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Abstract: Transactional data from point-of-sales systems may not consider customer behavior before
purchasing decisions are finalized. A smart shelf system would be able to provide additional data
for retail analytics. In previous works, the conventional approach has involved customers standing
directly in front of products on a shelf. Data from instances where customers deviated from this
convention, referred to as “cross-location”, were typically omitted. However, recognizing instances
of cross-location is crucial when contextualizing multi-person and multi-product tracking for real-
world scenarios. The monitoring of product association with customer keypoints through RANSAC
modeling and particle filtering (PACK-RMPF) is a system that addresses cross-location, consisting of
twelve load cell pairs for product tracking and a single camera for customer tracking. In this study, the
time series vision data underwent further processing with R-CNN and StrongSORT. An NTP server
enabled the synchronization of timestamps between the weight and vision subsystems. Multiple
particle filtering predicted the trajectory of each customer’s centroid and wrist keypoints relative to
the location of each product. RANSAC modeling was implemented on the particles to associate a
customer with each event. Comparing system-generated customer–product interaction history with
the shopping lists given to each participant, the system had a general average recall rate of 76.33%
and 79% for cross-location instances over five runs.

Keywords: smart shelves; visual analytics; retail analytics; computer vision; sensor fusion

1. Introduction

Retail analytics involves the analysis of data to provide insight into different aspects
of retail operations. Through this type of analytics, trends in sales and customer behavior
may be characterized [1]. Retailers are able to make data-driven decisions regarding
business strategies related to pricing, product placement, and more. These strategies may
help reduce costs, increase sales, and improve the overall customer experience [2]. When
it comes to inventory management, neither a surplus nor deficit are beneficial. Ideally,
the supply should sufficiently meet customer demand to prevent products remaining
in inventory for prolonged periods of time which may lead to deterioration or eventual
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discarding, which would incur losses [3]. Hence, inventory management is one of the most
crucial considerations when it comes to data analytics in the retail industry.

Point-of-sale (POS) systems monitor and execute transactions, making them the most
common data source for retail analytics in physical establishments. Although this system
effectively tracks sale volumes, more data is required to accurately provide information
regarding product sales and availability relative to customer response [4]. This is also taking
into consideration that additional POS system features may be kept behind a paywall that
puts micro, small, and medium enterprises (MSMEs) at a disadvantage compared to their
well-established competitors, who have more resources [5]. Additionally, unlike online
retailers, which can monitor non-purchasing customer behavior, final purchase information
from onsite retail stores is limited to data provided by POS systems [6].

Further research suggests that implementing smart shelf systems is an effective way
of obtaining additional and unseen data from existing methods in physical retail stores.
Several approaches have been made in designing such systems, all of which generally
focus on customer interaction with products [4,7–9]. An autonomous shopping solutions
provider [10] uses a scalable multi-camera approach to account for problems with occlusion.
However, the processing of vision data is computationally intensive. Another approach for
implementing smart shelves is making use of cameras and weight sensors [11]. However,
its main limitation is the degraded system performance, due to the system not being able
to detect cross-location or a situation when a person reaches for a product in different
weight bins.

We take the view that the difficulty of cross-location [11] is rooted in the lack of
object identifiers tracked in a video across a time period, known as track ID, from a multi-
object tracker. Furthermore, a multi-product multi-person setting further leads to a noisy
trajectory for track ID. Our study aims to develop a smart shelf system incorporating PACK-
RMPF that solves cross-location problems while alleviating the effect of a noisy trajectory.
Enhanced by this approach, our smart shelf systems evaluate customer interactions with
fixed, shelved products through a combination of sensors and object recognition.

The main contributions of this study are as follows:

1. A smart shelf system that uses single camera and weight sensor arrays for a multi-
person, multi-product tracking system

2. A PACK-RMPF sensor fusion algorithm that enhances the tracking of product interac-
tion by associating weight event data and multi-object tracking data with the use of
state filters and inlier estimators to address occlusion and localization problems and
cross-location.

3. A simulated supermarket experiment setup that evaluates system performance based
on a customer’s journey of purchasing goods based on a pre-defined shopping list.

2. Related Work

Generally, inventory management seeks to maximize the collection and use of inventory-
related data. In the case of retail stores, it often involves streamlining an inventory with
consideration for customer demand and carrying costs, among other factors and risks.
One aspect of inventory management is the tracking of goods as they move from an inven-
tory to customers. The emergence of smart retailing, through various technologies that
enable more advanced retail analytics, aims to extend the functionality of POS systems
from merely tracking inventory movement to making logical inferences about how cus-
tomer behavior and customer–product interactions are correlated with the turnover of
products in an inventory. Smart shelves, a common approach to smart retailing, utilize
a variety of ways to extract pertinent data that can be used to predict inventory with
respect to customer behavior, including, but not limited to, weight sensors, RFID tags, and
specialized cameras [12].

Higa and Iwamoto [13] proposed a low-cost solution involving surveillance cameras
as a tool for tracking the amount of products on a shelf in 2019. The method utilized
was background subtraction wherein the background of an image is removed before the
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foreground—which contains the products—is observed. Through the use of a CNN, the
system compares fully replenished, partially stocked, and empty shelf conditions. At the
end of the research, the system was able to garner an 89.6% accuracy rate. The authors
proposed that this data could eventually be utilized to improve profits in retail stores by
improving the shelf availability of products [13]. A similar solution was proposed back in
2015 [14]. In this solution, it was suggested that image detection and processing should alert
store managers upon the need to replenish shelves, as well as the discrepancies detected
such as misplaced products.

