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Abstract: The problem of remaining useful life estimation (RULE) of hollow worn railway vehicle
wheels in terms of remaining mileage via wheel tread depth estimation using on-board vibration
signals from a single accelerometer on the bogie frame is presently investigated. This is achieved
based on the introduction of a statistical time series method that employs: (i) advanced data-driven
stochastic Functionally Pooled models for the modeling of the vehicle dynamics under different
wheel tread depths in a range of interest until a critical limit, as well as tread depth estimation through
a proper optimization procedure, and (ii) a wheel tread depth evolution function with respect to
the vehicle running mileage that interconnects the estimated hollow wear with the remaining useful
mileage. The method’s RULE performance is investigated via hundreds of Simpack-based Monte
Carlo simulations with an Attiko Metro S.A. vehicle and many hollow worn wheels scenarios which
are not used for the method’s training. The obtained results indicate the accurate estimation of the
wheels tread depth with a mean absolute error of ∼0.07 mm that leads to a corresponding small error
of ∼3% with respect to the wheels remaining useful mileage. In addition, the comparison with a
recently introduced Multiple Model (MM)-based multi-health state classification method for RULE,
demonstrates the better performance of the postulated method that achieves 81.17% True Positive
Rate (TPR) which is significantly higher than the 45.44% of the MM method.

Keywords: on-board measurements; vibration signals; accelerometer; remaining useful life estimation;
railway vehicles; hollow worn wheels; statistical time series methods; stochastic modeling

1. Introduction

Hollow wear constitutes the predominant degradation of tread on railway vehicle
wheels, inducing a substantial impact on the vehicle’s steering precision and stability, espe-
cially once a critical limit of the wheel tread depth (typically ≲2.5–3.0 mm) is exceeded. This
is due to the resultant significant lateral vibrations that may lead to adverse consequences
such as passenger discomfort, damage in the neighboring rolling stock, degradation of the
track infrastructure, or, in the worst case, to derailment [1–5]. Therefore, the automated
and prompt determination of the remaining useful mileage, or else the remaining useful life
estimation (RULE) , of railway vehicle wheels with hollow wear, before the critical limit is
reached, via on-board vibration response signals, is imperative. In addition, wheels RULE
may play a vital role in the broader Condition-Based Maintenance (CBM) management of
railway vehicles, as it may lead to enhanced comfort, safety and reliability of the vehicles,
as well as to reduced maintenance cost and downtime.

In a broader context, vibration-based RULE technology has witnessed rapid advance-
ments over the previous two decades, yielding a wealth of literature and applications at
both component and system level [6–10]. Vibration-based RULE is typically pursued via
two main data-driven types of methods: a more commonly used one that addresses RULE
as a prediction problem , and another that treats it as a multi-health state classification problem.

Sensors 2024, 24, 375. https://doi.org/10.3390/s24020375 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24020375
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2898-991X
https://orcid.org/0000-0003-3027-8284
https://doi.org/10.3390/s24020375
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24020375?type=check_update&version=1


Sensors 2024, 24, 375 2 of 16

Despite the significant progress of vibration-based RULE, related applications for auto-
mated RULE in railway vehicle wheels using on-board measurements remain scarce [11–14],
while the considered wheels possess severe faults in their treads, such as cracks and spalling.
The methods of these studies fall under the category of the prediction-based RULE with the
majority relying on statistical models, which incorporate a Wiener process model integrated
with a linear, power-law, or exponential deterministic function according to the considered
defect [11–13], whereas only the study in [14] utilizes an AI/ML model via the Neural Basis
Expansion Analysis for Time Series (N-BEATS). The vibration signals RMS is employed as
the selected feature for RULE in [11–13], where statistical models are also employed and the
obtained results indicate adequate agreement between the RMS evolution and the selected
deterministic function representing wheel degradation. However, these studies explore
quite severe wheel defects, as previously mentioned, implying RULE at the latest level of
wheels’ lifetimes, while the RMS user selected threshold corresponding to the end-of-life
is subjectively selected and may not always coincide with the actual failure event of the
railway wheels, thus jeopardizing the vehicle’s safety.

On the other hand, RULE in [14] is performed for a wide mileage range via the
N–BEATS predictor and the use of the vibration signals variance after Box–Cox transfor-
mation as the selected feature. This transformation is employed to minimize time-varying
effects on the vibration signals, with thousands of them to be used for the training (hy-
perparameters determination) of the N-BEATS predictor. In contrast to previous studies,
the problem pertaining to the assumption that the wheel failure event occurs when the
selected RULE feature exceeds a subjectively pre-specified threshold is acknowledged and
addressed via multiple user-specified thresholds. The risk of inaccurate RULE is mitigated
with this procedure, yet the risk for poor estimates still exists as the selection of these
thresholds remains subjective. It is also worth mentioning that the methods in all the
above studies use vibration measurements obtained from the vehicle axlebox, necessitating
the frequent calibration and potential replacement of the employed sensors due to the
extremely harsh operating conditions [15].

