
 𝜔𝑖(𝑡)

𝜃𝑖(𝑡)

𝜔𝑗(𝑡)

𝜃𝑗(𝑡)}
 
 

 
 

      (8) 

where 𝜔𝑒(𝑥, 𝑡) is the displacement at point x and time 𝑡. 𝜔𝑖(𝑡), 𝜃𝑖(𝑡) are the node dis-

placement and rotation at the 𝑖𝑡ℎ node and time 𝑡 of the beam element. 𝑥 is the position 

and 𝑙 is the length of the beam element. 𝐑(𝑡) are the node responses. 

The strain at point 𝑥 and time 𝑡 can also be obtained [5] as 

ε(x, t) = −z
∂𝐇(𝑥)𝐑(𝑡)

∂𝑥2
        (9) 

where 𝑧 is the distance from the bottom to the neutral axis. 

3.1.2. Equation to Calculate the Motion of the Bridge Subjected to a Moving Vehicle 

The bridge is modelled as a simply supported beam, and the vehicle is modelled as 

a mass 𝑚, as shown in Figure 3. The bridge length is 𝐿. The vehicle is moving along the 

bridge at a constant speed 𝑣. The crack damage is considered in this study. 𝑙𝑐𝑑 is the 

crack’s location from the left support. The beam bridge is discretised into 𝑁 − 1 elements, 

and 𝑁 is the number of nodes. Considering Rayleigh damping for the bridge, the motion 

of the bridge subjected to a moving vehicle can be obtained as follows: 

𝐌𝑏𝐑̈(𝑡) + 𝐂𝑏𝐑̇(𝑡) + 𝐊𝑏𝐑(𝑡) = 𝐇𝑚𝐏   (10) 

where 𝐌b, 𝐂b, and 𝐊b are the mass, damping, and stiffness matrices of the bridge, respec-

tively. The 𝐑̈(t), 𝐑̇(t), and 𝐑(𝑡) are the node’s acceleration, velocity, and displacement 

response vectors, respectively. 𝐇𝑚𝐏 is the node’s equivalent force vector induced by the 

moving mass. 𝐏 is the equivalent resultant force vector induced by the moving mass. The 

interaction force between the bridge and the mass is 𝑃(𝑥(𝑡), 𝑡), which can be obtained as 

𝑃(𝑥(𝑡), 𝑡) = 𝑚 {𝑔 −
d2(𝜔(𝑥(𝑡),𝑡))

d𝑡2
}   (11) 
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where 𝑚 is the mass of a moving vehicle. 𝐇𝑚 = {0 ⋯ 𝐇(𝜂(𝑡))𝑗
𝑇 0 ⋯ 0}𝑇  when 

(𝑗 − 1)𝑙 ⩽ 𝜂(𝑡) ⩽ 𝑗𝑙. 𝐻(𝑥) is the Hermite interpolation as the beam element’s shape func-

tion. The beam’s deflection at point 𝑥 and time 𝑡 can be written as 

𝜔(𝑥, 𝑡) = 𝐇(𝑥)𝐑(𝑡)      (12) 

where 𝐇(𝑥) = {0 ⋯ 𝐻(𝑥)𝑗
𝑇 0 ⋯ 0}𝑇  when (𝑗 − 1)𝑙 ⩽ 𝑥 ⩽ 𝑗𝑙 . Combining Equa-

tions (10)–(12), the equation of motion can be written as 

𝐌(𝑡)𝐑̈(𝑡) + 𝐂(𝑡)𝐑̇(𝑡) + 𝐊(𝑡)𝐑(𝑡) = 𝑚𝑔𝐇𝑚            (13) 

where 𝐌(𝑡) = 𝐌𝑏 +𝑚𝐇𝑚𝐇(𝑥) , 𝐂(𝑡) = 𝐂𝑏 + 2𝑚𝑣𝐇𝑚𝐇′(𝑥) , and 𝐊(𝑡) = 𝐊𝑏 +

𝑚𝑣2𝐇𝑚𝐇
″(𝑥). 𝐇′(𝑥) and 𝐇″(𝑥) are the first and second derivatives of the Hermite inter-

polation vector 𝐇(𝑥). Equation (13) can be solved using the Newmark−𝛽 method. The 

parameters are: 𝛼 = 0.5, 𝛽 = 0.25. The time step is 0.01 s. Then, the bridge response at 

point 𝑥 can be obtained through Equations (7)–(9). 

 

 

EI, ρA 

L 

η(t) 

lcd 

m 

v 

 

Figure 3. The damaged beam under a moving mass. 

3.1.3. Temperature Influence 

The temperature’s influence can be divided into two parts. The first one is the varia-

tion in the beam’s parameters, which will directly influence the beam’s dynamic property. 

