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Abstract: In recent years, the global upswing in vessel-bridge collisions underscores the vital need for
robust vessel track identification in accident prevention. Contemporary vessel trajectory identification
strategies often integrate target detection with trajectory tracking algorithms, employing models
like YOLO integrated with DeepSORT or Bytetrack algorithms. However, the accuracy of these
methods relies on target detection outcomes and the imprecise boundary acquisition method results
in erroneous vessel trajectory identification and tracking, leading to both false positives and missed
detections. This paper introduces a novel vessel trajectory identification framework. The Co-tracker,
a long-term sequence multi-feature-point tracking method, accurately tracks vessel trajectories by
statistically calculating the translation and heading angle transformation of feature point clusters, mit-
igating the impact of inaccurate vessel target detection. Subsequently, vessel trajectories are predicted
using a combination of Long Short-Term Memory (LSTM) and a Graph Attention Neural Network
(GAT) to facilitate anomaly vessel trajectory warnings, ensuring precise predictions for vessel groups.
Compared to prevalent algorithms like YOLO integrated with DeepSORT, our proposed method
exhibits superior accuracy and captures crucial heading angle features. Importantly, it effectively
mitigates the common issues of false positives and false negatives in detection and tracking tasks.
Applied in the Three Rivers area of Ningbo, this research provides real-time vessel group trajectories
and trajectory predictions. When the predicted trajectory suggests potential entry into a restricted
zone, the system issues timely audiovisual warnings, enhancing real-time alert functionality. This
framework markedly improves vessel traffic management efficiency, diminishes collision risks, and
ensures secure navigation in multi-target and wide-area vessel scenarios.

Keywords: vessel-bridge collision; vessel trajectory tracking; vessel trajectory prediction; GAT;
transformer

1. Introduction

Vessel-bridge collision accidents have a significant impact on the safety of bridges and
highways, as well as the lives, property, and socio-economic development of people. These
accidents are attributed to various factors, including adverse natural environmental condi-
tions, poor navigational conditions, vessel-related issues, negligence by vessel operators,
and insufficient managerial experience. Vessel-bridge collision accidents lead to serious
casualties and substantial property losses, highlighting the urgent need for research into
vessel collision prevention technologies [1].

Passive collision prevention methods [2–4] can mitigate the damage caused by vessel-
bridge collisions but cannot entirely prevent the occurrence of such collisions. This study
focuses on active collision prevention methods, which significantly reduce the probability
of vessel-bridge collisions by providing warnings to vessels at high risk of collision. This
approach helps the vessel to correct the abnormal condition and reduces the probability of
bridge collisions.

Between 2010 and 2020, numerous researchers explored and optimized the selection
and placement of sensors for active collision prevention methods. In 2010, Ji [5] constructed
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an active collision prevention system for the Sutong Bridge using an Automatic Recognition
System (AIS) and Very-High-Frequency Digital Selective Calling Terminal (VHF-DSC)
devices, establishing the framework for the active collision prevention system. However,
AIS devices are associated with low accuracy, a low reporting frequency, and can be
manually turned off, making it challenging to achieve true “active” prevention. Chen [6]
deployed visible light and infrared cameras at the Shanghai Dazhihe Highway Bridge,
using the AForge.NET toolkit to achieve real-time vessel detection and tracking. These
types of active vessel-bridge collision prevention system devices offer significant economic
benefits compared to the expensive construction costs of AIS and VHF devices. In 2013,
Ren [7] implemented active warnings by deploying lasers and fusing multiple data sources,
including infrared, visible light, and laser, to construct active warnings. In contrast, in 2018,
Cai [8] conducted more in-depth work by fusing image data with a Full Coherent Doppler
Radar at the Foshan Jiujiang Bridge. The following year, Xia [9] successfully established
a large-scale navigational bridge collision prevention system in the Ningbo Sanjiangkou
Area by deploying laser-based height restriction sensors, video cameras, radar, VHF, AIS,
and other equipment.

The advantages and limitations of the prevailing sensor device selection schemes
are summarized in Table 1. Camera sensors offer a promising research avenue due to
their higher accuracy, lower cost, and the ability to capture more target features. This
characteristic has made video-based active collision prevention technology the primary
focus of research over the years, with vessel target detection and tracking being the core
technology within this domain.

Table 1. The main active vessel-bridge collision prevention sensor devices.

Method Synthetic Aperture Radar Camera Automatic Recognition
System

Weather adaptability

Strong universality, suitable
for a variety of environments
(white, day, sunny, rain), high

precision [10]

Dependent on lighting, best
performance in clear weather Unaffected

Continuous monitoring
capability Strong (All time)

Dependent on lighting,
requires auxiliary equipment

at night
Unaffected

Sea Condition Adaptability Strong Moderate Strong

Accuracy Strong Moderate Instability

Cost High Low The construction cost is high,
the use cost is low [11]

Main advantages High resolution, wide
coverage Rich image features Provides detailed ship

information

Main disadvantages Complex operation Limited viewing angle and
lighting

Reporting frequency and
accuracy are limited

In the early mainstream detection methods, background subtraction was commonly
used, while tracking methods often involved frame differencing or optical flow. Yang [12]
introduced an adaptive frame differencing (AFID) tracking method for vessel targets with
varying speeds. However, such target detection and tracking methods have significant
flaws, notably their sensitivity to lighting conditions and their difficulty in obtaining com-
plete motion foreground pixels, often leading to noise interference and gaps in the results.

With the advancement of computer vision technology, the three major handcrafted
feature methods (HOG, LBP, HAAR) have gained prominence in the field of object detection.
Chao Dong [13] utilized directional gradient histogram units combined with Fourier bases
to obtain rotation-invariant gradient descriptors and applied support vector machines to
recognize vessel targets from any orientation. In the domain of maritime vessel visual
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tracking, Liu [14] and Chen [15] have made significant improvements in and applications
of the Kernelized Correlation Filter (KCF) method. These advancements have reduced the
adverse impact of factors such as weather conditions and vessel obstructions on target
tracking, making a profound impact on maritime vessel visual tracking.