An alternative method [16] that has been recently introduced by the authors and collab-
orators tackles the RULE problem of hollow worn railway vehicle wheels as a multi-health
state classification problem [17–20] demonstrating a promising performance. The method
presents high sensitivity to the subtle effects of the hollow worn wheels on the vehicular
dynamics, yielding from the fact that the Power Spectral Density obtained from acceleration
signals on the vehicle bogie is employed as the main feature for the classification procedure,
providing comprehensive information on the vehicular dynamics compared with static
quantities such as the vibration signals RMS, the variance, and so on. However, the typical
issue of the multi-health state classification methods pertaining to the classification of an
unknown state into more than one relatively close health states has not been overcome.

The goal of this study is the introduction and assessment of a statistical time series
method for automated remaining useful life estimation of hollow worn railway vehicle
wheels via on-board precise tread depth estimation using lateral vibration signals from
a single accelerometer on the bogie frame. The method is based on: (i) A Functionally
Pooled AutoRegressive (FP–AR) model that belongs to the broader family of the advanced
data-driven Functional Models [21]. This model is employed for the representation of
the partial vehicular dynamics for different hollow wear levels within a continuous tread
depth range and until a critical limit, as well as for tread depth estimation through a proper
optimization procedure; and (ii) a wheel tread depth evolution function with respect to the
vehicle running mileage that interconnects the estimated tread depth (hollow wear) with
the remaining useful mileage.

The FP–AR model is estimated in a baseline (training) phase via a limited number of
vibration signals obtained from a single accelerometer on the bogie of the traveling vehicle,
for a sample of known wheels tread depths within the range of interest at the corresponding
running mileage. The collection of the baseline phase signals and the associated tread
depth values is carried out at known periodic running mileage intervals during an initial



Sensors 2024, 24, 375 3 of 16

wheels re-profiling cycle (operational lifespan in terms of mileage) that ends when the tread
depth approaches a critical limit (≤2.5 mm) and new wheel re-profiling is necessary [4].
Once the initial re-profiling cycle has been completed, an evolution function that maps the
tread depth to the running mileage is also constructed via conventional fitting approaches,
using the available running mileage and the corresponding tread depth values. With the
completion of these steps of the method’s training, it may operate continuously or on
demand in real time (inspection phase) for the RULE of wheels under unknown hollow wear
using a fresh vibration signal that is driven through the FP–AR model for precise wheel
tread depth estimation via Nonlinear Least Squares optimization. The obtained tread depth
is then fed into the inverse evolution function and the remaining useful life of the hollow
worn railway wheels in terms of remaining mileage is estimated.

Based on all the above, the novel contributions of the present study are summarized
as follows:

• The automated RULE of hollow worn railway wheels via their on-board tread depth
estimation is for the first time achieved using a limited number of vibration signals for
the training of the employed method, which are obtained from a single accelerometer
located on the vehicle bogie avoiding thus the harsh environment of the axlebox area.

• The on-board wheels tread depth estimation is based on the advanced modeling pro-
vided by the FP–AR model, which may account for the complete information—there is
no need for predefined frequencies or other static quantities (e.g., RMS, kurtosis, etc.)
with limited information—of the vehicle dynamics that is included in the vibration
signals, leading thus to the precise (no gross classification) estimation of the wheels
tread and thus their RULE. Based on this, the introduced method is characterized by
high sensitivity to any subtle change to the wheels tread achieving so prompt RULE of
hollow worn wheels, as it is the case of wheels with approximately zero tread depth.

• The use of the wheel tread depth as the feature that leads to the estimation of their
remaining mileage is a unique characteristic of the introduced method, due to the fact
that the tread depth is the inherent quantity that characterizes hollow worn wheels,
always with a monotonic pattern that facilitates prognostics. Additionally, tread
depth provides valuable insight for maintenance as one of the most important wheels
characteristics that determines their remaining useful life.

The postulated method is assessed via 566 Monte Carlo simulations using the well-
known Simpack software 2019.1 [22] for the development of a 42 degrees-of-freedom
model representing an Attiko Metro S.A. railway vehicle running over a straight track with
speed equal to 35 m/s. A single vibration signal is obtained from an accelerometer on the
vehicle’s bogie in each simulation, while a wide range of railway wheel tread depths of
hollow worn wheels is covered within the range [0, 2.3] mm using actual measurements
obtained from the Attiko Metro S.A. maintenance operator (Athens, Greece). In addition,
the introduced method is compared with the multi-health state classification RULE method
of [16], which is based on multiple models for the representation of various hollow wear
levels corresponding to distinct tread depth ranges. The selection of this recently introduced
method is based on its promising results, which are presented in [14], while it is also the
only available vibration-based method that employs measurements of wheel tread depth
for the estimation of their remaining mileage that will allow a fair comparison with the
method presented in this study.