When it comes to the use of weight sensors for product tracking, physical interactions
with a product have been typically tracked through changes in weight sensor data, as
determined by algorithms. Ref. [8] utilized a bin system in their research wherein a single
shelf row was divided into bins that had dedicated load cells for tracking a specified type
of product instead of having a single platform for all available products on the row. In [15],
each shelf row was equipped with load cell weight sensors arranged so that positional
tracking would be possible on the shelf. This approach worked through constant weight
readings from the load cells and an algorithm for detecting significant changes in the weight
of a load cell in the system to be registered as a pick up. Through the use of support vector
regression (SVR) and artificial neural networks (ANNs), the position of the product could
also be predicted.

Unmanned retail stores, otherwise referred to as cashier-less stores, utilizing smart
shelf systems typically implement human pose estimation (HPE) for customer tracking.
Implementing HPE for customer tracking is advantageous—especially in solving action
recognition problems—due to the plethora of pre-trained data readily available to use [16].
As an example, [17] developed a system for an unmanned retail store that makes use of
visual analytics and grating sensors. With the grating sensors emitting infrared beams, the
creation of an invisible curtain-like barrier was formed. Once a customer’s hand passed
through the curtain, the infrared beams would be interrupted and the motion would be
flagged as an item being taken. One camera was integrated with a human pose estimation
algorithm to classify the hand action when such an event occurred. The rest of the cameras
that were installed were used to determine which product was taken. Mask R-CNN
was utilized for multiple customer tracking. Under this model, the body was tracked as
one silhouette. Furthermore, under this system, occlusions were solved by adding the
possible losses in each part of the silhouette.

Smart shelf systems vary in terms of the extent of weight sensor and computer vision
integration. For those that primarily or solely use computer vision, there is usually a
focus on security, autonomous or cashier-less checkouts, or visual indicators of customer
behavior. AiFi, asserting itself as a provider of autonomous shopping solutions, uses
an extensive amount of cameras to be able to effectively run stores [10]. In addition to
occlusion problems, there may be a question of redundancy depending on the actual system
design. The in-store autonomous checkout system (ISACS) for retail proposed by [11], on
the other hand, was divided into three major tracking subsystems: product tracking with
weight sensors, customer tracking through cameras whose feeds underwent human pose
estimation, and multi-human to multi-product tracking through sensor fusions. These
systems were highly dependent on the pose estimation in associating the weight event
detected with the person. However, a major limitation of these systems is the problem
of collision and cross-location, especially when multiple customers are interacting with
a shelf.

Hence, there are several approaches for implementing sensor fusions. An example
of this approach is making use of a particle filter, which can be divided into four stages:
generation, prediction, updating, and resampling. Particles are uniformly generated, and
the positions of the generated particles are predicted. The sensor readings are compared
with the predicted position of each particle, and the probability that relates the distance of
the particles to the measured position from a sensor is calculated. The particles are then
resampled so that only the nearer particles are measured. Finally, the algorithm can retrieve
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the trajectory of a moving object. We were able to recreate the trajectory of the wireless
signals, sourcing from the moving objects, through the particle filter, and we recommend
this as a solution for localization problems in sensor fusion.

3. Smart Shelf System Design
3.1. Shelf Physical Overview

The shelf tested was a double-sided gondola shelf equipped with two rows, 0.5 m
apart, on each side. Each row contained three (3) weighing platforms primarily operational
through a pair of straight bar load cells, hereinafter referred to as weight bins, for a total of
twelve (12) weight bins. Distinct products were placed on each weight bin, corresponding
to twelve (12) products. The number of units per product varied based on the dimensions
of each product. The camera was located 2.43 m away from the shelf and 2.26 m from the
ground, as depicted in Figure 1.
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Figure 1. Physical system setup.

3.2. System Overview

PACK-RMPF utilizes the data from the weight sensors and video feed per unit time.
For weight sensor data, the signals undergo a filter process as a safeguard against extreme
signal spikes, movements, or errors. Extreme signal spikes and movements are referred to
weight signal changes where the weight signal steps are deemed impossible. For instance,
a 300 g product is deemed impossible to move higher than 1 kg of a weight signal step
considering that the products are removed one at a time. Additionally, errors in retrieving
weight values will send out an error string instead of float values. Thus, for extreme
signal spikes, movements, or errors, forward data filling using the padding method was
utilized. Afterward, the signal underwent a weight event detection algorithm. A three-
period moving average and a three-period moving variance were performed. Each product
contained a specific moving variance threshold based on the initial calibration results for
each product. Thus, the start of an event was triggered when the moving variance was
higher than the threshold two consecutive times, while the end of its event was triggered
when the moving variance was lower than the threshold two consecutive times. The
moving average was utilized to handle possible volatility. As such, it was utilized for
determining the weight value at the start and end of an event. When a weight sensor
decreased by the end of an event, it was labelled a pick up; likewise, if it increased by the
end of an event, it was labelled a putback.
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The data for the vision system contained the detected customers per frame attached to
a unique track ID, a bounding box, and keypoint detections. Since the vision system had
Re-ID features, it was able to trace a lost tracked bounding box, typically due to occlusion,
back to the customer using their appearance features [18]. It was equally important that
only the customer’s hand were extracted from the human pose estimation (HPE), since it
was the only one of significance to the system.