In the model, the thermal coefficients of the temperature’s influence on each parameter 

are listed in Table 1 [16]. 𝐴0, 𝐸0, and 𝐼0 are the cross−section area, Young’s modulus, and 

second moment of inertia at the reference temperature 𝑇0, respectively. The temperature 

effect on the section Young's modulus depends on the load−bearing ratio of section’s each 

material. According to the load−bearing ratio at the reference temperature, the coefficients 

corresponding to the temperature effect of steel and concrete are linearly weighted ac-

cording to this ratio to obtain the final temperature influence coefficient of the entire sec-

tion. The section’s expansion only considers the concrete’s area growth.  

Table 1. The temperature coefficients of the beam’s parameters [16]. 

Parameters Formula Coefficient Steel (/∘𝐂) Concrete (/∘𝐂) 

Expansion 𝐴 = 𝐴0(1 + 𝛼𝐿Δ𝑇)
2 𝛼𝐿 1.2 × 10−5 1.3 × 10−5 

Young’s modulus 𝐸 = 𝐸0(1 + 𝛼𝐸Δ𝑇) 𝛼𝐸 −3.2 × 10−4 −7.2 × 10−3 

Second moment 

of inertia 
𝐼 = 𝐼0(1 + 𝛼𝐿Δ𝑇)

4 𝛼𝐿 1.2 × 10−5 1.3 × 10−5 

The second influence is induced by the vertical temperature gradient. The bending 

curvature of the beam is affected by the temperature gradient. For a simply supported 

beam, the influence of the vertical temperature gradient can be taken as [36]: 

𝑟1 = −
𝛼𝑙0⋅Δ𝑇

2√3⋅ℎ
⋅
𝜆+1

𝜆−1
   (14) 

r2 = −r1  (15) 

𝑀1 = [1 −
1

√3
⋅
𝜆+1

𝜆−1
] ⋅

𝛼𝐸𝐼⋅Δ𝑇

ℎ
  (16) 
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𝑀2 = 𝑀1  (17) 

where 𝑟1 is the vertical temperature gradient induced rotation at the beam’s left support. 

𝑀1 is the vertical temperature gradient induced moment at the beam’s left support. 𝑟2 is 

the vertical temperature gradient induced rotation at the beam’s right support. 𝑀2 is the 

vertical temperature gradient induced moment at the beam’s right support.−−−−. Δ𝑇 is 

the temperature difference between the top and bottom surfaces, and the positive value 

reflects that the top surface is warmer. ℎ is the cross−section’s height. 𝐸𝐼 is the beam’s 

rigidity. 𝛼 is the concrete’s thermal expansion coefficient in Table 1. 𝜆 is a constant, and 

it is equal to 
√3+1

√3−1
. 𝑙0 is the beam’s length. According to Equations (14)–(17), the effect of 

the vertical temperature gradient is considered the boundary condition of the beam.  

3.1.4. Crack Damage Model  

The beam’s damage starts from initial microcracks and develops due to many factors, 

such as degradation, loads, temperature impact, etc. While expanding, these microcracks 

keep opening and closing due to external dynamic excitation. This phenomenon is known 

as the breathing crack, and it dominates the beam’s crack behaviour in the incipient crack 

stage [37]. Because the prestress is widely applied, the crack in the prestressed concrete 

bridges will perform as the breathing crack.  

In this study, the breathing crack is used to model the bridge damage [38]. The 

breathing crack is simulated as a rotational spring at the crack’s location 𝑙𝑐 . Figure 4 

shows the beam element with a breathing crack. This element is considered as two un-

damaged beam segments connected by the proposed rotational spring. 𝐸𝐼 is the undam-

aged beam’s flexural rigidity, and 𝑙 is the length of this element. The stiffness matrix of 

this element can be written as 

{
 

 
𝑄𝑖
𝑀𝑖

𝑄𝑑
𝐿

𝑀𝑑
𝐿}
 

 

=
𝐸𝐼

𝑙𝑐
3

[
 
 
 
12 6𝑙𝑐 −12 6𝑙𝑐
6𝑙𝑐 4𝑙𝑐

2 −6𝑙𝑐 2𝑙𝑐
2

−12 −6𝑙𝑐 12 −6𝑐
6𝑙𝑐 2𝑙𝑐

2 −6𝑙𝑐 4𝑙𝑐
2 ]
 
 
 

{

𝑤𝑖
𝜃𝑖
𝑤𝑑
𝐿

𝜃𝑑
𝐿

}   (18) 

{
 
 

 
 𝑄𝑑

𝑅

𝑀𝑑
𝑅

𝑄𝑗
𝑀𝑗 }
 
 

 
 

=
𝐸𝐼

(𝑙−𝑙𝑐)
3

[
 
 
 

12 6(𝑙 − 𝑙𝑐) −12 6(𝑙 − 𝑙𝑐)

6(𝑙 − 𝑙𝑐) 4(𝑙 − 𝑙𝑐)
2 −6(𝑙 − 𝑙𝑐) 2(𝑙 − 𝑙𝑐)

2

−12 −6(𝑙 − 𝑙𝑐) 12 −6(𝑙 − 𝑙𝑐)