The rest of this article is organized as follows: The operating framework is pre-
sented in Section 2. The Monte Carlo simulations via a Simpack-based railway vehicle
model are presented in Section 3, while the remaining useful life estimation method is
presented in Section 4. The performance assessment of the RULE method is presented in
Section 5, whereas the comparison with a multi-health state classification method for RULE
in Section 6. Finally, a discussion and the concluding remarks of the study are summarized
in Section 7.
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2. The Operating Framework

This section describes the operating framework of the presented method for hollow
wheels RULE including all necessary prerequisites for the method’s proper training and
real time operation using on-board lateral vibration signals from a single accelerometer on
the railway vehicle bogie frame. The framework considers a railway vehicle traveling with
constant speed and payload under normal operation over a straight track, and consists of
two main phases (see details in Section 4):

• Baseline phase: This is the training phase of the method which is performed once in an
initial wheels re-profiling cycle where M measurements of random vibration accelera-
tion signals for a sample of distinct, running mileages τi (i = 1, . . . , M) along with the
associated wheels tread depths ki are performed. A N-sample-long vibration accelera-
tion signal yk[t] (t = 1, . . . , N designating the normalized with the sampling period
discrete time) is obtained from the vehicle’s bogie (Figure 1) in each measurement and
thus a total of M vibration signals are available. It is noted that measurements are
performed for tread depths in the range of [0, kmax], where kmax (herein ≤ 2.5 mm) is a
critical limit that is defined by the railway vehicle maintenance operator. In addition,
tread depths are considered only for the leading vehicle wheels expecting similar wear
for the following wheels, according to Attiko Metro S.A. maintenance experts.

• Inspection phase: This phase is performed in real time (new re-profiling cycle) once the
training of the RULE method has been completed, using an on-board measurement of
a new acceleration signal yu[t] from the accelerometer location used in the baseline
phase, corresponding to unknown (subscript ‘u’ designates unknown) wheels tread
depth or else unknown k, and thus unknown wheel remaining useful mileage to be
estimated with the method’s operation.

Figure 1. Schematic of the Simpack-based railway vehicle model including the employed accelerome-
ter location on the bogie frame.

3. The Monte Carlo Simulations via a Simpack-Based Railway Vehicle Model
3.1. The Railway Vehicle Model

The Monte Carlo simulations are based on a detailed 42-DOF Simpack-based [22]
multibody model (Figure 1) that has been developed for the dynamics representation of a
trailing railway vehicle. This model includes 15 distinct rigid components: four wheelsets
consisting of eight axle-boxes, two bogie frames, and the car body. Each simulation run
has been performed using a different straight track segments with track irregularities
conforming to the ERRI B176 standard [23]. The geometric and suspension parameters of
this railway vehicle model are derived from a standard trailing car of a third generation
vehicle used by the Attiko Metro S.A.; see details in [4].
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3.2. The Hollow Wear Conditions, the Simulations and the Vibration Signals

The Monte Carlo simulations with the hollow wheels are based on actual tread depth
measurements given by the Urban Rail Transport S.A., which is the maintenance operator
of the Attiko Metro S.A. vehicles, throughout a wheels re-profiling cycle for a passenger
vehicle that ends when the tread depth reaches the critical value of ∼2.5 mm. The actual
tread depths along with the corresponding running mileage are presented in Table 1. Based
on the fact that these measurements are very limited for a statistically reliable assessment
of the hollow wheels RULE method that is presented in this study, a typical exponential
function has been developed using the values of Table 1 through typical curve fitting via
the exponential curve of the form: k = aebτ − a (a = 1.80 and b = 3.33 × 10−6) achieving
R2 = 98.45% goodness-of-fit (Matlab function: fit.m) for the representation of the tread
depth evolution with respect to mileage increase.

Table 1. Actual leading wheel tread depths at corresponding mileages based on an Attiko Metro
S.A. vehicle.

Tread Depth (mm) Running Mileage (km)

0.34 57,633
0.72 109,795
1.03 133,129
1.55 185,342
1.93 217,723
2.27 244,786

Based on this, 137 tread depths at corresponding mileages are used in the Simpack-
based model for distinct simulations and generation of acceleration signals at the vehicle
bogie (see Figure 1).

A single lateral vibration signal from the accelerometer on the bogie frame (Figure 1)
with the vehicle traveling at v = 35 m/s is obtained per simulation, sampled at f s = 150 Hz
(acceleration signal bandwidth [0–75] Hz) with length N = 3600 samples (24 s); see also
Table 2.

Table 2. Details on the considered HW conditions and vibration signals of the 566 Monte Carlo simulations.