In recent years, with the rise of deep learning, there have been revolutionary advances
in object detection and tracking tasks based on video images. Mainstream object detection
methods are categorized into two classes: region proposal-based two-step algorithms
and end-to-end algorithms. These algorithms are not limited to video images but are
also used in remote sensing images. For example, in 2020, Dong [16] used an improved
Faster-RCNN network to detect objects in high spatial resolution vessel remote sensing
images, expanding the sources of image data. In the same year, Xia [9] established and used
a large vessel image dataset to train the SSD model, generating a vessel target detection
model suitable for complex environments. At this point, vessel object detection algorithms
based on video images have met the requirements of real-time and efficiency. In the field of
object tracking, an outstanding single-object tracking paper called “SiamMask” appeared
at the 2019 CVPR conference. Its performance represented a significant leap in comparison
to other algorithms in the single-object tracking field at the time. Xi [17] improved this
network to achieve excellent vessel tracking results. However, it is evident that a single
target cannot adapt to real navigation scenarios. To address this, Yang [18] optimized the
anchor box initialization in the YOLOv3 algorithm and combined it with the DeepSORT [19]
cascade tracking algorithm to achieve better results in vessel multi-object tracking. At this
point, vessel multi-object tracking algorithms have also met the requirements of efficiency
and real-time performance.

Indeed, the current widely used methods are generally capable of detecting vessel
targets and tracking their movements in most common scenarios. These methods typically
identify the position of detected targets in two main ways: bounding boxes and heatmaps.
For heatmap methods, although they can relatively accurately determine the specific point
coordinates of vessel targets and track their movements, factors like large output feature
maps, the need for extensive labeled data for training, high memory consumption, and
limited generalization capabilities make it challenging for heatmap methods [20] to become
mainstream applications.

Bounding boxes are usually determined through the output of fully connected layers.
However, the use of fully connected layers can lead to the loss of spatial information in
feature maps, reducing spatial generalization capabilities. Unlike this, vessels on water
can have significant variations in their orientation, so using rectangular bounding boxes
to extract vessel trajectories may introduce substantial errors. While some researchers,
such as Feng Zhang [21], have improved bounding box structures by obtaining rotating
anchor boxes to enhance the accuracy of vessel trajectory extraction, this is still a localized
improvement, and bounding box methods continue to limit the potential for further im-
proving vessel motion accuracy. While methods like YOLO combined with algorithms
similar to DeepSORT and ByteTrack [22] offer fast vessel target detection, decent tracking
capabilities, and robust occlusion handling, their trajectory acquisition is relatively coarse.
The effectiveness of their tracking performance is intricately tied to the stability of target
detection, with potential limitations in acquiring comprehensive vessel feature information.
Without extensive model training, these methods are prone to false positives and missed
detections, which can result in misaligned trajectory timestamps due to missed detections
and incomplete trajectories due to false positives. The accuracy of such methods may not
suffice to accurately track vessel motion trajectories. In the long run, discarding bounding
boxes and adopting superior tracking methods is a necessary trend to achieve precise vessel
motion tracking.

Vessels are often modeled as planar rigid bodies during their voyages, involving not
only translation but also rotation, with changes in size as the distance varies. Therefore, a
more sophisticated approach is required to acquire vessel motion trajectories for enhanced
accuracy and efficiency in vessel traffic management. In such scenarios, Meta AI has
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introduced a method called Co-tracker [23], which is based on Transformers and is used
for motion estimation in long video sequences. This method excels in conducting the
dense tracking of points in extended video sequences, adeptly addressing challenges like
occlusion, dynamically incorporating new tracking points as necessary, and even facilitating
reverse tracking. Its robust stability is demonstrated across diverse scenarios.

Once precise vessel motion trajectories are obtained, the further prediction of vessel
trajectories contributes to the implementation of an active vessel-bridge collision prevention
system’s warning function in bridge areas. Predicting trajectories for vessels requires a
sophisticated analysis of the spatial interactions among multiple targets, particularly when
confronted with complex navigation situations involving numerous vessel targets. The
STGAT method proposed by Huang [24] takes into account the spatiotemporal interactions
of multiple pedestrian trajectories and delivers excellent performance. Combining the
above-mentioned methods, a high-performance trajectory identification and prediction
framework has been implemented. This framework utilizes a multi-feature point vessel
target tracking method for long time series, obtaining high-precision trajectory data. Long
Short-Term Memory (LSTM) and Graph Attention Neural Networks (GATs) are employed
to predict the historical trajectories of multiple target vessels, achieving proactive warning
purposes. The advantages of this framework are as follows:

1. More accurate trajectories:

The combination of YOLO and the DeepSORT algorithm relies on bounding boxes
for approximating target positions, followed by post-processing methods to obtain vessel
trajectory data, thus introducing complexity to the trajectory processing procedure. Notably,
the accuracy of trajectories in this method is significantly affected by the precision of the
detection algorithm, making it vulnerable to issues such as missed detections and false
alarms. Consequently, abnormal spikes in trajectory recognition and poor robustness
can arise. In contrast, our framework excels in eliminating untracked feature points in a
timely manner. Leveraging the statistical characteristics of tracked feature point groups,
our approach yields more accurate trajectories, offering a notable improvement over the
conventional YOLO-based method.

2. Obtaining richer features—heading angle, vessel scale:

Unlike single-target detection algorithms that rely on bounding boxes to regress target
position information, our framework not only captures the heading angle of the target but
also extracts valuable information regarding the target’s scale and so on.

3. No missed detections or false alarms:

Automatically designating certain feature points as invisible when tracking becomes
challenging, this framework seamlessly leverages statistical information from the remaining
trackable points to derive vessel target trajectories and additional features. This strategic
approach effectively minimizes the occurrence of missed detections and false alarms.

2. Vessel Trajectory Identification Technology
2.1. Modeling Vessel Motion under the Camera

To extract more comprehensive feature information, such as the actual heading angle
and dimensions of vessels from video images, it is necessary to simplify and streamline
the method for acquiring world coordinates. From the perspective of camera surveillance,
within a defined monitoring range and over a certain period of time, if there is minimal
fluctuation in the water level within the navigable area, it can be considered as a constant
water level. Similarly, assuming a constant cargo load during vessel navigation, the actual
coordinate height along the z-axis of the vessel’s tracked point can be regarded as constant.
Hence, the mapping relationship between the world coordinate Zw of a fixed point on the
vessel and its corresponding pixel coordinate is established, where i is the track point of
the vessel, and t is for any frame:

ρ
(
ut

i , vt
i
)
≡ Zw
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Therefore, the process of converting pixel coordinates to world coordinates is simpli-
fied to the task of determining the world coordinates Xw and Yw, given the world coordinate
Zw of a point. With this simplification, the coordinate transformation formula is derived
as follows:

The following formula (Equation (1)) describes the transformation from pixel coordi-
nates to world coordinates:

Zc

u
v
1

 =

 fx 0
0 fy
0 0

cx 0
cy 0
1 0




r11 r12
r21 r22

r13 t1
r23 t2

r31 r32
0 0

r33 t3
0 1




Xw
Yw
Zw
1

 = K

[
R T
⇀
0 1

]
Xw
Yw
Zw
1

 (1)

And based on the derivation in the last line of this equation, it is easy to express the
coordinates of one point in the camera coordinate system Zc, in terms of world coordinates,
as shown in the following Equation (2):

Zc =
[
r31 r32 r33 t3

]
Xw
Yw
Zw
1

 (2)

By substituting Zc in the camera coordinate system, the problem of scale uncertainty
introduced by Zc is resolved. The product of the camera intrinsic matrix and the extrinsic
matrix is simplified, and this resulting 3 × 4 matrix is denoted as follows in Equation (3):a11 a12

a21 a22
r31 r32

a13 a14
a23 a24
r33 t3

 (3)

Therefore, the initial transformation equation (Equation (1)) can be transformed into
the following Equation (4):

[
r31 r32 r33 t3

]
Xw
Yw
Zw
1


u

v
1

 =

a11 a12
a21 a22
r31 r32

a13 a14
a23 a24
r33 t3




Xw
Yw
Zw
1

 (4)

By ignoring the last row and using the concept of block matrix multiplication, we
obtain the following Equation (5):[

a11 a12
a21 a22

][
Xw
Yw

]
+

[
a13 a14
a23 a24

][
Zw
1

]
=

[
r31u r32u
r31v r32v

][
Xw
Yw

]
+

[
r33u t3u
r33v t3v

][
Zw
1

]
(5)

Combining this matrix equation, we have the following Equation (6):[
a11 − r31u a12 − r32u
a21 − r31v a22 − r32v

][
Xw
Yw

]
=

[
r33u − a13 t3u − a14
r33v − a23 t3v − a24

][
Zw
1

]
(6)

It should be noted that, theoretically, there may be situations where it is impossible
to have a reversible transformation from pixel coordinates (u, v) to world coordinates.
However, in practical scenarios, considering the constraints of camera parameters and
other factors, we can assume that such a matrix is invertible and feasible. Thus, we have

established a connection between
[

Xw
Yw

]
and

[
u
v

]
as shown in Equation (7).

[
Xw
Yw

]
=

[
a11 − r31u a12 − r32u
a21 − r31v a22 − r32v

]−1[r33u − a13 t3u − a14
r33v − a23 t3v − a24

][
Zw
1

]
(7)
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Another prior piece of information is that, when using a relatively high-angle camera,
even though the scale of the vessel may vary considerably during its journey, its edge shape
typically remains relatively consistent. Therefore, the contour features of the vessel usually
support our continuous tracking method, as described in the subsequent text.

Utilizing this information and combining the mapping relation vessel between [Xw, Yw]
T

and [u, v]T , we can model the motion of the vessel under a monocular camera. Assuming
that the edge shape of the vessel target remains relatively consistent, we consider the
motion of the vessel target in the world coordinate system as rigid plane motion imaged in
the pixel coordinate system.

Based on this assumption, the motion of the vessel in the world coordinate system can
be represented as a combination of changes in heading angle and a translation vector in the
pixel coordinate system. For a monocular camera, the motion of the vessel is imaged as
shown in Figure 1.
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Figure 1. Imaging of the vessel’s motion.

The acquired trajectory composed of multiple frames of vessel feature points is further
processed. The translation vector T(t, t − 1) from time t − 1 to time t is computed using
Equation (8), defined as the coordinate change of the mean of the feature points Pt(ui, vi)
in the point cloud after removing outliers between consecutive frames. The change in the
heading angle R(t, t − 1) from time t − 1 to time t is calculated using Equation (9), which
involves fitting the shape (e.g., linear) of the feature points between consecutive frames
and obtaining the rotational component.

T(t, t − 1) = M
(
∑N

i=1 θ(Pt(ui, vi))
)
− M

(
∑N

i=1 θ(Pt−1(ui, vi))
)

(8)

R(t, t − 1) = L(θ(Pt(u, v)))− L(θ(Pt−1(u, v))) (9)

In this context, θ(·) represents deleting warning values, M(·) stands for obtaining
mean values, L(·) signifies overfitting of the shape, and Pt(ui, vi) denotes the pixel coordi-
nates of point i.

For individual vessels, the aforementioned formula is applicable. However, when
processing the trajectories of multiple vessels simultaneously, the handling of the acquired
tracking points differs. Initially, it necessitates the application of a clustering algorithm to
these tracking points in each frame to ascertain the cluster centers of multiple vessels. The
alteration in the cluster centers is then used to represent their trajectories. To capitalize
on the advantage of tracking points encompassing the contours of the vessels, a Principal
Component Analysis (PCA) is conducted on these points to determine their principal axis
direction, which serves as the course direction. This approach facilitates the simultaneous
processing of data from multiple vessels, without further elaborating on the formula.
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2.2. Motion Estimation Method

Drawing inspiration from the ideas and methods of Co-tracker, the following definitions
are made for the concepts used in tracking vessel feature point clouds. The long-term video
sequence is regarded as being composed of T frames of RGB images, denoted as follows:

V = (It)
T
t=1, It ∈ R3×H×W .

In the video to be tracked, any number of pixels is denoted as follows:

Pi
t = (xi

t, yi
t), t = u, . . . , T; i = 1, . . . , N.

where u represents the initial time for tracking initiation. To represent the visual status of
each point and indicate whether tracking has failed, the visual status is defined as follows:

vi
t = {0, 1}

where 1 indicates that the pixel point can be tracked, and 0 indicates that it is occluded or
tracking has failed. Therefore, the entire tracking problem for the vessel’s feature point
cloud is defined as estimating the positions of the N tracking points specified in the first
frame in the subsequent T − u frames.

To optimize the estimation of the tracking point trajectories, Co-tracker’s approach
is based on the idea that estimating the overall motion of an object should not ignore the
constraining effect of different points on the object. Just as points on the surface of an object
are constrained by nearby points, it is necessary to obtain global features of an object or,
in other words, to obtain appearance features ϕ(It) corresponding to each frame. These
appearance features are then down-sampled to initialize the tracking features Qi

t ∈ Rd upon
which the tracking points depend. Subsequently, the position estimation of the tracking
points is iteratively optimized using these tracking features.