6(𝑙 − 𝑙𝑐) 2(𝑙 − 𝑙𝑐)
2 −6(𝑙 − 𝑙𝑐) 4(𝑙 − 𝑙𝑐)

2 ]
 
 
 

{
 
 

 
 𝑤𝑑

𝑅

𝜃𝑑
𝑅

𝑤𝑗
𝜃𝑗 }
 
 

 
 

  (19) 

where 𝑤𝑖 , 𝑤𝑗 , 𝜃𝑖, and 𝜃𝑗 are the displacements and rotations at the ith and jth nodes, re-

spectively. 𝑄𝑖 , 𝑄𝑗 , 𝑀𝑖, and 𝑀𝑗 are their corresponding transverse shear forces and mo-

ments. 𝑤𝑑
𝐿 , 𝜃𝑑

𝐿, 𝑤𝑑
𝑅, and 𝜃𝑑

𝑅 are the spring’s displacements and rotations at the left− and 

right−hand sides of the joint, and 𝑄𝑑
𝐿 , 𝑀𝑑

𝐿 , 𝑄𝑑
𝑅 , and 𝑀𝑑

𝑅  are their corresponding shear 

forces and moments.  
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Figure 4. The cracked beam element. 
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According to the equilibrium and compatibility condition at the crack’s location, the 

cracked beam’s element stiffness matrix can be obtained. 

𝐊𝑑 = 𝐊1 + 𝐊2𝐊3
−1𝐊4    (20) 

where 

  𝐊1 =
𝐸𝐼

𝑙3

[
 
 
 
 
 
 
 
 
12

𝛿3
6𝑙

𝛿2
0 0

6𝑙

𝛿2
4𝑙2

𝛿
0 0

0 0
12

(1 − 𝛿)3
−

6𝑙

(1 − 𝛿)2

0 0 −
6𝑙

(1 − 𝛿)2
4𝑙2

(1 − 𝛿) ]
 
 
 
 
 
 
 
 

𝐊2 =
𝐸𝐼

𝑙3

[
 
 
 
 
 
 
 
 −
12

𝛿3
6𝑙

𝛿2
0 0

−
6𝑙

𝛿2
2𝑙2

𝛿
0 0

0 0 −
12

(1 − 𝛿)3
−

6𝑙

(1 − 𝛿)2

0 0
6𝑙

(1 − 𝛿)2
2𝑙2

(1 − 𝛿) ]
 
 
 
 
 
 
 
 

  

𝐊3 =

[
 
 
 
 
 
 
 
 −
12

𝛿3
6𝑙

𝛿2
0 0

6𝑙

𝛿2
𝑆 −

4𝑙2

𝛿
0 0

0 0
12

(1 − 𝛿)3
6𝑙

(1 − 𝛿)2

0 −𝑆 −
6𝑙

(1 − 𝛿)2
𝑆 −

4𝑙2

(1 − 𝛿)]
 
 
 
 
 
 
 
 

𝐊4 =

[
 
 
 
 
 
 
 
 −
12

𝛿3
−
6𝑙

𝛿2
0 0

6𝑙

𝛿2
2𝑙2

𝛿
0 0

0 0 −
12

(1 − 𝛿)3
6𝑙

(1 − 𝛿)2

0 0 −
6𝑙

(1 − 𝛿)2
2𝑙2

(1 − 𝛿) ]
 
 
 
 
 
 
 
 

  

𝛿 =
𝑙𝑐
𝑙
, 𝑆 =

𝐾𝑟𝑑𝑙
3

𝐸𝐼
 

 

where 𝐾𝑟𝑑 is the tangent stiffness, which reveals the spring’s instant rigidity. As shown 

in Figure 5, there is a crack opening at the edge of a rectangular section, and 2ℎ is the 

cracked element’s length, while 𝑏 is the element’s height. The crack is started at the centre 

of the element’s long edge. The rotational displacement due to the crack opening at the 

edge can be obtained using linear–elastic fracture mechanics, as follows [39]: 

𝜃𝑐𝑟𝑎𝑐𝑘 =
4𝜎

𝐸
𝑆 (

𝑎

𝑏
)        (21) 

where σ is the applied stress of the whole cracked element induced by the bending mo-

ment. The 
a

b
 is the ratio of the crack’s depth. For 

ℎ

𝑏
> 2, the 𝑆(

𝑎

𝑏
) can be written as [39] 

𝑆 (
𝑎

𝑏
) = (

𝑎

𝑏

1−
𝑎

𝑏

)
2

{5.93 − 19.69 (
𝑎

𝑏
) + 37.14 (

𝑎

𝑏
)
2

− 35.84 (
𝑎

𝑏
)
3

+ 13.12 (
𝑎

𝑏
)
4

}   (22) 

 

Figure 5. The crack opening at the edge. 

The relationship of 𝜎 and 𝑀 for the pure bending element can be written as 
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 𝜎 =
6𝑀

b2
  (23) 

where 𝑀 is the cracked element’s bending moment. 𝑏 is the length of the section’s short 

edge. Combining Equations (21)–(23), the instant tangent stiffness of the virtual rotational 

spring 𝐾𝑟𝑑 is obtained. 