No. of Tread Depths k
(HW Conditions)

No. of Signals

Baseline Phase Inspection Phase

137 with k ∈ [0–2.3] mm 18 548 (4 sets of 137 signals *)
(mileage interval: 1800 km) (mileage interval: 14,400 km)

Sampling freq: fs = 150 Hz; Bandwidth: [0–75] Hz; signal length: N = 3600 samples;
traveling speed: 35 m/s; Total running mileage: τM = 244,800 km (M = 18)

* Each set correspond to a different re-profiling cycle and contains signals from all available tread depths.

A total of 566 simulations are conducted with the vehicle running on a different straight
track segment in each simulation, with acceleration signals from only 18 simulations from
an initial wheels re-profiling cycle to be used for the training of the RULE method in the
baseline phase. These correspond to a sample of distinct tread depths in the range of [0, 2.3]
mm measured at a mileage interval of 14,400 km, which is a realistic condition for standard
wheels tread inspection. The remaining 548 simulations are solely used for the thorough
assessment of the RULE method in the inspection (online) phase. These correspond to four
acceleration signal sets obtained from four distinct re-profiling cycles, each one including
137 tread depths (wheels hollow wear), which are obtained due to mileage increase with
an of interval of 1800 km within the considered range of [0, 244,800] km. All details on
the considered wheel hollow wear (HW) in terms of tread depths which are used in the
simulations, as well as about the employed vibration signals, are presented in Table 2.
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3.3. The Hollow Worn Wheels and Their Effects on the Vibration Signals

The visual interpretation of the considered railway wheel tread depths in the range
of [0, 2.3] mm are illustrated in Figure 2a,b. In particular, Figure 2a depicts the wheels
wear for the tread depth critical limit of 2.3 mm, where the wheels should be reprofiled
for subsequent use, while Figure 2b depicts the various stages (137 tread depths) of the
wheels wear until the critical limit. These profiles have been constructed using the actual
tread depths, which are mentioned in the previous subsection, along with related wheels
dimensions (i.e., Sd, Sh, qR, Tw) as described in [5], for their implementation in the Simpack-
based Monte Carlo simulations.
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Figure 2. (a) Visual interpretation of the considered hollow wear on the wheels profile. (b) The
137 wheel profiles which are considered in the Monte Carlo simulations. (c) The tread depths
used in the baseline phase versus the corresponding vibration signals RMS values with respect to
running mileage. (d) PSD envelope estimated using the Welch method and the acceleration signals
corresponding to the 18 tread depths of the baseline phase along with two individual PSD estimates
for two adjacent tread depths.

On the other hand, Figure 2c depicts the increasing pattern of the 18 tread depths (left
y axis) which are used for the training of the RULE method along with the RMS values
(right y axis) from the corresponding acceleration signals (per tread depth) with respect
to the increasing running mileage (x axis). As is evident, the RMS values do not exhibit a
consistently increasing pattern, similar to that of the tread depth (hollow wear), indicating
that the selection of the RMS as a feature for railway vehicle RULE is inappropriate.
Furthermore, Figure 2d illustrates Welch-based PSD estimates (Welch estimation details:
Matlab function pwelch.m, Hamming window, window length = 256 Hz, overlap = 90%,
frequency resolution d f = 0.586 Hz) ([24] p. 186) for two distinct tread depths, specifically
0.60 mm and 0.71 mm, as well as for the whole tread depth range. On the one hand, this
graph indicates the substantial impact of wheels hollow wear on the vehicle dynamics,
while on the other, that the effects of two close tread depths, such as the 0.60 mm (at
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72,000 km) and 0.71 mm (at 86,400 km), are very similar underscoring the challenge for
precise on-board tread depth estimation and thus wheels RULE in such scenarios.

4. The Remaining Useful Life Estimation Method

The RULE method of the present study is based on two core components: (i) a special
form of data driven stochastic models, the Functionally Pooled (FP) models [21], which offer
the capability of representing the vehicular dynamics for different depths of wheel tread
in a continuous range of interest, and (ii) a unique RULE concept incorporating on-board
tread depth estimation through a proper FP model motivated by [25] and the mapping of
the obtained estimate through a proper evolution function to a running mileage according
to the wheel’s hollow wear, which does not necessarily coincide with the current mileage
of the train speed meter. As also mentioned in Section 2, the RULE method consists of
a baseline (training) phase that is performed in an initial re-profiling cycle of the wheels
using a number of M vibration signals obtained from an accelerometer on the bogie frame,
each one corresponding to a known running mileage τi and tread depth ki (i = 1, . . . , M),
as well as an inspection phase, which may run on-demand or continuously during the
railway vehicle normal operation (online) based on acquired vibration signals from the
vehicle traveling with wheels under unknown hollow wear (tread depth), for which the
RULE should be achieved.