To consider the constraints between related points, they introduce related feature
vectors Ci

t ∈ RS. These vectors are obtained by stacking the inner product of the image
features ϕ(It; s) normalized by the estimated positions with the tracking features Qi

t, as
expressed in Equation (10):

Ci
t =< Qi

t, ϕ(It; s)

[
P̂i

t
ks + δ

]
> (10)

Subsequently, they apply Transformer theory to iteratively optimize N tracking points
in each frame for M iterations to obtain the most accurate estimates. Each iteration’s input
includes the current position estimates P̂i

t , the activation of the initial visual states logit
(
v̂i

t
)
,

tracking features Qi
t, related features Ci

t, and motion encoding P̂i
t − P̂i

1, where γ represents
the sine positional encoding, as shown in Equation (11):

Gi
t = (P̂i

t , logit
(

v̂i
t

)
, Qi

t, Ci
t, γ

(
P̂i

t − P̂i
1

)
(11)

Using φ(·), which is the output after applying the Transformer, they update the
estimates of the positions and tracking features, as shown in Equation (12):

O
(

P̂(m+1), Q(m+1)
)
= φ

(
G
(

P̂(m), v̂(0), Q(m)
))

(12)

Throughout the M iterations, when the defined losses (e.g., cross-entropy loss for
visible states and loss for tracking point estimation, not discussed in detail here) meet the
requirements, the estimation of the tracking point positions is achieved.

The main workflow of the multi-feature point motion trajectory method described
above is as shown in Figure 2:
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In practical engineering applications for tracking multiple feature point clusters on
vessels, there is a need to track as many feature points as possible to improve accuracy
while ensuring that feature points are not overly dense to save resources and increase
speed. This led to the development of an efficient multi-feature point tracking method by
combining the characteristics of Co-tracker to obtain related feature points. To track vessels
efficiently, instance segmentation is used to acquire masks as constraints.

However, the effectiveness of mainstream instance segmentation methods is often
compromised when segmenting ship instances against complex ocean backgrounds. This
challenge primarily arises from three aspects:

• Complex Backgrounds:

The intricate nature of oceanic settings, characterized by waves, light reflections, and
water surface textures, creates visual similarities with the ship instances [25]. This similarity
hinders the segmentation algorithm’s ability to distinguish the ships from their background,
thereby impacting the deep learning model’s performance and its precision in accurately
locating and generating semantic masks for each instance.

• Small Object Recognition:

The limited pixel representation of small objects in images results in insufficient feature
information, making them challenging for standard deep learning models to recognize
effectively. Small objects often blend into the background, further complicating recogni-
tion. Employing Transformer methods [26] in Co-tracker classes can notably enhance the
recognition of these small objects.

• Blurred Boundaries:

Boundary blurring in segmentation models can be attributed to either the inherent
resolution limitations of the model or its inability to effectively process complex bound-
aries [27]. This limitation leads to the algorithm’s inadequate detail resolution, meaning
the segmentation cannot accurately delineate the contours of an object.

Addressing the issue of accurate edge detection in segmentation models requires
integrating specialized algorithms. However, this approach encounters significant chal-
lenges in water surface scenarios. Traditional edge detection algorithms are particularly
sensitive to noise elements like reflections and ripples, often leading to frequent erroneous
detections. Additionally, the segmentation of ship bottom lines is adversely affected by
water surface fluctuations, especially during the movement of ships. Another hurdle is
the dependency of some algorithms on fixed thresholds, which proves less effective in
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dynamic environments and necessitates manual adjustments to suit varying conditions.
While classic convolutional neural network (CNN)-based methods, such as the Richer
Convolutional Features (RCF) model [28] used in this research, offer strong robustness,
they also face substantial computational demands and issues like edge blurring when
processing entire images. Currently, these challenges remain without an ideal solution.

This paper adopts the instance segmentation results to obtain the approximate position
of the contour and then utilizes convolutional-network-based edge detection to obtain
refined contour shapes. This approach strikes a balance between the time and precision
requirements for obtaining the actual contours of vessel targets.

The specific method involves obtaining the bounding boxes from instance segmenta-
tion and then performing super-resolution interpolation or direct edge detection within
these boxes. Some erosion operations are applied to remove excess interference. Next, the
mask obtained from instance segmentation is fused with the edges obtained from edge
detection. This fusion typically involves simple intersection and union operations, which
are beneficial in most cases.

By using masks as constraints, this approach not only facilitates the computation of
related features but also conserves computational resources during training. However,
in the case of long-time sequences and dense point tracking, it can be computationally
intensive during inference. In Co-tracker, a sliding window approach is used to slice
long time sequences and then utilize the estimates from the previous window as input to
continue tracking a fixed group of target points in the next window. While this approach
results in highly accurate feature points, it may not be ideal for tracking, for example, tiny
vibrations in bridge model regions. This is because the essence of this tracking method is the
iterative optimization of estimated point positions, which inherently introduces uncertainty.
When combined with high-frequency tiny vibrations that are difficult to measure directly
in bridge models, the tracking becomes exceptionally challenging.

However, when it comes to obtaining the trajectories of vessels, this method can
leverage its maximum advantage, as depicted in the framework proposed in Figure 3 below:
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Figure 3. Maritime vessel trajectory acquisition framework.

Because modeling maritime vessel motion relies on the statistical properties of these
tracking points, there is no need to use a sliding window approach, as in the original work,
where the previous time step’s output serves as the input for the next one. It is possible
to divide the video into smaller segments without concern for the consistency of tracking
points, enabling the parallel acquisition of these tracking point clusters, and ultimately
achieving efficient inference through timestamp alignment.

In our methodology, video footage is segmented into smaller units, approximately
15 frames per segment, facilitating detailed analysis. At the onset of each segment, instance
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segmentation is employed, with the initial frame’s segmentation mask serving as a pivotal
constraint for tracking maritime vessel movement. This targeted approach enables the
efficient and precise extraction of vessel feature points. Utilizing a substantial number of
these tracking points, our method facilitates the computation of translation and rotation,
thereby acquiring consistent and continuous vessel trajectories. This process potentially
outperforms the direct usage of the Co-tracker method in terms of efficiency.