𝐾𝑟𝑑 =
𝑀

𝜃𝑐𝑟𝑎𝑐𝑘
=

𝐸𝑏2

24𝑆(
𝑎

𝑏
)
  (24) 

3.2. Results and Discussions 

3.2.1. Numerical Simulation 

The numerical model is validated through comparison with the results of Zhu and 

Law [40]. A simply supported beam that is 50 m long, 0.5 m wide, and 1 m high is used. 

The elastic modulus of the beam is 2.1 × 1011 Pa, and the density is 7860 kg/m3. The 

moving force is 10 kN. The first six natural frequencies of the beam are listed in Table 2. 

Table 2. The numerical model’s natural frequencies. 

Natural Frequencies 

By Zhu and Law [40] By the Proposed Method 

0.94 0.9375 

3.75 3.7501 

8.44 8.4377 

15.00 15.0004 

23.44 23.4390 

33.75 33.7547 

Figure 6 shows the normalised deflection at the mid−span. The sampling rate is 100 

Hz. The deflection is normalised by 
F0L

3

48EI
, which is the static deflection when the force is at 

the mid−span. The scattered points are the analytical solution obtained by Zhu and Law 

[40], and the line curves are the numerical solution obtained using the proposed model in 

this study. 𝑎/ℎ is the crack depth ratio at the mid−span. For 𝑣 = 5 m/s, the number of 

elements is 13. For 𝑣 = 40 m/s, the number of elements is 7. The number of elements is 

consistent with the compatibility condition in Equation (22). The results obtained using 

the proposed model are close to those of Zhu and Law [40]. This validated model will be 

used in this study. 
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Figure 6. The normalised deflections at mid−span (scattered points obtained by Zhu and Law [40] 

and line curves obtained using the proposed method). 

3.2.2. Comparison of Results Obtained Using PCA and MPCA 

A comparison study is conducted in this section. The moving load is 10 kN. The ve-

locity of the moving load is 5 m/s, and the number of elements is 13. Other parameters are 

the same as those in Section 3.2.1. The beam is intact. A sudden and slight change in the 

moving mass is simulated to illustrate the sensitivity and reliability of MPCA. The accel-

eration responses are analysed through PCA and MPCA. As listed in Table 3, three cases 

are studied. 

Table 3. The three simulated cases. 

Case Mass Change 
Time Duration 

Start Time End Time 

1 0% − − 

2 1% 5 s 6 s 

3 1% 5 s 10 s 

Figure 7 shows the first PC for those three cases using PCA. There are no obvious 

changes in those cases in Figure 7. The results show that the PCA could not indicate the 

changes in the moving mass. The instantaneous state of the vehicle–bridge interaction 

system cannot be captured by conducting PCA on the whole time series. 
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Figure 7. Results of PCA with three different masses. 

The eigenvalues are more sensitive to abrupt changes than the PCs [27]. The first 

eigenvalue is taken for comparison in this study. The size of the window is 50 times the 

sampling interval. Figure 8 shows the result using MPCA. From Figure 8, there are clear 

changes at 5 s in Cases 2 and 3. The results show that the 1% mass variation can be detected 

immediately in the first eigenvalue curve using MPCA. For Case 2, the magnitude of the 

first eigenvalue is the same as Case 1 after 6 s as the mass returns back to the original 

value. For Case 3, the first eigenvalue keeps approximately the same magnitude after 5 s 

because the mass of the moving load does not change after that.  

 

Figure 8. Result of MPCA with the mass change. 

3.2.3. The Effect of Damage Patterns 

This section aims to study the effect of the crack depth. The crack occurred at the 

mid−span. The crack depth is increased from 0% to 50% of the thickness. Other parameters 

are the same as those of Case 1 in Section 3.2.2. Figure 9 shows the pattern change of the 

first eigenvalue induced by the growing crack depth. The figure below is an enlarged view 

of the area in the red box of the figure above. From Figure 9, the results show that changes 

in the crack depth mainly affect the distance between two adjacent peaks in the first 
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eigenvalue curve. When the damage occurs, the distance between two adjacent peaks is 

increased with the crack depth.  

 

Figure 9. The influence of the crack depth for MPCA. 

3.2.4. Orthogonality 

MPCA can decompose the data into different coordinate axes in which each axis is 

orthogonal with other axes. For bridge SHM, the changes induced by structural damage 

need to be orthogonal with changes induced by other factors, such as the vehicle’s mass, 

the temperature, the road surface roughness, etc. In this section, the orthogonality be-

tween the vehicle’s mass and the damage is studied. As listed in Table 4, six cases have 

been studied. The parameters of Cases 1, 2, and 3 are the same as those in Section 3.2.2. 

Except for the crack depth, other parameters for Cases 4, 5, and 6 are the same as those in 

Section 3.2.2. Table 4 shows all six simulated scenarios. 