In particular, the modeling of the partial vehicular dynamics in the baseline phase is
performed through the estimation of a Functionally Pooled AutoRegressive (FP–AR) model
of the form [21]:

yk[t] +
na

∑
i=1

ai(k) · yk[t − i] = ek[t], ek[t] ∼ NID(0, σ2
e (k)) with k ∈ R

ai(k) =
p

∑
j=1

ai,j · Gj(k)
(1)

with na designating the AR order, ek[t] the model residual signal and NID (·, ·) Normally
Independently Distributed with the indicated mean and variance. The AR parameters
ai(k) are modeled as explicit functions of tread depth k using a p-dimensional functional
subspace spanned by the mutually independent functions G1(k), . . . , Gp(k), while the
constants ai,j designate the corresponding AR projection coefficients. The FP–AR model
identification is based on [21]: (i) the determination of the FP–AR model order na and
its functional subspace dimensionality p for a given basis function family (any type of
orthogonal polynomials such as Legendre or Chebyshev may be equivalently used) using a
Genetic Algorithm (GA) for the minimization of the Bayesian Information Criterion (BIC);
(ii) the model estimation based on Ordinary Least Squares (OLS) using “data pooling” for
the M available vibration signals (see also Section 2) corresponding to the sample of known
tread depths k1, . . . , kM within the range of interest [0, kmax], where typically kmax = kM;
and (iii) the model validation via testing of the obtained model residual signals the white-
ness (uncorrelatedness) hypothesis. Additionally, this phase includes the development of a
tread depth evolution function k = f (τ) that interconnects the available tread depth samples
with the corresponding mileage through typical curve fitting approaches. It should be
noted that this function is similar with the one which, by exception, is formulated in this
study, (Section 3) for the generation of a significant volume of data due to the limited actual
measurements, thus allowing the method’s statistical reliable assessment, yet this will not
be the case in an actual application of the method.

In the inspection phase, a vibration signal yu[t] (subscript u stands for unknown) is
acquired from the vehicle traveling in a new re-profiling cycle under potentially hollow
worn wheels with unknown tread depth k (also see Section 2), and the railway wheels
RULE method is activated through the following two steps:
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Step 1: Given the estimated FP–AR(na)p model of the baseline phase, yu[t] is substituted in
Equation (1), the latter is solved with respect to eu[t, k] and based on this expression
the estimation of the unknown k (current tread depth) is achieved using the following
Nonlinear Least Squares (NLS) estimator, which is implemented by golden search
and parabolic interpolation [25]:

k̂ = arg min
k

N

∑
t=1

e2
u[t, k] (2)

with ̂ designating the estimate and eu[t, k] the model residuals under an unknown
tread depth. The obtained k̂ is finally validated through typical hypothesis testing of
eu[t, k] whiteness via the Pena–Rodriguez test statistic D, which follows a standard
normal distribution for a white sequence [26]. The whiteness hypothesis is accepted iff
|D| ≤ Z with Z indicating a user selected threshold that is determined using typical
normal distribution risk levels or heuristically based on the max absolute value of
D as obtained from the identified FP–AR model residual signals. The successful
validation of the k̂ estimate indicates that the current dynamics as obtained from the
measured vibration signal yu[t] may be accurately represented by the FP–AR model
of the baseline phase and the estimate k̂ of the tread depth is accepted.

Step 2: Based on the tread depth evolution function of the baseline phase, the indicated
hollow wear by k̂ is matched with the corresponding running mileage τ̂u that leads to
such a hollow wear which, as mentioned previously, may not necessarily be the same
with the current mileage indicated by the train speed meter. Thus:

τ̂u = f−1(k̂) (3)

and wheels RULE in terms of wheels remaining mileage τ̂r
u estimation is readily

obtained as:
τ̂r

u = τM − τ̂u (4)

with τM indicating the running mileage corresponding to the selected critical limit of
the tread depth kM as defined in the baseline phase.

5. Performance Assessment of the Remaining Useful Life Estimation Method

Baseline (training) phase: The M = 18 acceleration signals from the initial re-profiling
cycle, as obtained from the accelerometer on the vehicle bogie (also see Table 2), with each
one corresponding to a known tread depth ki and running mileage τi (i = 1, . . . , 18), are
used for the identification of an FP–AR(62)4 model with order na = 62 and functional
subspace consisting of p = 4 Shifted Legendre polynomials; see estimation details in
Table 3). This model represents the partial lateral vehicular dynamics for any wheel tread
depth lying within the continuous range of [0, 2.3] mm. Furthermore, the samples of the
actual tread depths and corresponding mileages (Table 1) are used for the determination of
the tread depth evolution function, which is of the exponential form (as made for Section 3):
k = aebτ − a with all details given in Table 3 (Baseline phase).