The scalability of our approach in densely trafficked maritime areas is systematically
illustrated in Figure 4. This depiction showcases the method’s capability in tracking and
predicting vessel trajectories in scenarios involving multiple objects over extended periods.
Utilizing a sliding window technique, each video segment’s initial frame acts as a founda-
tional mask constraint to acquire critical trajectory tracking points. These points are then
employed in the prediction and visualization of vessel paths, highlighting the method’s
practicality in both real-time tracking and future path forecasting. Figure 4 visually de-
lineates this methodology: the upper section depicts the sliding window segmentation,
the central part illustrates the trajectory tracking process, and the lower section contrasts
predicted trajectories with actual vessel movements.
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To address the complexities of multi-vessel scenarios, we have developed specialized
clustering and data processing algorithms. These algorithms leverage the movement of
clustering centers to calculate displacement and use Principal Component Analysis (PCA)
to ascertain the main axis direction. A key aspect of these algorithms is their focus on
processing a long sequence of tracking points, essentially handling a four-dimensional
array. This computational approach is designed to meet real-time processing requirements,
efficiently managing the volume of data typical in extended maritime surveillance.

However, we have identified a limitation within our current approach: as vessels
recede and diminish in size, the PCA-based main axis direction may undergo abrupt alter-
ations. This challenge becomes particularly pronounced in the context of real-time analysis,
where the dynamic nature of maritime environments necessitates the rapid adaptation
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of the algorithms. These observations underscore the necessity for more advanced algo-
rithmic solutions capable of accommodating dynamic changes in vessel appearance and
movement, while maintaining the real-time processing capabilities essential for effective
maritime surveillance and navigation safety.

3. Trajectory Prediction

In the Ningbo Sanjiangkou area, maritime transportation is highly accessible, and it is
common to see fleets of vessels sailing together or anchoring on the side, resulting in a multi-
channel, two-way maritime transportation scenario. This creates a complex navigation
environment for vessels within the region, with intricate navigation relation vessels.

Faced with complex maritime navigation scenarios, vessel navigation involves infor-
mation exchange among vessels. When predicting vessel trajectories in such situations,
it is important to consider the spatiotemporal interactions between vessels. Inspired by
Huang [24] and colleagues’ work on pedestrian trajectory prediction methods, a simplified
version of a spatiotemporal graph attention neural network was constructed.

As shown in Figure 5, the first step involves using LSTM methods to capture the
temporal correlations in the historical trajectory data of each vessel. To achieve this, the
relative positions of each vessel in each frame with respect to the previous frame are
obtained as inputs, as shown in Equation (13):

δut
i = ut

i − ut−1
i , δvt

i = vt
i − vt−1

i (13)

Sensors 2024, 24, x FOR PEER REVIEW 11 of 22 
 

 

analysis, where the dynamic nature of maritime environments necessitates the rapid ad-
aptation of the algorithms. These observations underscore the necessity for more ad-
vanced algorithmic solutions capable of accommodating dynamic changes in vessel ap-
pearance and movement, while maintaining the real-time processing capabilities essential 
for effective maritime surveillance and navigation safety. 

3. Trajectory Prediction 
In the Ningbo Sanjiangkou area, maritime transportation is highly accessible, and it 

is common to see fleets of vessels sailing together or anchoring on the side, resulting in a 
multi-channel, two-way maritime transportation scenario. This creates a complex naviga-
tion environment for vessels within the region, with intricate navigation relation vessels. 

Faced with complex maritime navigation scenarios, vessel navigation involves infor-
mation exchange among vessels. When predicting vessel trajectories in such situations, it 
is important to consider the spatiotemporal interactions between vessels. Inspired by 
Huang [24] and colleagues’ work on pedestrian trajectory prediction methods, a simpli-
fied version of a spatiotemporal graph attention neural network was constructed. 

As shown in Figure 5, the first step involves using LSTM methods to capture the 
temporal correlations in the historical trajectory data of each vessel. To achieve this, the 
relative positions of each vessel in each frame with respect to the previous frame are ob-
tained as inputs, as shown in Equation (13): 𝛿𝑢 = 𝑢 − 𝑢 , 𝛿𝑣 = 𝑣 − 𝑣   (13)

The relative position encoding, along with the embedding weights 𝑊 , transformed 
based on distance, are embedded into a fixed-length vector 𝑒  before being input into the 
LSTM to capture time-related features, as shown in Equation (14): 𝑚 = 𝐿𝑆𝑇𝑀(𝑚 , 𝑒 , 𝑊 , ), 𝑒 = 𝜑(𝛿𝑢 , 𝛿𝑣 , 𝑊 )  (14)

 
Figure 5. A simplified version of the spatiotemporal graph attention neural network framework. 

Furthermore, a graph attention neural network is employed to capture the spatial 
correlations among individual vessels within the vessel group at each time step. The spa-
tial correlations at each time step are then input into the LSTM to obtain the spatiotem-
poral correlations related to spatial relation vessels. In this context, a graph attention neu-
ral network is utilized to assign different weights to different vessel nodes, aggregating 
information from neighboring nodes to obtain spatial correlations. 

By inputting the obtained temporal information features 𝑚  into the graph attention 
layer, the normalized attention coefficients 𝛼   between nodes are calculated. Subse-
quently, the results from each node, weighted by the attention coefficients, are aggregated 
and activated to produce spatiotemporal interaction features that take into account spatial 
interactions, as shown in Equation (15): 

Figure 5. A simplified version of the spatiotemporal graph attention neural network framework.

The relative position encoding, along with the embedding weights We, transformed
based on distance, are embedded into a fixed-length vector et

i before being input into the
LSTM to capture time-related features, as shown in Equation (14):

mt
i = LSTM

(
mt−1

i , et
i , Wm,

)
, et

i = φ(δut
i , δvt

i , We) (14)

Furthermore, a graph attention neural network is employed to capture the spatial
correlations among individual vessels within the vessel group at each time step. The spatial
correlations at each time step are then input into the LSTM to obtain the spatiotemporal cor-
relations related to spatial relation vessels. In this context, a graph attention neural network
is utilized to assign different weights to different vessel nodes, aggregating information
from neighboring nodes to obtain spatial correlations.

By inputting the obtained temporal information features mt
i into the graph attention

layer, the normalized attention coefficients αt
ij between nodes are calculated. Subsequently,

the results from each node, weighted by the attention coefficients, are aggregated and
activated to produce spatiotemporal interaction features that take into account spatial
interactions, as shown in Equation (15):

m̂t
i = σ

(
∑j∈Ni

αt
ijWmt

j

)
(15)
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As shown in Figure 6, a graph is used to depict the interactions between vessels. The
spatial interactions among multiple vessels within a time window are represented as a
graph composed of multiple nodes and edges. The GAT (Graph Attention Network) in
Figure 6 is implemented by stacking multiple layers of graph attention layers, as illustrated
in Figure 6 (the code uses two layers). This allows for the encoding and decoding of spa-
tiotemporal correlations, enabling the construction of a spatiotemporal trajectory prediction
model for vessel trajectory prediction.
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In terms of system architecture, the framework comprises two main components
deployed on dual servers. The trajectory acquisition method, Co-tracker, fundamentally
involves tracking dense feature points over extended sequences. Once these tracking
points are obtained, post-processing is conducted to acquire the trajectories and other
feature information. The trajectory prediction method, on the other hand, utilizes the
obtained trajectories to infer future paths. This framework, comprising these two elements,
is characterized by its low complexity, moderate integration, and ease of maintenance.