The integration system used a particle filter for trajectory tracking of the bounding box
and the hand keypoints. These trajectories were processed via random sample consensus
(RANSAC) to identify the correct customer who performed the weight event. With that,
the data process of PACK-RMPF is summarized in Figure 2.
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Figure 2. System overview.

At the end of the integration system where the product and the customer’s behavior
are associated, PACK-RMPF is able to record each customer’s action. Likewise, the system
is able to process, derive, and obtain the history of each customer’s action, the current
products in their cart, the current inventory status of the shelf, the average retention time
of each product, and the number of specific actions the customer performed.
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4. Weight Change Event Detection System
4.1. Weight Bin

Each weight bin consisted of a pair of straight bar load cells. An acrylic sheet was
mounted on top of the load cells to aid in weight distribution. The load cells were also
screwed onto the shelf. Each load cell had a capacity of 3 kg for a total capacity of
6 kg per weight bin. The dimensions of each weight bin are listed on Figure 3.
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Figure 3. Dimension of each weight bin.

As illustrated in Figure 4, the wires of each load cell were connected in parallel when
interfaced with the inputs of an HX711 amplifier module. By default, the module had
a gain of 124 and a corresponding sampling rate of 80 Hz. Each module was connected to
a Raspberry Pi 4B that would then process the readings from each weight bin concurrently.
The ground, supply, and clock pins for each HX711 module were the same, while each
digital output was connected to a dedicated GPIO pin.
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4.2. Weight Sensor Array Hardware

The weight sensor hardware system is shown in Figure 5. Every weight bin has
a unique assignment on the physical location along the double-sided shelf. Furthermore,
each weight bin is assigned a unique product item. Each row on one side of the shelf is
partitioned into three slots, leading to three weight bins per row. On each side of the shelf,
there are two rows, a top row and a bottom row. A total of 18 weight bins are connected to
Raspberry Pi 4B, which acts as the controller.
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The controller was interfaced with a host computer using secure shell (SSH) protocol.
The host computer also served as the network time protocol (NTP) server to set the weight
reading timestamps. Through the network, a server would be initialized to enable the RPi to
continuously send timestamps and weight readings for each weight bin to a client device.

4.3. Weight Change Event Detection System

An overview of the weight sensor data processing, with the main goal of identifying
and classifying weight change events, is found in Figure 6. The weight sensor data acquired
from the controller are grouped by specific weight bin location λ. Forward filling is also
implemented so that invalid readings from a weight bin assume the value of the last valid
reading from the same weight bin. Then, processing is conducted based on three-period
moving variance values.
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Figure 6. Weight event detection system.

The moving mean µt and moving variance νt calculate the mean and variance along
a specific windowing period, respectively. N is the window length and wt is the weight
values at time t. We define the ff as follows:

µt =
1
N

t

∑
i=t−N

wi (1)

νt =
1
N

t

∑
i=t−N

(wi − µt)
2 (2)

Each weight data stream is continuously processed via its moving variance, vλ
t . The

weight change event detection, ∆νλ
t , is shown in Equation (3). It is considered to be detected

once a weight data stream, vλ
t , goes above a pre-defined product threshold, Tλ

p .

∆νλ
t =

{
1 , vλ

t ≥ Tλ
p

0 , vλ
t < Tλ

p
(3)

The product threshold Tλ
p is calibrated based on the product weight per unit and em-

pirical repeated testing conducted with the corresponding weight bin. Table 1 summarizes
the thresholds used for each weight bin.

Once a weight change event is detected, it must be further classified as either a
customer picking up a product (pick up) or a customer putting back a product (put back).

When the moving variance threshold is surpassed, the algorithm considers the specific
weight event involved as a significant weight change that must be classified as a pick
up or a put back. With this, a sliding window mechanism is implemented to determine
two consecutive events. The start of an event for each product is determined when the
moving variance exceeds the moving variance threshold two consecutive times. Likewise,
the end of an event for each product is determined when it is below the moving variance
threshold two consecutive times. The average readings of the start and the end of an event
are then compared. A weight change event would be flagged as a pick up if the reading at
the end of the event was less than that at the start of the weight event. On the other hand,
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a weight event would be flagged as a put back if the reading at the end of the event was
greater than that at the start of the weight event.

Table 1. Moving variance threshold for each weight sensor.

Product Weight Bin Weight (g) Threshold, Tλ
p

Piattos HX1 40 100
Cream-O HX2 33 100

Whattatops HX3 35 100
Loaded HX4 32 100
Bingo HX5 28 50

Cheesecake HX6 42 7000
Water HX7 360 1000

Zesto (Orange) HX8 200 200
Lucky Me (Beef) HX9 55 200

Mogu Mogu HX10 330 8000
Zesto (Apple) HX11 200 200

Lucky Me
(Calamansi) HX12 80 200

5. Vision System
5.1. Physical Camera

In this study, a webcam was considered. The A4Tech PK910P has a resolution of 720p
and served as the primary camera during the testing of the complete, integrated system.
Moreover, the live processing of vision data was simplified with this camera. To facilitate
this processing, a computer equipped with an Intel Core i7 CPU and a dedicated NVIDIA
GeForce RTX 3060 GPU was used.

5.2. Extraction of Multi-Object Trajectory

Primarily, the vision system aims to track and assign an identifier to customers inter-
acting with the shelf. We present the vision system in Figure 7. This process is handled by
Keypoint R-CNN [19] and StrongSORT [18].