Figure 3a,b depicts the excellent agreement of the PSD with respect to the wheels
tread depth as obtained by the FP–AR(62)4 and its corresponding Welch-based counterpart,
indicating the FP–AR model’s capability to represent the vehicle dynamics for varying
tread depths with high accuracy. Figure 3c includes a similar comparison for one indicative
test case corresponding to a specific tread depth where the accurate modeling is also
evident. Figure 3d depicts the values of the D statistic as obtained from the Pena–Rodriguez
whiteness test based on the 18 model residual (error) signals as they are obtained from
the estimated FP–AR (62)4 model, as well as the threshold Z = 0.3 which is heuristically
selected to be almost two times higher than the maximum absolute value of D.
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Table 3. Details on the baseline and inspection phases of the RULE method.

Baseline phase

Estimated Model No. of projection
coefficients Samples Per Parameter Condition Number a BIC

FP–AR(62)4 248 261.29 7.66 × 104 −62.55

FP–AR: Estimation via Ordinary Least Squares (OLS) [21]; No. of signals: M = 18; Signal length: N = 3600 samples
Functional subspace: Dimensionality determination via Genetic Algorithm, Population = 100, Elite count = 20,

Number of generations = 50, Function tolerance = 10−14, Matlab function: ga.m

Functional basis p: 4 Shifted Legendre polynomials G = {G0(k), G1(k), G2(k), G3(k)} b

Evolution function: k =

f (τ)︷ ︸︸ ︷
aebτ − a with a = 1.80 and b = 3.33 × 10−6, Matlab function: fit.m

Inspection phase

Wheel tread depth estimation: Estimation of k via NLS estimator (golden search & parabolic interpolation), Function tolerance = 10−10,
Step Tolerance = 10−10, Matlab function: fminbnd.m

Validation: Pena–Rodriguez residual whiteness test; user selected threshold Z = 0.3 (No. of lags = 100)
Remaining Useful Life Estimation: Based on Equation (4) is τ̂r

u = τM − b−1 ln k̂+a
a

a Condition number of ΦTΦ (refer to Equation (11) in [21]); b Gn: univariate orthogonal polynomial of degree n.
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Figure 3. FP–AR(62)4 model validation results (Baseline phase): (a) Welch-based and (b) FP–AR(62)4-
based PSD estimates using the 18 acceleration signals (initial re-profiling cycle) of the baseline
phase. (c) Indicative Welch- and FP–AR(62)4-based PSD estimates for tread depth k10 ≈ 0.97 mm.
(d) FP–AR(62)4 model residual whiteness test results in terms of the Pena–Rodriquez D statistic along
with the user selected threshold.

Inspection (online) phase: The 4 signal sets of Table 2 that lead to the 548 test cases
with hollow worn wheels are used in this phase for the method’s RULE performance
assessment. It is worth noting that in all these test cases the wheels wear (tread depth)
is unknown and their remaining useful mileage should be estimated. The available
vibration acceleration signal from each test case is driven through the FP–AR(62)4 model
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and the wheels tread depth k̂ along with the remaining mileage τr
u are estimated via

Equations (2) and (4), respectively.
Figure 4 depicts the scatter plot of the method’s D statistical values for all considered

tread depths corresponding to the 548 signals of the inspection phase, as well as the
threshold of D (Z = 0.3) as selected in the baseline phase. As is evident, all D values
are under the threshold indicating that all tread depth estimates through the FP–AR(62)4
model are valid, and may be used in the evolution function for the wheels remaining useful
mileage estimation. The remarkably low estimation mean errors of wheel tread depths
for each signal set are presented in Table 4, indicating the precise on-board estimation of
wheels wear based on the employed FP–AR model.
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D
st
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jDj
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Figure 4. Validation of the FP–AR(62)4-based tread depth estimates (Inspection phase): an estimate is
validated if the Pena–Rodriquez D statistic is under the user selected threshold (548 signals in total,
4 signal sets with each set corresponding to 137 tread depths).

Table 4. Mean Absolute Error (MAE) for wheels tread depth and remaining mileage estimation per
signal set.

Signal Set
MAE

Tread Depth Remaining Mileage (%) *

1 0.074 mm 8.17 × 103 km (3.34%)
2 0.072 mm 7.72 × 103 km (3.15%)
3 0.075 mm 8.09 × 103 km (3.30%)
4 0.072 mm 7.84 × 103 km (3.20%)

* Percentage over total mileage τM = 244,800 km.