Table 4. Six cases for the orthogonality. 

Case Mass Change 
Time Duration 

Crack Depth 
Start Time End Time 

1 0% − − 0 

2 1% 5 s 6 s 0 

3 1% 5 s 10 s 0 

4 0% − − 50% 

5 1% 5 s 6 s 50% 

6 1% 5 s 10 s 50% 
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Figure 10 shows results of six cases. The figure below is an enlarged view of the area 

in the red box of the figure above. Comparing Cases 1 to 3 with Cases 4 to 6, the results 

show that the influence of the damage is orthogonal with the influence of the moving 

mass. The influence of the damage is embodied in the distance between two adjacent 

peaks. Cases 4 to 6 show similar patterns, which are different from the intact beam’s pat-

terns in Cases 1 to 3. The influence of the moving load’s mass is embodied in the magni-

tude of each peak. The first eigenvalue represents the amount of information at the corre-

sponding time in acceleration responses. For the intact beam, the increase in the moving 

mass leads to the decrease in the first eigenvalue. For the damaged beam, the increase in 

the moving mass leads to the increase in the first eigenvalue. For Cases 1, 2, 4, and 5, the 

peak magnitude after 6 s is the same, and the results shows that there is a correlation 

between the peak magnitude and the moving mass. It could be used for estimating the 

moving mass. 

 

Figure 10. Result of six cases for the orthogonality. 

3.2.5. Temperature Influence 

This section aims to investigate the temperature effect using MPCA. As listed in Ta-

ble 5, there are six cases. Two scenarios are simulated: the change in the uniform temper-

ature of the whole beam and the change in the temperature gradient at the cross−section. 

The temperature gradient is slightly changed when the vehicle is passing the bridge. All 

of the considered temperature changes are linear, and the moving vehicle passes the 

bridge in a short time period. There is no damage for Cases 1, 3, or 5, and the crack depth 

is 50% of the height for Cases 2, 4, and 6. The uniform temperature difference is used to 

simulate the temperature difference between day and night in mid−summer. The temper-

ature gradient is used to simulate it under strong sunlight conditions. The other parame-

ters are the same as in Case 1 in Section 3.2.4.  
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Table 5. Cases for the temperature effect using MPCA. 

Case 
Uniform Temperature 

(℃) 

Temperature Gradient (℃) Crack 

Depth Start Time End Time 

1 25 0 0 0 

2 25 0 0 50% 

3 40 28 25 0 

4 40 28 25 50% 

5 10 20 15 0 

6 10 20 15 50% 

Figure 11 shows the first eigenvalues of MPCA for different cases. The figure below 

is an enlarged view of the area in the red box of the figure above. From the figure, the first 

eigenvalue curve is changed with both the uniform temperature and the temperature gra-

dient. Compared the results of Cases 1, 3, and 5, the time interval between two adjacent 

peaks for a case is increased with the uniform temperature, and the amplitude of the first 

eigenvalue curve is increased with the temperature gradient. Comparing the results of 

Cases 1, 3, and 5 and those of Cases 2, 4, and 6 shows that the deviation caused by the 

temperature change is concentrated in a specific, small range, and the change induced by 

the damage is much larger with a curve pattern. 

 

Figure 11. Temperature’s impact on MPCA. 

3.3. Damage−Sensitive Features 

3.3.1. Observation 

According to previous discussions, the crack depth mainly affects the time interval 

between two adjacent peaks in the first eigenvalue curve, and the time interval is in-

creased with the crack depth. The first eigenvalue curve has an obvious and identifiable 
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pattern. There is some sawtooth interference information around the peak. The damage 

detection accuracy will be affected by these sawtooth liked oscillations. To avoid the in-

fluence of these perturbation, a smoothing treatment is adopted. Following the PCA, the 

first eigenvalue curve of the principal component is needed. Figure 12 shows that the 

steadiest part that can reflect the main trend of the first eigenvalue is the two limbs of each 

peak. Thus, the mean line of the first eigenvalue curve is taken from the first eigenvalue 

curve. The midpoints of each pair of intersections in each peak are taken as the foundation 

of the DSF’s construction.  

 

Figure 12. The details of the DSF’s construction. 

3.3.2. Construction 

Figure 13 shows that the growth trend of the x−axis location of each midpoint is lin-

ear. The thumbnail in this figure is an enlarged view of the red boxed area in Figure 12. 

The crack depth’s change will influence the inclination of each midpoint’s x−axis location’s 

growth trend line. In this section, all cracks occurred at the mid−span.  

 

Figure 13. The growth trend of each peak’s midpoints. 
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Thus, the gradient of the line in Figure 13 is used as the DSF. The numerical deriva-

tives of each pair of discrete midpoints are obtained. The mean of all numerical derivatives 

in each line is calculated corresponding to its crack depth. The angle of each line is ob-

tained by the mean’s arctangent. Figure 14 shows the gradient of each line, which refers 

as the DSF, is growing corresponding to its crack depth’s growth.  