Sensors 2024, 24, x FOR PEER REVIEW 9 of 22 
 

 

Lucky Me (Beef) HX9 55 200 

Mogu Mogu HX10 330 8000 

Zesto (Apple) HX11 200 200 

Lucky Me (Calamansi) HX12 80 200 

Once a weight change event is detected, it must be further classified as either a cus-

tomer picking up a product (pick up) or a customer putting back a product (put back). 

When the moving variance threshold is surpassed, the algorithm considers the spe-

cific weight event involved as a significant weight change that must be classified as a pick 

up or a put back. With this, a sliding window mechanism is implemented to determine 

two consecutive events. The start of an event for each product is determined when the 

moving variance exceeds the moving variance threshold two consecutive times. Likewise, 

the end of an event for each product is determined when it is below the moving variance 

threshold two consecutive times. The average readings of the start and the end of an event 

are then compared. A weight change event would be flagged as a pick up if the reading at 

the end of the event was less than that at the start of the weight event. On the other hand, 

a weight event would be flagged as a put back if the reading at the end of the event was 

greater than that at the start of the weight event. 

5. Vision System 

5.1. Physical Camera 

In this study, a webcam was considered. The A4Tech PK910P has a resolution of 720p 

and served as the primary camera during the testing of the complete, integrated system. 

Moreover, the live processing of vision data was simplified with this camera. To facilitate 

this processing, a computer equipped with an Intel Core i7 CPU and a dedicated NVIDIA 

GeForce RTX 3060 GPU was used. 

5.2. Extraction of Multi-Object Trajectory 

Primarily, the vision system aims to track and assign an identifier to customers inter-

acting with the shelf. We present the vision system in Figure 7. This process is handled by 

Keypoint R-CNN [19] and StrongSORT [18]. 
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The Keypoint R-CNN used was the built-in PyTorch model (accessed on 7 November 2023
https://pytorch.org/vision/main/models/keypoint_rcnn.html) with ResNet-50 [20] and
feature pyramid networks [21] as the backbone. Our Keypoint R-CNN used a pre-trained
model from the COCO dataset [22]. Each person identified via the model was assigned to

https://pytorch.org/vision/main/models/keypoint_rcnn.html
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have 17 keypoints. Alongside with these keypoints, the corresponding bounding box was
also detected via the model. Only those detections having a confidence score of 80% or
higher were considered—this rule was put in place to filter out false positive detections.
Each bounding box was assigned an ID through StrongSORT, which is an MOT baseline
that utilizes a tracking-by-detection paradigm approach. This tracked and associated ob-
jects in a scene through the appearance and velocity of the objects. The most pertinent
keypoints from Keypoint RCNN were keypoints 9 and 10 which tracked the left and right
hands, respectively. After performing both vision processes, the bounding box information
and ID, keypoints 9 and 10, and the timestamps for each frame were exported to a comma
separated- values (CSV) file.

Furthermore, the vision system utilized a pre-trained StrongSORT model for assigning
each customer a track ID and for Re-ID purposes. Its detector was trained on the CrowdHu-
man dataset [20,21] and the MOT17 half-training set [20]. The training data were generated
by cutting annotated trajectories, not tracklets, with random spatiotemporal noise at a
1:3 ratio of positive and negative samples [20]. Adam was utilized as the optimizer, and
cross-entropy loss was utilized as the objective function and was trained for 20 epochs with
a cosine annealing learning rate schedule [20]. For the appearance branch, the model was
pretrained on the DukeMTMC-reID dataset [20]. In the study, strongSORT Re-ID weights
utilized osnet_x_25_msmt17. Additionally, strongSORT was equipped with human pose
estimation using a pre-trained Keypoint RCNN, Resnet 50 fpn model. Its purpose was to
detect the hands of the customers, which would later be utilized in the integration system
to track the trajectories of a customer’s hand.

6. PACK-RMPF
6.1. PACK-RMPF Initialization

The fusion of the weight detection system data with the vision data system is per-
formed via the product association with customer keypoints (PACK) through RANSAC
modelling and particle filtering (RMPF). This includes the implementation of a particle
filter and random sample consensus (RANSAC). For the particle filter, objects are tracked
with respect to a landmark. Specifically, the landmarks were placed at the center of each
weight bin based on its location in a frame. A sample of the points of each landmark is
provided in Figure 8.
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A pre-defined rectangular area is created for each weight bin, as shown in Figure 9,
for which a RANSAC model of all possible locations of the keypoints bounded by the box
is created.
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6.2. PACK-RMPF System and Cross-Location

The PACK-RMPF algorithm associates the customers with the interacted product
using the multiple particle filter and RANSAC modeling. The timestamps from the weight
and vision data are matched for the purpose of synchronization. Each detected customer’s
keypoints are filtered in the multiple particle filter where the particles are compared to the
RANSAC model. Each detected customer outputs an inlier score. The customer with the
highest inlier score is associated with the interacted item. Each block of the PACK-RMPF
algorithm shall be discussed in detail in the following sections. Furthermore, a summary of
all the blocks is provided in Figure 10.
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6.2.1. Timestamp Matching

As shown in Algorithm 1, the timestamp matching algorithm aims to match a weight
event action wt, through its weight event timestamp t, to vision attributes Vτ and its event
timestamp τ. The vision attributes include the track ID information with its corresponding
bounding box and left and right hand keypoint coordinates. The algorithm iterates based
on the length of the weight event actions wt. The timestamp matching algorithm begins by
calculating the ∆time of wt. The following is the formula for ∆time:

∆time = t − 3.5 seconds (4)

Then, the algorithm tries to find where the timestamps of t and τ are equal—or if there
are no equal timestamps—within the 500 ms latency. Then, from Equation (1), all vision
attributes associated with a vision timestamp Vt within the range of the ∆time are selected.
The selected Vt are stored alongside τ, t, and wt for processing in the multiple particle
filter block.
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Algorithm 1: Timestamp Matching Algorithm

1: Input:weight event timestamp (t ), weight event action (wt ), vision event
timestamp (τ ), vision Attributes (Vτ)
2: Output: matched weight event timestamp with vision event timestamp (Mτ )
3: For Each iterations conducted
4: Calculations are made as follows:
5: Find where t = τ or τ is within 500 ms of wt
6: Store wt and selected vision attributes in one Mτ array
7: Store t, wt, and selected vision attributes in one Mτ array
8: End

6.2.2. Multiple Particle Filter

The purpose of the multiple particle filter is to be able to track the trajectory of the
bounding box and hand keypoints. The knowledge of the trajectory of the system is
what enables PACK-RMPF to be able to determine events where cross-location occurred.
Algorithm 2 describes the system flow of the particle filter.

Algorithm 2: Multiple Particle Filter Algorithm

1: Input: (Mτ) containing matched vision attributes (Vτ ) : customer track ID (VτT_ID ),
bounding box coordinates (Vτbbox ), Keypoint 9 coordinates (VτK9 ), Keypoint 10
coordinates (VτK10 )
2: Output: Bounding box particles (Pbbox ), Keypoint 9 particles (PK9 ), Keypoint 10
particles (PK10 ) of each track ID (VτT_ID )
3: For len(Mτ ) iterations, follow the following procedure:
4: Extract the vision attributes inside Mτ

5: If Vτ
1, then

6: Initialize random particles P with coordinates
(

Px, Py ) based on
the initial coordinates of Vτ

1

7: Compute the distance between the landmark and initial coordinates Vτ
1

8: Move the particles diagonally by adding a diagonal distance to the particles
9: Calculate for the weights of each particle
10: Apply systemic resampling
11: Store particles (P ) to global particles repository
12: Otherwise
13: Extract global particles (P ) containing current Pbbox, PK9, PK10
14: Compute the distance between the landmark and the current coordinates Vτ

n

15: Move the particles diagonally by adding a diagonal distance to the particles
16: Calculate the weights of each particle
17: Apply systemic resampling
18: Store particles (P) to global particles repository
19: End
20: Collect final particles (P ) containing final Pbbox, PK9, PK10

The particle filter process can be summarized into three steps. These steps are predict,
update and resample. The predict step is used to predict the trajectory of the keypoints [22].
For the context of PACK-RMPF, the predict step begins by generating uniform random par-
ticles based on the initial position of the vision attributes, Vτ, consisting of the coordinates
of the position of the bounding box and the hands. Then, each particle is moved, with one
unit moved to the x axis and one unit moved to the y axis.

Then, the particles are updated based on their position relative to the weight bin
landmarks. The following equation was utilized to calculate the position of the particles
with respect to the landmarks [22]:

distance =
√
(VAx − xl)

2 +
(
VAy − yl

)2 (5)
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where VAx and VAy are the coordinates of the vision attributes, and xl and yl are the
coordinates of the weight bin landmarks.

Finally, the particles are resampled. The following principle of systematic resampling
was utilized, where wk represents the weights based on the distance of each particle, and
Ns is the number of particles [22]:

Ne f f =
1

∑NS
i=1

(
wi

k
)2 (6)

After processing the associated vision attributes to the weight event, the final particles
are then evaluated in RANSAC.

6.2.3. Random Sample Consensus (RANSAC)

RANSAC or random sample consensus associates the trajectory produced by the
multiple particle filter with the right person who interacted with the smart shelf. RANSAC
in this study utilized the SciPy library. This library created a RANSAC model through the
use of the possible points inside each weight bin. The model utilized the mean absolute
deviation of the possible points of the weight bin to create the model. The following is the
formula utilized for the mean average deviation [23]:

MAD =
∑
∣∣∣ybin − µybin

∣∣∣
Nybin

(7)

where ybin is the possible y coordinates in the weight bin; µybin is the mean of these possible
y coordinates; and Nybin is the number of possible y coordinates that could land in the
weight bin. The algorithm creating the RANSAC Weight Bin is illustrated in Algorithm 3.

Algorithm 3: RANSAC Weight Bin Training

1: Input: The top left and bottom right coordinates of the pre-defined rectangular area
2: Output: RANSAC model of the weight bin
3: Generate all possible keypoints based on the top left and bottom right coordinates of the
pre-defined rectangular area
4: Calculate the mean absolute deviation of the possible keypoints
5: Generate the RANSAC linear regression model

After generating the RANSAC model, the particles from the multiple particle filter are
evaluated. This process is illustrated in Algorithm 4.

Algorithm 4: RANSAC evaluation for each trajectory

1: Input:states S containing Scentroid, SK9, SK10
2: Output: number of inliers I
3: For Each s in (Scentroid , SK9, SK10),
4: X, Y = s
5: y pred= RANSAC weight bin model (X)

6: Adev =
∣∣∣ypred − y

∣∣∣
7: If Adev < MAD
8: classify as inlier I
9: Otherwise
10: classify as outlier O
11: End
12: Return number of inliers
13: Trajectory with the highest number of inliers is associated to the weight event

The trajectories of the three states S, centroid (Scentroid) and the left (SK9), and right
(SK10) hands, are evaluated. The first step of the RANSAC evaluation involves feeding the
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x-coordinate of S to the generated RANSAC weight bin model. The predicted y-coordinate
is evaluated based on its absolute deviation. The absolute deviation is as defined as follows:

Adev =
∣∣∣ypredicted − ymodel

∣∣∣ (8)

where ypredicted is the predicted y value from the states, and ymodel is the y-coordinate from
the RANSAC weight bin model.