The computational demands of this system are primarily dictated by the Co-tracker
and RCF components, with parameter counts of 24,149,859 and 14,803,781, respectively.
In contrast, our constructed trajectory prediction module, with a total parameter count
of 44,630, demands significantly less computational power compared to current large
language models.

In the proposed methodological framework of this study, the primary consumption of
GPU memory is not attributed to the model loading processes. Instead, the predominant
portion of the GPU memory is utilized by the Co-tracker, particularly due to the conversion
of videos into tensors. The methodology employs the parallel processing of multiple
short video segments, which, under similar computational loads, allows multi-threading
techniques to significantly accelerate the acquisition of tracking points. However, this
approach still entails substantial memory consumption, especially for real-time processing.

Among all the models requiring training in our framework, YOLOv8n-seg and STGAT
are the primary focus. The other methods, owing to the general applicability of the models
we have employed, necessitate only minimal fine-tuning to adapt to various scenarios.
Moreover, these models boast the advantage of having relatively smaller parameter sizes
and rapid inference capabilities. On an RTX 4080 GPU, these models are capable of
achieving efficient parallel processing.

For a segmented image with a resolution of 1920 × 1080, the inference speeds of
various components on an RTX 4080 are shown in Table 2 below:
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Table 2. The average inference speeds of various components on an RTX 4080.

Motion Estimation
Module—Co-Tracker

Edge Detection
Module—RCF

Segmentation Module
Prediction Module

Yolov8n-seg SAM

12 s for processing
250 frames

30 frames per second
(FPS) 8 ms per frame 0.452 s per frame 54 ms per frame on

GPU

However, a significant limitation of these methods lies in the demands for GPU
memory and server memory. During the parallel processing of trajectory recognition
algorithms, the memory consumption is approximately 32 GB, with around 15.5 GB of GPU
memory usage.

Regarding data quality and model generalization, our research focuses mainly on the
trajectory prediction model and the Yolov8n-seg segmentation model. Due to the strong
generalization capabilities of Co-tracker and RCF, the requirements for data quality can
be moderately reduced. Notably, the Co-tracker model, which significantly differs from
typical self-supervised learning methods, shows superior universality in learning the inter-
relationship between motion feature points and optical flow, especially in predicting new
trajectory points. In varying maritime conditions, the Co-tracker model effectively captures
the interactions among feature points, exhibiting impressive adaptability. However, it is
essential to note that front-end models like YOLOv8n-seg or RCF might be affected by
environmental factors, impacting mask acquisition and the number of effective tracking
points. While the impact is minimal in well-calibrated and favorable maritime settings, the
performance of our system under extreme sea conditions remains to be tested.

4. Case Analysis
4.1. Project Background

As shown in Figure 7, the Sanjiangkou area in Ningbo serves as a critical hub for
waterborne transportation. It is characterized by the convergence of three rivers, a dense
network of waterways, and numerous bridges spanning these water channels. However,
some of these cross-river bridges, due to their age, have limited navigational clearance,
leading to occasional bridge collisions by vessels, thus posing a high risk to maritime safety.
In this region, Xia [9] have established a comprehensive Bridge Collision Prevention and
Early Warning System, which integrates multiple types of equipment, various monitoring
methods, and data from multiple sources. Notably, 32 cameras have been strategically
placed at the confluence of the three rivers to provide coverage for this area. In the ensuing
case study, the primary images employed are sourced from Camera No. 2018 and Camera
No. 2019, as depicted in Figure 7b. The camera locations are strategically positioned to
offer a panoramic view of the Sanjiangkou area.

In the face of complex maritime traffic conditions in the Sanjiangkou area, the core
modules that enable proactive warning functionality are the trajectory acquisition and
trajectory prediction modules. The following two cases will focus on trajectory acquisition
from video sequences for vessel targets and trajectory prediction based on historical vessel
tracks within the navigational area.
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4.2. Metrics for Evaluating the Effectiveness of Trajectory Recognition

To establish a comprehensive performance index for ship trajectory recognition that
quantifies the accuracy and stability of the model, we consider the following metrics:

1. Trajectory Modeling Accuracy (TMA):

This metric quantifies the average deviation between the predicted trajectory and the
true trajectory. Given a predicted trajectory (P = {p1, p2, . . . , pn}) and a true trajectory
(T = {t1, t2, . . . , tn}), where pi and ti are the predicted and true positions at the i-th frame,
respectively, the TMA is calculated as follows:

TMA =
1
n

n

∑
i=1

d(pi, ti) (16)

where d(pi, ti) denotes the Euclidean distance between the predicted and actual positions.
A lower TMA indicates higher precision in trajectory prediction.

2. Trajectory Stability (TS):

Std Acceleration
Mean Acceleration

∗ Mean Directional Change :

This calculation combines the acceleration variability (standard deviation to mean
ratio) with mean directional change. High values indicate substantial acceleration changes
and significant directional shifts, suggesting an erratic trajectory.

The formula for Std Acceleration
Mean Acceleration is as follows:

Std Acceleration
Mean Acceleration

=

√
1
N ∑N

i=1 (Ai − 1
N ∑N

i=1 Ai)
2

1
N ∑N

i=1 Ai
(17)

Let Ai represent the acceleration at the i-th observation and N be the total number of
observations.

The mean directional change quantifies the degree of directional change between
consecutive points on the trajectory. Lower directional change values indicate greater
directional stability. The formula for Mean Directional Change is as follows:

Mean Directional Change =
1

N − 1

N−1

∑
i=1

abs(θi − θi−1) (18)
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where θi is the direction angle at the i-th point.
Mean curvature represents the average curvature of the entire trajectory, indicating its

overall level of curvature. Lower Mean Curvature values suggest a smoother trajectory,
closer to a straight line. The formula for Mean Curvature is as follows:

Mean Curvature =
1
N

N

∑
i=1

abs(κi) (19)

where N is the number of trajectory points and κi is the curvature at the i-th point. The TS
metric combines these three indicators:

TS =
Std Acceleration

Mean Acceleration
∗ Mean Directional Change + Mean Curvature (20)

When these three components are combined to compute the Trajectory Stability metric,
a smaller TS value indicates that the trajectory is stable in terms of velocity, direction, and
curvature. Conversely, a larger TS value suggests significant fluctuations or changes in
these aspects. This comprehensive assessment provides valuable insights into the overall
stability characteristics of the trajectory.