 

Figure 14. The angle of each line when the crack is growing. 

3.3.3. Influence of the Crack’s Location 

Figure 15 shows the crack location’s influence. The results reveal that for each crack 

depth, the crack located around the midpoint of the beam has a larger influence than the 

crack located near the beam’s end. This phenomenon will be more obvious when the crack 

grows deeper. This result complies with the beam’s dynamic analysis theory. In PCA, the 

first eigenvalue represents the variance in the first dimension. In this study, the first di-

mension is dominated by the acceleration changes caused by the moving loads. The ver-

tical fluctuation and slow decline of the first eigenvalue reveal that the amount of the in-

formation (energy) brought by the moving load is gradually dissipated in the beam’s re-

sponse over time due to the beam’s vibration. The existence of cracks will change the rate 

of this dissipation. Therefore, the increases in the distance between each midpoint repre-

sent these crack−induced changes. Additionally, this DSF reflects the damage of the beam 

from the overall perspective, which is the so−called equivalent crack depth. Because cracks 

in actual structures are distributed near the damaged area of the beam, this DSF can pro-

vide a more realistic beam damage situation. When the crack depth is greater than 30%, 

the Maxwell–Betti reciprocal theorem is no longer valid due to the nonlinearity caused by 

the cracks. Thus, although the two damage locations with a distance of 1/10 L on both 

sides of the beam’s midpoint are symmetrical in space, the damage extent reflected by 

these two DSFs is no longer consistent due to the directionality of the moving load on the 

time axis. In this case, the first eigenvalue is dominated by the moving load and the breath-

ing crack. Within this range, the moving load passing through the crack earlier means that 

the beam has more time to dissipate, so the reflected degree of the damage will be slightly 

higher than in the other places where the moving load passes the crack later. Therefore, 

the proposed DSF describes the damage extent of the beam from a dynamic perspective. 

In other words, it depicts the beam’s “rhythm”. The traditional modal analysis describes 

the beam’s vibration from a static perspective. The magnitude of the first eigenvalue rep-

resents a measure of the maximum variance direction’s dimension. As the simply sup-

ported beam, the direction of the maximum variance of the measuring points’ acceleration 

is in the direction of the gravity axis when a uniaxial moving load is passing. Therefore, 

MPCA can capture a continuous peak fluctuation of the same magnitude in the first ei-

genvalue curve. 
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Figure 15. The angle of each line when the crack is located at different positions. 

4. Experimental Investigation 

A laboratory study has been conducted in this study. The experimental data from 

Zhu and Law [40] have been used. The first eigenvalue curve has been obtained using the 

proposed method in Section 3. The Gaussian window is adopted to reduce the measure-

ment noise and the vehicle–bridge interaction. The selection of the window parameters is 

also discussed. The results of the obtained damage−sensitive feature based on these labor-

atory data using the proposed method in Section 3 are presented and discussed. 

4.1. Experimental Setup 

Figure 16 shows the experimental setup. The cross−section of the concrete beam is 

shown in Figure 16a. As shown in Figure 16b, the whole experimental beam is composed 

of three T−section reinforcement concrete beams: the front beam, the main beam, and the 

tail beam. The front and tail beams are 4.5 m long each. The main beam is 5.0 m long. The 

gaps between these three beams are 10 mm. An electric motor is used to pull the vehicle 

along the beam at a speed of approximately 0.5 m/s. The vehicle’s axle spacing is 0.8 m, 

and its wheel spacing is 0.39 m. There are two vehicle models with different weights used 

in this study. The whole weight of the first vehicle model (without an elastic spring) is 

10.60 kN, with a front axle load of 5.58 kN and a rear axle load of 5.02 kN. The whole 

weight of the second vehicle model (with an elastic spring) is 15.00 kN, with a front axle 

load of 6.20 kN and a rear axle load of 9.00 kN. Because the mass of the whole concrete 

beam is 1050 kg, the weight ratios between the vehicle and the beam bridge for these two 

vehicle models are 1.01 and 1.43, respectively. Figure 16c,d include the photos taken dur-

ing this experiment. Figure 16c shows the vehicle model passing through the beam, and 

Figure 16d shows the large damage case being generated. 
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(a) Cross−section of the concrete beam 

 
(b) Sensor location  

  
(c) Moving vehicle model  (d) Generating large damage case 

Figure 16. Experimental setup. 

As shown in Figure 16b, seven accelerometers are evenly installed along the beam at 

the bottom surface. Thirteen photo−electric sensors are distributed on the lead and the 

main beams with 0.56 m spacing to measure the vehicle’s moving velocity. The third and 

thirteenth photo−electric sensors are installed at the entry and exit points of the main 

beam, respectively. The INV300E data acquisition system is used to obtain the response 

data. The duration of each test is 30 s, and the sampling frequency is 2024.292 Hz. 

A three−point load system is used to create the damage. The small damage is created 

by deploying the load at 1/3 L from the beam’s right support, as marked in Figure 17a. 