After computing, if the Adev is less than MAD, then it is tagged as an inlier. However,
if the Adev is greater than MAD, then it is classified as an outlier. Finally, the trajectory
with the highest count of inliers is the one associated with the event. Finally, the collated
associated weight events with the trajectories are exported as a CSV File.

7. Results and Discussions
7.1. Simulated Supermarket Experimental Setup

The system performance of PACK-RMPF was evaluated by implementing a simulated
supermarket setup. A simulated supermarket setup is a setup that emulates a supermarket.
In this setup, participants were given a list of instructions detailing which products to
pick up and put back and from which part of the shelf. Furthermore, there were instances
where customers deviated from what was given in the list. These deviations from the
lists were recorded by the proponents. Moreover, items with cross-location were also
mentioned in these lists. Overall, a total of forty-four (44) shopping lists were distributed
to all participants. Videos were stored in secure file storage accessible only to the au-
thors. No personally identifiable information, such as faces, were collected from the video
recordings.

The simulated supermarket setup was implemented by dividing the duration of each
test to four 30 min tests and a single 60 min test. During these durations, customers
were expected to interact with the shelf according to their shopping lists. The simulated
supermarket setup was implemented in one of the research laboratories of De La Salle
University where the demographics of the participants were students. The duration of the
experimentation lasted two days. The first day was dedicated to the 30 min tests, while the
second day was dedicated to the 60 min test.

From these tests, the system performance was evaluated based on its recall rate, as
defined in the equation below [11]:

% Correct Association =
Identi f ied Correct Items

Identi f ied Correct Items + Unidenti f ied Correct Items
(9)

PACK-RMPF tracks the bounding box and the hands of each customer. That is why, to
further check the system performance of the system, the proponents tested the components
of PACK-RPMF separately.

7.2. Weight Event Detection System Results

The weight event detection system is designed to identify pickups and putbacks. This
is necessary in order to kickstart the process of associating customer interactions with
customers. All in all, the weight event detection system successfully identified pick up and
put back events that happened in quick succession of each other. A single event included
a minimum of two points of data, equivalent to two seconds, given the rate that weight
readings were acquired. In this study, the quick weight change events evaluated spanned
as long as four rows of the time series data equivalent to four seconds. It may have been
possible to have more responsive weight event detection if the frequency of the weight
sensor readings had been increased. This process is illustrated in Figure 11.



Sensors 2024, 24, 367 15 of 21

Sensors 2024, 24, x FOR PEER REVIEW 15 of 22 
 

 

From these tests, the system performance was evaluated based on its recall rate, as 

defined in the equation below [11]: 

% 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 ൌ
𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐼𝑡𝑒𝑚𝑠

𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐼𝑡𝑒𝑚𝑠 ൅ 𝑈𝑛𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐼𝑡𝑒𝑚𝑠
 (9)

PACK-RMPF tracks the bounding box and the hands of each customer. That is why, 

to further check the system performance of the system, the proponents tested the compo-

nents of PACK-RPMF separately. 

7.2. Weight Event Detection System Results 

The weight event detection system is designed to identify pickups and putbacks. This 

is necessary in order to kickstart the process of associating customer interactions with cus-

tomers. All in all, the weight event detection system successfully identified pick up and 

put back events that happened in quick succession of each other. A single event included 

a minimum of two points of data, equivalent to two seconds, given the rate that weight 

readings were acquired. In this study, the quick weight change events evaluated spanned 

as long as four rows of the time series data equivalent to four seconds. It may have been 

possible to have more responsive weight event detection if the frequency of the weight 

sensor readings had been increased. This process is illustrated in Figure 11. 

For each weight bin, there were minimal false or error weight readings. Weight Bin 

7, corresponding to the platform with water, exhibited the most errors at 0.10% with 10 

false readings among 9,753 data points. On average, 0.03% of the readings per weight bin 

returned were false. Evaluating each run, as low as 0.005866% and not more than 0.01725% 

of readings returned false. The overall performance report of each weight bin is found in 

Table 2. 

 

Figure 11. Weight event detection with quick pick ups and putbacks. 

Table 2. Overall performance report of each weight bin. 

Weight Bin Ratio False Readings Total Count 

HX1 0.00% 0 9836 

HX2 0.04% 4 9875 

HX3 0.01% 1 9881 

HX4 0.02% 2 9797 

HX5 0.02% 2 9828 

Figure 11. Weight event detection with quick pick ups and putbacks.

For each weight bin, there were minimal false or error weight readings. Weight Bin
7, corresponding to the platform with water, exhibited the most errors at 0.10% with
10 false readings among 9,753 data points. On average, 0.03% of the readings per weight
bin returned were false. Evaluating each run, as low as 0.005866% and not more than
0.01725% of readings returned false. The overall performance report of each weight bin is
found in Table 2.

Table 2. Overall performance report of each weight bin.