Once the precise estimates of the wheels tread depths that are under unknown hollow
wear are validated, their remaining mileage is obtained using the inverse evolution function,
which is shown in Table 3 (see inspection phase), and the results for the 548 test cases are
presented in Figure 5. In particular, each subplot includes the remaining mileage estimates
(blue circles) as obtained by the method based on the signals from one of the four considered
signal sets corresponding to 137 distinct tread depths (see Table 2) along with the actual
values (black line). As it is evident, the method is capable of estimating accurately the
wheels remaining useful life from the beginning of the vehicle operation (re-profiling cycle),
which is also confirmed by the the Mean Absolute Error (MAE) that is presented in Table 4
per signal set.
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Figure 5. Hollow worn wheels remaining useful life estimation results (Inspection phase). Each
subplot includes remaining mileage estimates (blue circles) for the 137 test cases of hollow worn
wheels along with the true mileage (black line) using the acceleration signals from: (a) Set 1, (b) Set 2,
(c) Set 3, (d) Set 4.

6. Comparison with a Multi-Health State Classification Method for RULE

The comparison of the postulated method with a multi-health state classification-
based RULE method, which is based on multiple, conventional, AutoRegressive models
(MM–AR), is presented in this section. A non–parametric variant of this method with very
promising results has been recently presented by the authors and collaborators of [16].

For a fair comparison, the railway wheels HW for all considered re-profiling cycles is
divided into 7 distinct “health states” associated with specific railway wheel tread depth
ranges and remaining mileage intervals as shown in Table 5. Based on these, the comparison
between the two methods is performed according to their capability to correctly classify the
unknown tread depths to the specific health states, which as mentioned in the introduction
corresponds to a gross and not precise RULE.

Table 5. Investigated health state classes of wheels with HW for classification-based RULE along
with the corresponding ranges of tread depths and remaining mileages.

Health State Class Tread Depth Range (mm) Remaining Mileage Range (mm)

HW–1 [0, 0.22) [244,800, 210,000)
HW–2 [0.22, 0.47) [210,000, 175,000)
HW–3 [0.47, 0.74) [175,000, 140,000)
HW–4 [0.74, 1.07) [140,000, 105,000)
HW–5 [1.07, 1.42) [105,000, 70,000)
HW–6 [1.42, 1.83) [70,000, 35,000)
HW–7 [1.83, 2.30] [35,000, 0]
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There is no new training procedure for the FP–AR-based method, while the same AR
order (na = 62) is adopted for the MM–AR-based method. However, the latter needs 56 sig-
nals (8 acceleration signals per health state) from the initial re-profiling cycle for its training,
in contrast to the FP–AR, which is trained with M = 18 vibration signals. Thus, both meth-
ods’ assessment is performed in this section using 510 vibration signals. The parameter
vectors of the multiple AR models is the feature that is employed by the MM–AR-based
method for RULE, which is achieved through multi-health state classification. The decision
mechanism is based on the Mahalanobis distance between the available baseline phase
model parameter vectors (8 per health state) and is obtained from a single AR model of
the same order estimated in the inspection phase for each of the considered 510 test cases.
On the other hand, there is no decision making mechanism for the FP–AR-based method
and just the estimated remaining mileage τ̂r

u is classified into one of the remaining mileage
ranges (Table 5) and thus to the corresponding wheels health state.

An S-fold cross validation procedure ([27] p. 33) is adopted for the methods’ thorough
assessment and fair comparison including “rotation” of the signals, which are used in the
baseline phase for the training of the methods. In particular, four rotations are performed
per method, leading thus to a total of 2040 (4 × 510) inspection cases. The classification-
based RULE results for both methods are presented via confusion matrices [28] in Figure 6.
The FP–AR-based method achieves much higher correct classification percentages in all
considered inspection cases than the MM–AR-based method, although it is not designed
for such type of operation.
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Figure 6. Confusion matrices including the multi-health state classification-based RULE results
for: (a) the FP–AR(62)4-based method and (b) the MM–AR(62)-based method. Blue tint: correct
classification, red tint: misclassification. (2040 inspection test cases per method).

In each confusion matrix, the blue colored diagonal and the red colored off-diagonal
cells correspond to the number of correctly and incorrectly classified inspection cases,
respectively. The row summaries on the right of each matrix indicate the percentages of
correctly (True Positive Rate or TPR) and incorrectly (False Positive Rate or FPR) classified
inspection cases per true health state with blue and red tint, respectively [28]. On the
other hand, column summaries at the bottom of each display the Positive Predictive Values



Sensors 2024, 24, 375 13 of 16

(also referred to as PPV or precision) and False Discovery Rates (also known as FDR or
1 − precision) per predicted health state using the same color code as previously [28].

The overall percentages of the correctly classified inspection cases (True Positive Rate)
and Positive Predictive Values (precision) are summarized in Table 6. Based on these, the su-
periority of the proposed method, even if it is used as classification-based RULE is evident
reaching an overall 81.17% true positive rate and 82.51% precision, while the performance
of the MM–AR-based method is poor achieving 45.44% and 45.66%, respectively.

Table 6. Total scores from multi-health classification-based RULE.