The load is gradually added in 2 kN increments. Several tensile cracks obviously appear 

on the beam rib when the load reaches 36 kN. When the load is 50 kN, the largest crack at 

the beam’s bottom is measured, and it has a 0.10 mm width. This crack is located close to 

the loading point but on the span inside, with a 213 mm depth and a 760 mm wide crack 

zone visually. The beam is unloaded after the load is kept for 30 min. Then, the crack at 

the beam’s bottom decreases to a 0.025 mm width and partly closes. These descriptions 

are referred to as the small damage case. 
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(a) Small damage  

 
(b) Large damage  

Figure 17. The damage loading and the crack zone. 

For the large damage case, a 50 kN load is first loaded at 2/3 L of the beam from the 

right support using the three−point load system. This produces a crack pattern similar in 

extent and magnitude to the existing crack zone at 1/3 L. After that, a four−point load 

system is used for further loading, as marked in Figure 17b. The final total load is 105 kN 

without the main reinforcement yielding, and the largest crack is located near the beam’s 

midpoint, with a 281 mm depth. This crack has a 0.1 mm width at the beam’s bottom when 

the load is 105 kN. When the beam is unloaded after keeping the 105 kN static load on the 

top surface for 30 min, this crack’s width reduces to 0.038 mm. The crack zone is 2371 mm 

long. 

4.2. The Gaussian Window 

Figure 18 shows the first eigenvalue curves under different moving vehicle models. 

Figure 18a shows the results for the undamaged beam and the beams with the small and 

large damage under a 10.6 kN moving vehicle. Figure 18b shows the results under a 15 

kN moving vehicle. The results show that the pattern of the first eigenvalue curve is se-

verely affected due to the existence of measurement noise and the vehicle–bridge interac-

tion. Measurement noise and the vehicle–bridge interaction are two main influencing fac-

tors for the first eigenvalue curve. Upon comparing Figure 18a with Figure 18b, because 

the latter uses a 30% heavier vehicle, it can be seen that its curve is less affected by those 

influencing factors. The window length in these two cases is randomly selected, with 54 

sampling intervals for comparison and illustration. Therefore, following this idea, if a 

smaller window can be used, more components caused by the moving load can be ex-

tracted. However, due to the limitation of the PCA algorithm, the window’s length cannot 

be less than the number of input signal channels. Additionally, a small window length 

may lose the important information created by the moving loads. Thus, the Gaussian win-

dow is proposed. 
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(a) The moving load is 10.6 kN 

 
(b) The moving load is 15 kN  

Figure 18. The first eigenvalue curve in this experimental study. 

The Gaussian window draws on the idea of regularisation. Figure 19 shows a Gauss-

ian window (𝜎 (0, 5)) when the normal window’s length is 50 sampling intervals. It is 

equivalent to adding a penalty term: the farther the time is from the current moment, the 

smaller the impact on the current moment. The greater the weight in the middle, the 

deeper the consideration of instantaneous effects. The influencing factors’ impact on the 

time axis is diffuse, so their effects can be significantly reduced by the Gaussian window, 

and the proportion of the vehicle excitation in this window is magnified at the same time. 

In other words, PCA is a multi−channel data processing method, and the additional nor-

mal moving window expands the eigenvalue along the time axis. Through the expansion 

of eigenvalues, the same overall movement trend of each measuring point on the bridge 

is displayed along the time axis, and each interference factor is expanded on the time axis. 

Therefore, the Gaussian window realigns this expansion on the time axis again. This min-

imises the effect of interference factors on the detection results. 
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Figure 19. The Gaussian window. 

In Figure 18, the first eigenvalue curve has many distortions or buckling caused by 

the noise, the vehicle–bridge interaction, or other factors, like human interference or op-

erational error. Figure 20 shows the first eigenvalue curves smoothed by the Gaussian 

window. The Gaussian window emphasizes the data closer to the current time by giving 

more coefficient weight to reduce the effect from those influence factors on the first eigen-

value curve. 

 
(a) The moving load is 10.6 kN 

 
(b) The moving load is 15 kN 

Figure 20. The first eigenvalue curve with the Gaussian window in this experimental study. 
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4.3. Parametric Study 

4.3.1. The Effect of the Window Length 

This section will discuss the selection of the window’s parameters. The first step is to 

investigate the influence of the window length on the first eigenvalue curve. In this sec-

tion, the responses of the undamaged experimental beam under the 10.6 kN moving load 

are used. Figure 21 shows the first eigenvalue curves obtained under three commonly 

used lengths of the window. The image below is an enlarged view of the area in the red 

box of the image above. It is not recommended to use a length more than 200 times the 

sampling interval because a large window will greatly increase the MPCA’s computa-

tional cost. From the first eigenvalue curves under different window lengths, we can see 

they have the same shape. Their only difference is the magnitude. The window length will 

not influence the damage detection because the damage influences the distance between 

each pair of adjacent peaks instead of the magnitude. Therefore, the second contribution 

of the Gaussian window is that it simplifies the problem of the window length’s selection. 