Weight Bin Ratio False Readings Total Count

HX1 0.00% 0 9836
HX2 0.04% 4 9875
HX3 0.01% 1 9881
HX4 0.02% 2 9797
HX5 0.02% 2 9828
HX6 0.04% 4 9836
HX7 0.10% 10 9753
HX8 0.03% 3 9759
HX9 0.03% 3 9839

HX10 0.03% 3 9846
HX11 0.01% 1 9835
HX12 0.01% 1 9855

Average 0.03% 2.833333333 9828.333333

7.3. Vision System Results

The vision system plays an important role in identifying the customers interacting
with the shelf. The vision system assigns each customer a track ID. The track ID serves as
the identifier and is used to associate a weight event with a customer.

Figure 12 illustrates that the vision system could reliably track up to three customers at
a time roaming around the double-sided shelf. It was possible for the system to detect and
track upward of five people at a time, even without pre-training the StrongSORT model.
However, adjustments to StrongSORT parameters, a different camera angle, or multiple
cameras may still be needed to improve reliability.
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Based on these results, the developed smart shelf system reliably accommodates up to
two customers at a time. It must be noted that the reliability was greater in instances where
only one customer at a time was present on each side of the shelf. In cases where adjacent
occlusion was minimal or did not occur around the time that weight events occurred, up to
three customers could be detected, tracked, and associated with some reliability.

7.4. PACK-RMPF Simulated Supermarket Setup Results

The simulated supermarket setup aims to check the system performance of PACK-
RMPF. PACK-RMPF tracks the bounding box and the hands of each customer. These
keypoints play a big role in associating product movement with the customers in the frame.
Furthermore, tracking these keypoints is what enables PACK-RMPF to associate a product
with a customer during scenarios with cross-location. Hence, the proponents performed
experimentation and tried gauging the performance of PACK-RMPF if PACK-RMPF only
tracked (1) the bounding box, (2) the hands, and (3) both the bounding box and the hands
of each customers.

The previous literature has added emphasis on tracking head keypoint [11]. However,
PACK-RMPF gives weight on tracking the centroid of the bounding box. Table 3 illustrates
the average percent of associations per run when PACK-RMPF is calibrated to track only
the bounding box of each customer.

Table 3. Average percent of associations per run of the bounding box approach of PACK-RMPF.

Run Duration Average Percent of Correct Association

1 30 min 74.76%
2 30 min 72.79%
3 30 min 75.77%
4 30 min 91.67%
5 60 min 78.36%

Overall Average Percent of Association 78.67%

The iteration of each run consisted of scenarios where (1) there were multiple partici-
pants interacting with the shelf and (2) there was a single participant interacting with the
shelf. Overall, PACK-RMPF, when tracking only the bounding box of the customer, yields
an overall average percent association of 78.67%.

In the previous literature, tracking only the head has worked well when there was
only one customer interacting with the shelf. The accuracy could reach as high as 100% [11].
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PACK-RMPF when tracking the bounding box also reaches this same accuracy in single
customer scenarios. However, incorrect associations increase as the number of participants
interacting with the shelf increases. In the case of PACK-RMPF, the overall percent of
association—only considering the scenarios with multiple customers—yields an average
percent of association of around 57%.

The density of people interacting with the shelf affects the system performance of
smart shelves due to occlusions [11]. Similarly, this was the case with PACK-RMPF. Correct
associations considered whether the expected weight events triggered by a customer
were associated with that customer. Upon analyzing the integrated data and reviewing
the camera footage, false associations were mainly attributed to instances of adjacent
occlusions—where customers were occluded from the camera’s point of view while another
customer is on the same side of the shelf—due to customer stalling or customers entering
in groups.

In the example shown in Figure 13, the keypoints of the occluded customer were able
to be determined by the system. However, the tracked bounding box was not assigned
since the confidence score threshold was not met. Although there were instances where the
customer was not occluded, factors such as the 3.5 s interval considered by the integration
system typically led to a higher RANSAC inlier score for the non-occluded customer
standing closer to the camera.
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Similarly, the same trend, as illustrated in Table 4, can also be seen with PACK-RMPF
that only tracks the hands of the participants.

Table 4. Average percent of associations per run of the hands approach of PACK-RMPF.

Run Duration Average Percent of Correct Association

1 30 min 78.36%
2 30 min 81.97%
3 30 min 66.92%
4 30 min 87.77%
5 60 min 75.25%

Overall Average of Percent Association 78.05%

The hands approach of tracking in PACK-RMPF garnered an almost similar 78% over-
all average percent of association. But, what sets the hands approach of PACK-RMPF apart
is the fact that it was able to garner an average percent of association of 58% in the multiple
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people tracking scenario. Even if the hands were occluded from the shelf, the system was
still able to garner a higher score compared to previous approaches that only garnered 40%
accuracy [11]. Similarly, the probable source of inaccuracies in associating the customer
with the product is adjacent occlusion which was discussed in the previous paragraph.

Finally, Table 5 illustrates the results of using PACK-RMPF as a whole system, which
combines both hand tracking and bounding box tracking, achieved an average of 76.33%
correct associations of customers with weight events per run.

Table 5. Average percent of associations per run of PACK-RMPF.