3. Fréchet Distance (FD):

The Fréchet Distance is a measure of the similarity between two curves, accounting
for both the position and ordering of points along the trajectories.

Combining these metrics, we propose the Trajectory Recognition Comprehensive
Performance Index (TRCPI), a metric that integrates trajectory accuracy, stability, and shape
similarity, defined as follows:

TRCPI = α·TMA − β·TS + γ·FD(P, T) (21)

where FD(P, T) represents the Fréchet Distance between the predicted and true trajectories,
reflecting the geometric similarity and considering the sequence of locations. The factors α,
β, and γ are weighting coefficients that adjust the relative importance of the three metrics
within the overall index.

The TRCPI metric synthesizes trajectory precision, stability, and path similarity, pro-
viding a multidimensional quantitative measure for evaluating ship trajectory recognition
methods. By adjusting the weighting coefficients, the TRCPI can be tailored to empha-
size different performance requirements according to the specific needs of the application
scenario.

4.3. Real Vessel Experiment

To validate the efficacy of the proposed method and the functionality of the active
early warning system in the Sanjiangkou area, a 2-day ship test was conducted in the same
location. Control experiments were executed using the YOLOv8 model integrated with
Bytetrack, the framework presented in this study, and GPS to obtain the ship trajectory.
GPS devices were strategically installed at the bow and stern of the ship, as illustrated in
Figure 8 below:

The primary experimental route extends from Jiangxia Bridge to Yongjiang Bridge,
encompassing the Sanjiang Estuary area. Both the driving route and the pre-established
test results are illustrated in Figure 9.
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We analyzed the video and GPS data of the ship’s journey from Jiangxia Bridge to
Yongjiang Bridge and converted the pixel track in the video to the actual trajectory, as
depicted in Figure 10 below.
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Given the challenges in accurately calibrating the ball machine in real engineering sce-
narios within the Sanjiangkou area, there exists a certain margin of error in the homography
matrix. This discrepancy introduces a deviation between the trajectory derived from video
images and the actual trajectory. In Figure 10, the red and green scatter points represent
GPS data from the bow and stern, respectively, while the purple trajectory signifies the
ship’s center, obtained through mean value calculation. The inherent scattering of the
trajectory is attributed to the 1 Hz GPS data transmission frequency. Notably, the trajectory
obtained by the framework proposed in this study exhibits greater stability and accuracy
compared to that obtained by the YOLO model. Furthermore, the video image method
produces a trajectory with higher resolution than GPS, facilitating the extraction of deep
features for improved track prediction. This attribute aligns with the objectives of the
proposed framework, showcasing its potential for advancements in this field.

To quantitatively evaluate the performance of trajectory recognition, we will employ
the metrics introduced in Section 4.2. We will compute the Trajectory Recognition Compre-
hensive Performance Index (TRCPI), setting the parameters as follows: α = 0.3, β = 0.4,
and γ = 0.3. To mitigate accidental factors and minimize the impact of camera distortion
at the track’s ends, we conducted an experimental evaluation of the effectiveness of the
indicators proposed in this study. We extracted 39 video segments from recordings made
by three cameras. For each video, we manually identified the true center point of the ship
every ten frames. The evaluation employed the integration of YOLO with Bytetrack, YOLO
with Botsort, and the method introduced in this paper. The statistical mean and box plot
representations of these indicators are depicted in Figure 11.
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The results indicate that our method holds a distinct advantage in terms of stability,
as shown by its lower spread in the box plots compared to the other methods. Addition-
ally, it demonstrates superior performance in accuracy and trajectory similarity, which is
evidenced by the tighter clustering of data points and the more favorable indices in the
corresponding charts. Our approach significantly outperforms the other methods, reflecting
its robustness and reliability in tracking applications.

4.4. Holistic Case Application

Faced with various situations, most projects employing the Yolo object detection
algorithm combined with the DeepSORT tracking algorithm or those utilizing vessel
trajectory methods obtained through instance segmentation have inherent limitations.
These methods essentially involve object detection across multiple frames, acquiring their
bounding boxes or instance masks, and then employing techniques such as appearance
features or other methods to associate objects detected in consecutive frames, achieving
tracking effects. As a result, the quality of tracking heavily relies on the accuracy and
stability of the initial detection, and bounding boxes do not always precisely align with the
object’s edges. Using the trajectory of a single point on the bounding box as the vessel’s
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trajectory can introduce considerable errors. While this drawback can be mitigated by
adjusting the sensor’s viewing angle, it is not always feasible to have ideal image data
from a better perspective. Alternatively, the direct utilization of instance segmentation to
acquire image masks for tracking front and rear frame masks can also introduce instability.
In certain poor viewing angles, it may even lead to false positives or missed detections,
as illustrated in Figure 12. This, without a doubt, poses a catastrophic challenge for
trajectory recognition.
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Even in the case of a favorable overhead view with excellent recognition results,
theoretically, the center point movements of the bounding boxes obtained using the Yolo
algorithm could be used as vessel trajectories. For the scenario depicted in Figure 13, vessel
trajectories were obtained by analyzing the changes in bounding boxes using the Yolo
algorithm combined with the Bytetrack algorithm for a 484-frame video sequence. The
variations in the bounding boxes are illustrated in Figure 14. As the timeline progresses,
the bounding boxes often exhibit abnormal peaks within a certain time period, and there
are cases where the width suddenly exceeds the height. It is evident that the trajectory
recognition for the scenario shown in Figure 15 has been severely affected. For a video
sequence consisting of only 484 frames, the instability of the bounding boxes obtained
by the Yolo algorithm results in highly unstable trajectory recognition. This also explains
why the combination of the Yolo object detection algorithm and the DeepSORT tracking
algorithm exhibited subpar performance in the experiments conducted in Section 4.3.
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Figure 13. Obtaining vessel trajectories based on bounding boxes

Using the improved long-time sequence multi-feature point cluster tracking motion
estimation method, as shown in the figure below, there are two approaches based on the
length of the time sequence. The first approach is for relatively short time sequences.
When computational resources are sufficient, the entire time sequence can be directly input,
resulting in a continuous array of multi-frame feature point clusters, as shown in Figure 15.
These can be visualized as point trajectories, as shown in Figure 15.