The Gaussian window transforms the selection of the window length into the hyperpa-

rameter 𝜎’s selection of itself and allows for the use of a small window to reduce the 

amount of calculation. 

 

Figure 21. The effect of the Gaussian window’s length. 

4.3.2. Hyperparameter of the Gaussian Window 

The choice of the hyperparameter 𝜎 will affect the Gaussian window’s attention de-

gree to the current moment and the tolerance of the influencing factors. If the value is too 

small, the anticipated effect cannot be achieved. If the value is too large, all of the 
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information carried in the data will be destroyed (by only taking the value at the current 

time t into account). The numerical model is used to find the optimal value. The parame-

ters of the simulated beam are the same as in Case 1 in Section 3.2.2, and the length for 

both normal and Gaussian windows is 50 sampling intervals.  

Figure 22a shows the first eigenvalue curve processed using the Gaussian window 

(𝜎 (0,5)). Compared with the curves in Figure 12, the curve obtained using the Gaussian 

window is much smoother. Figure 22b shows the enlarged view of the area in the red box 

of Figures 12 and 22a, correspondingly. Figure 22b reveals that the Gaussian window can 

erase the distortions near the peak and trough areas of the first eigenvalue curve. Except 

for the window’s type, the damage conditions and other parameters for obtaining the 

DSFs in Figures 12 and 22a are the same. Figure 22c shows that the DSFs obtained using 

the normal window and the Gaussian window are almost the same. They both have the 

same gradient, which could be an indicator of the beam’s damage extent. Thus, the 𝜎 (0,5) 

can be used as the optimal hyperparameter of this study. The Gaussian window (𝜎 (0,5)) 

can smooth the first eigenvalue curve without affecting the accuracy of the DSF for elim-

inating the influence of interference factors. 

 
(a) Overall 

 
(b) Comparison of two windows’ details 
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(c) Comparison of DSFs obtained using two windows 

Figure 22. The results of numerical studies using two types of windows. 

4.4. Experimental Results and Discussions 

Figure 23 shows that the proposed DSF can distinguish the beam’s damage extent 

well when using the experimental dataset. Because the heavier vehicle can better excite 

the response due to the crack, the result in Figure 23b is better than that in Figure 23a in 

distinguishing the damage extent. Due to the existence of the elastic spring, the wheel can 

better maintain contact with the concrete surface. The result in Figure 23b is smoother and 

more continuous than that in Figure 23a. The size of the gradient reflects the “rhythm” of 

the beam. The cracks weaken the effective cross−sectional area of the beam, thereby hin-

dering the transmission of information in the beam. In this case, the speed at which the 

first eigenvalue reaches each local extreme value will slow down, and the gradient will 

become larger. Due to the existence of the elastic spring, part of the energy in the response 

is transferred in the beam using the vehicle as the transmission path. This leads to an in-

crease in the information transmission bandwidth of the beam. When a visible crack zone 

occurs in the beam, the load in this area will be borne more by the steel bars. Because the 

vehicle in Figure 23b is 30% heavier than the one in Figure 23a, this phenomenon will 

become deeper as the load increases. Because the load carried by the steel bars increases 

as the cracks deepen, the overall “rhythm” of the beam becomes faster, and the gradient 

becomes smaller. Thus, these two points will reverse the change pattern of the DSF when 

the cracks grow, but this requires further study. 
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(a) The moving load is 10.6 kN 

 
(b) The moving load is 15 kN 

Figure 23. The results of the proposed DSF. 

5. Conclusions 

A new structural damage detection method based on moving principal component 

analysis (MPCA) has been developed for condition assessment of a highway bridge under 

moving vehicles. Numerical and experimental results show that the proposed method is 

effective and accurate in detecting structural damage. The following points are concluded 

in this paper: 

(1) The gradient of the first eigenvalue curve obtained from raw acceleration signals us-

ing MPCA is used as the damage−sensitive feature (DSF) of the highway bridge. The 

DSF can clearly reflect the existence of the breathing crack on the bridge. The change 

pattern of the first eigenvalue curve induced by the different vehicle’s mass, temper-

ature fluctuations, different damage depths, and locations has been studied, and the 

results show the robustness, accuracy, and practicality of the proposed DSF.  

(2) The DSF is not limited to a few pre−considered parameters but rather reflects the 

beam’s damage extent from a dynamic perspective. As the damage in the concrete 

structures is a crack zone in the actual situation, the equivalent crack depth indicated 

by this DSF could reflect the damage extent of the beam.  
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(3) The experimental results show that the Gaussian window is useful for improving the 

performance of MPCA on actual datasets. This window can filter out the impact of 

effects like measurement noise and the vehicle–bridge interaction. The experimental 

results also show that the DSF can detect and distinguish crack damage of different 

extents under the different vehicles’ weights. 

(4) The method has been verified with a bridge subjected to one moving vehicle. Further 

studies are needed for practical applications, with a bridge subjected to multiple ve-

hicles. 
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