Method True Positive Rate (TPR) (%) Precision (PPV) (%)

FP–AR(62)4 81.17 82.51
MM–AR(62) 45.44 45.66

7. Conclusions and Discussion

The problem of automated remaining useful life estimation (RULE) of hollow worn
railway vehicle wheels via on-board precise wheel tread depth estimation using lateral
vibration signals from a single accelerometer on the bogie frame has been addressed has
been, for the first time, addressed in this study, based on a a statistical time series method.
This is a problem of high importance, as hollow worn wheels lead to significant lateral
vibrations of the vehicle, and the prompt determination of their remaining useful mileage
(or else the RULE), before the critical limit is surpassed, may reduce maintenance cost and
enhance passenger comfort and safety.

The introduced method is founded on two main components: (a) an FP–AR model for
the vehicular dynamics representation and wheels precise tread estimation, and (b) a wheel
tread depth evolution function interconnecting the estimated tread depth (hollow wear)
with the corresponding remaining mileage. In particular, an FP–AR(62)4 model for the
representation of the vehicular dynamics within the continuous tread depth range [0, 2.3]
mm and an exponential function for the tread depth evolution with respect to the vehicle
running mileage have been employed. The training of the method has been based on a
limited number of 18 acceleration signals from an initial wheel re-profiling cycle, while its
performance has been assessed using vibration signals from four more, distinct, re-profiling
cycles that led to 548 inspection test cases with hollow worn wheels. Furthermore, a com-
parison with an MM–AR-based method in a multi-health state classification framework for
RULE has been performed based on 2040 inspection cases.

Based on the results of Section 5, as well as the pertinent state of the art on the topic that
is presented in Section 1, the main lessons learned from the study are concisely summarized
and discussed below:

(i) A key advantage of the proposed method is the fact that the wheel RULE is achieved
using a very special feature, the wheel tread depth which, unlike with the statistical
models—which rely on static quantities such as the RMS, kurtosis and thus on exploit-
ing limited information of the vehicle dynamics—is the characteristic that describes
exactly the considered hollow wear, and is precisely estimated through the FP–AR
model using the full information included in the vibration signals. Another advan-
tage of the introduced method is that its training requires only a limited number of
on-board vibration signals (18 are used in this study) from a single re-profiling cycle,
compared to the AI/ML model-based methods that typically require a significant
number of vibration signals from multiple run-to-failure experiments. Regarding the
multi-class classification methods, the advantage of the new method is its capability
to provide precise RULE instead of rough classification.
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(ii) Other general advantages of the introduced method that may be mentioned are:
(a) Its capability to operate with just a single accelerometer placed on the vehicle’s
bogie frame that effectively circumvents the problem of frequent calibration or even
replacement of sensors which are commonly installed to the axlebox area with highly
harsh and noisy conditions. (b) It offers simplicity as its training includes the relatively
simple identification of an FP–AR model and the determination of the evolution
function, while its operation in real time requires a simple optimization procedure and
the validation of the tread estimate that directly leads to the wheels useful mileage
through the evolution function. (c) The estimation of the wheel tread depth provides
valuable insight about the evolution of the hollow wear over the running mileage and
conditions such as abrupt and long braking, imbalanced payload, and so on.

(iii) The RULE results of the method’s assessment based on the four sets of signals from
the corresponding re-profiling cycles in the inspection phase indicated high accuracy
in tread depth estimation from very early stages of hollow wear with the maximum
mean absolute error to be 0.075 mm (based on Set 3), while the remaining mileage
maximum mean error of 8170 km corresponds to the 3.34% of the total mileage.

(iv) The results from the comparison with a multi-health state classification MM–AR-based
method, involving 2040 inspection test cases, revealed the superior performance of
the introduced method, although it is not designed to operate in such a classification
framework. It achieved an overall True Positive Rate of 81.17% and precision of 82.51%
for the considered health states, with its competitor to demonstrate poor performance
with an overall True Positive Rate of 45.44% and precision of 45.66%.

Despite its various advantages, the main limitations of the study include the re-
quirement of known samples of tread depths at corresponding mileage for a complete
re-profiling cycle, and the potential decrease on the method’s accuracy for applications
where the pattern of the evolution function significantly alters in different life cycles, yet
this is not expected for railway vehicle wheels.

However, future work includes further exploration of the method’s performance using
solely experimental data, a second accelerometer, as well as varying operating conditions
such as different payload. Furthermore, the case of a varying pattern evolution function
in subsequent re-profiling cycles along with the potential use of additional wheels critical
dimensions (i.e., flange gradient, thickness, height) will be also investigated in order to
extend and solidify the method as a valuable tool of high precision and simplicity for
railway vehicle predictive maintenance.
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The following abbreviations are used in this manuscript:

AR AutoRegressive
BIC Bayesian Information Criterion
FP Functionally Pooled
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OLS Ordinary Least Squares
PSD Power Spectral Density
RULE Remaining Useful Life Estimation
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