Sensors 2024, 24, 372 19 of 22

Sensors 2024, 24, x FOR PEER REVIEW 18 of 22 
 

 

Even in the case of a favorable overhead view with excellent recognition results, the-
oretically, the center point movements of the bounding boxes obtained using the Yolo al-
gorithm could be used as vessel trajectories. For the scenario depicted in Figure 13, vessel 
trajectories were obtained by analyzing the changes in bounding boxes using the Yolo 
algorithm combined with the Bytetrack algorithm for a 484-frame video sequence. The 
variations in the bounding boxes are illustrated in Figure 14. As the timeline progresses, 
the bounding boxes often exhibit abnormal peaks within a certain time period, and there 
are cases where the width suddenly exceeds the height. It is evident that the trajectory 
recognition for the scenario shown in Figure 15 has been severely affected. For a video 
sequence consisting of only 484 frames, the instability of the bounding boxes obtained by 
the Yolo algorithm results in highly unstable trajectory recognition. This also explains why 
the combination of the Yolo object detection algorithm and the DeepSORT tracking algo-
rithm exhibited subpar performance in the experiments conducted in Section 4.3. 

 

Figure 13. Obtaining vessel trajectories based on bounding boxes 

  
Figure 14. Bounding box variations. 

Using the improved long-time sequence multi-feature point cluster tracking motion 
estimation method, as shown in the figure below, there are two approaches based on the 
length of the time sequence. The first approach is for relatively short time sequences. 
When computational resources are sufficient, the entire time sequence can be directly in-
put, resulting in a continuous array of multi-frame feature point clusters, as shown in 
Figure 15. These can be visualized as point trajectories, as shown in Figure 15. 

Figure 14. Bounding box variations.

Sensors 2024, 24, x FOR PEER REVIEW 19 of 22 
 

 

Figure 15. Multi-feature point cluster tracking method. 

However, when the time sequence is too long, it is divided into slices. In this case, 
the focus shifts from pursuing the consistency of tracked points to the parallel processing 
of multiple batches of sliced videos, each input into the model to obtain multiple sets of 
tracked points. The statistical characteristics of these tracked points are then directly ob-
tained, as shown in Figure 16. 

  

Figure 16. Long-term vessel trajectories and heading angles. 

Upon acquiring vessel trajectories, they are input into the trajectory prediction 
model, yielding results as illustrated in the accompanying figure. In Figure 17, the pre-
dicted trajectories are represented in yellow, the actual trajectories in blue, and the histor-
ical trajectories in red. Notably, the no-sailing zones are also depicted. We will exemplify 
the method of collision detection between vessels and between vessels and bridges as fol-
lows: 
• Vessel-to-Vessel Collision Detection: 

In scenarios involving multi-target vessel navigation, we cluster the series of tracking 
points to generate scatter plots for multiple vessels. During the prediction phase, we cal-
culate the Intersection Over Union (IOU) between the scatter plots of two vessels. This 
approach allows for collision predictions with a certain degree of safety redundancy. 
• Vessel-to-Bridge Collision Alert: 

Similarly, during the prediction phase, the IOU between the vessel and no-sailing 
zones (such as bridges) is calculated. This method is used to predict potential collisions 
between vessels and bridges. 
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However, when the time sequence is too long, it is divided into slices. In this case,
the focus shifts from pursuing the consistency of tracked points to the parallel processing
of multiple batches of sliced videos, each input into the model to obtain multiple sets
of tracked points. The statistical characteristics of these tracked points are then directly
obtained, as shown in Figure 16.
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Upon acquiring vessel trajectories, they are input into the trajectory prediction model,
yielding results as illustrated in the accompanying figure. In Figure 17, the predicted



Sensors 2024, 24, 372 20 of 22

trajectories are represented in yellow, the actual trajectories in blue, and the historical
trajectories in red. Notably, the no-sailing zones are also depicted. We will exemplify the
method of collision detection between vessels and between vessels and bridges as follows:

• Vessel-to-Vessel Collision Detection:
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In scenarios involving multi-target vessel navigation, we cluster the series of tracking
points to generate scatter plots for multiple vessels. During the prediction phase, we
calculate the Intersection Over Union (IOU) between the scatter plots of two vessels. This
approach allows for collision predictions with a certain degree of safety redundancy.

• Vessel-to-Bridge Collision Alert:

Similarly, during the prediction phase, the IOU between the vessel and no-sailing
zones (such as bridges) is calculated. This method is used to predict potential collisions
between vessels and bridges.

This translation and refinement emphasize the academic rigor and technical sophistica-
tion of the trajectory prediction model and collision detection methodology. The approach
focuses on the integration of advanced analytical techniques to enhance maritime safety.

5. Conclusions

This study aims to enhance the method for vessel trajectory recognition involving
multiple features in wide areas, multiple objectives, long durations, and complex environ-
ments, addressing the limitations of traditional approaches. The following are the main
contributions and conclusions of this study:

1. The improved method for vessel trajectory recognition with long-term, multi-feature
point sequences demonstrates outstanding accuracy and efficiency. It exhibits clear
advantages over traditional methods. This method is expected to be a major direction
for future research because it not only provides high-precision trajectory data but is
also applicable to various scenarios without the need for extensive data training. It
can be run simply by combining the SAM model with silhouette masks for feature-
point-constrained inputs. However, it should be noted that this method requires
relatively high computational resources, which may necessitate further research in
hardware and performance optimization.

2. This paper makes an assumption regarding the world coordinates Zw of vessels within
a relatively small area, simplifying the actual movement of vessels within that region
to rigid body motion on a plane. It utilizes statistical methods to obtain vessel motion
parameters from the tracked multiple feature points. This assumption and method
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offer an effective approach to describe complex vessel movements and are expected
to find broad applications in areas with developed maritime transportation, such
as waterways.

3. The trajectory prediction method in this paper takes full account of the spatiotemporal
correlations in vessel trajectories, making it particularly suitable for well-established
maritime regions where vessels often travel in formations. While the trajectory predic-
tion method in this paper has made significant advancements, there is still room for
improvement. The current limitations in data quality and quantity constrain the opti-
mization of this method. Future work can focus on obtaining higher-quality data and
further enhancing the prediction model to improve its performance and applicability.

In general, the research presented in this paper offers valuable novel methodologies
and concepts for the field of vessel trajectory recognition and prediction. These pioneering
approaches are anticipated to play a pivotal role in vessel traffic management and mar-
itime navigation safety in the future, while also providing guidance and inspiration for
subsequent investigations.
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