Run Duration Average Percent of Correct Association

1 30 min 74.22%
2 30 min 77.55%
3 30 min 68.17%
4 30 min 86.11%
5 60 min 75.62%

Overall Average Percent of Association 76.33%

7.5. PACK-RMPF with Cross-Location Results

A persistent limitation of threshold-based approaches in related studies that sought
to associate customers with weight sensor data is the instance wherein customers interact
with products that they were not standing directly in front of [11]. This includes the picking
up or putting back of products on the same side of the shelf. Figure 14 provides a visual
example of an instance of a cross-location pick up.
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In this study, these instances are referred to as cross-location events. By utilizing
a particle filter to keep track of the trajectory of the left and right wrists of each customer,
along with the assignment of the RANSAC inlier scores for the tracked keypoints, this
problem was addressed. Table 6 illustrates the performance of this system in terms of
associating customers and products with cross-location.



Sensors 2024, 24, 367 19 of 21

Table 6. PACK-RMPF cross-location results.

Run Duration Number of Items
with Cross-Location

Number of Items
Correctly
Identified

Percent of Correct
Association with
Cross-Location

1 30 min 5 5 100%
2 30 min 2 2 100%
3 30 min 5 3 60%
4 30 min 4 3 75%
5 60 min 5 3 60%

Overall Average Percent of Association 79%

Overall, the system was able to achieve an average of 79% correct associations across
all runs. Similarly, the deviations in the percent of correct association could be associated
with adjacent occlusion. Adjacent occlusion is the occlusion of vision data needed to process
and gather pieces of information, such as the location of the keypoints and the bounding
box with respect to the shelf. These pieces of information are crucial in the processing of
particle filters and RANSAC. Despite this, the percent of correct association per run was at
least 60%.

8. Real-World Business Use for Case-Enhancing Retail Experience and Optimization

The smart shelf system offers enormous potential for improving customer experience
and optimizing operations in brick-and-mortar retail stores.

8.1. Inventory Management and Product Placement

The real-time tracking of inventory levels, facilitated by the weight sensors on shelves,
detect stock levels and can assist in preventing inventory shortage. This solution reduces the
costs associated with manual stock checking labor. Moreover, strategic product placement
is enabled by the analysis of customer interaction data, identifying high-traffic areas and
providing insights into product appeal. For example, high velocity impulse purchase items
can be strategically placed near checkout counters to maximize sales, or slow-moving items
could be placed in locations that would improve their velocity.

For the proposed system, the expected replacement policy is that a member of the
supermarket staff is responsible for handling item replacements requested by the customer.

Furthermore, to optimize product placement, the ability of the system to detect pickups
and putbacks at specific locations of the smart shelf enables the identification of hotspots
where customers frequently interact with the shelf. These hotspots can be helpful in formu-
lating data-driven product selection and placement strategies leading to product purchases.

8.2. Operational Efficiency

The integration of the smart shelf system with existing retail management systems,
such as point-of-sale and inventory management, could facilitate the improvement of data-
driven decision making across various business operations [24]. Sale trends and interaction
data could be used to optimize purchase decisions and supply chain activities, thereby
contributing to more efficient operational processes.

Hence, the ability of the smart shelf to track the frequency of pickups and putbacks
gives retailers an insight into customer patterns. For example, the data on the frequency of
pickups and putbacks can give the retailer an insight into which products are frequently
picked up and returned. Then, from these patterns, they can deduce plans or strategies that
could help facilitate a higher probability of purchase for products.

Moreover, the smart shelf system enables retailers to undertake a data-driven ap-
proach in optimizing their product placement and strategy. By continuously monitoring
pickups and putbacks, the retailers are equipped with a closed-loop cycle of formulated
strategies and can execute a new strategy, evaluate against conventional placements, and
re-formulate strategies.
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8.3. Addressing Challenges and Considerations

While the potential of such smart retail technologies is promising, careful consideration
must be given to customer privacy and the perception of surveillance [25]. Establishing
clear policies and maintaining transparency with customers about data collection and
usage is critical. In addition, current brick-and-mortar retail businesses could face technical
challenges in the adoption of these AI solutions.

9. Conclusions

Weight sensor and computer vision systems were successfully integrated as a smart
shelf system. Through data processing and sensor fusion, weight change events detected
through the weight system could be associated with a specific customer to help characterize
touch-based customer behavior and generate a log of customer–product interactions. The
use of a network time protocol server allowed timestamps of both systems to be matched,
which then enabled the integration of their data. The weight system performed well with
an average of 98% correct event detections and a maximum of 0.01725% invalid readings in
a single run. It was also able to detect events that happened in quick succession of each
other. The vision system had particularly good detection rates when handling up to three
customers at a time. Customers were reidentified by the system after short periods of
occlusion. The particle filter and RANSAC implemented in the integration system were
able to associate the weight change events with each customer, with a recall rate of 68% or
higher. Furthermore, the problem of cross-location was resolved, which can be exemplified
by the 79% overall recall rate of the system with cross-location.

Despite the overall success, certain challenges were noted. These include customer
stalling and larger groups on the vision data leading to relatively low detection percentages
for specific customers. Recommendations for improvement include considering alternative
materials and components for shelf and prototype construction, optimizing load cell config-
urations for weight distribution, and refining wiring through proper PCB implementation.
Prospects involve scaling up the system to accommodate additional shelves, exploring the
use of multiple cameras in terms of reliability and scalability, and investigating real-time
data processing for enhanced system responsiveness. Furthermore, future studies could
take the opportunity to fine tune the PACK-RMPF system so that it can take advantage of
tracking both the bounding box and the hands, especially in scenarios where multiple peo-
ple interact with the shelf. Moreover, future experimentation involving multiple product
pickups and putbacks is also recommended. Use cases of the smart shelf system could be
deployed in small-scale grocery stores.
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