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Abstract: Improving underwater image quality is crucial for marine detection applications. However,
in the marine environment, captured images are often affected by various degradation factors due
to the complexity of underwater conditions. In addition to common color distortions, marine snow
noise in underwater images is also a significant issue. The backscatter of artificial light on marine
snow generates specks in images, thereby affecting image quality, scene perception, and subsequently
impacting downstream tasks such as target detection and segmentation. Addressing the issues
caused by marine snow noise, we have designed a new network structure. In this work, a novel skip-
connection structure called a dual channel multi-scale feature transmitter (DCMFT) is implemented
to reduce information loss during downsampling in the feature encoding and decoding section.
Additionally, in the feature transfer process for each stage, iterative attentional feature fusion (iAFF)
modules are inserted to fully utilize marine snow features extracted at different stages. Finally, to
further optimize the network’s performance, we incorporate the multi-scale structural similarity
index (MS-SSIM) into the loss function to ensure more effective convergence during training. Through
experiments conducted on the Marine Snow Removal Benchmark (MSRB) dataset with an augmented
sample size, our method has achieved significant results. The experimental results demonstrate
that our approach excels in removing marine snow noise, with a peak signal-to-noise ratio reaching
38.9251 dB, significantly outperforming existing methods.

Keywords: marine snow; underwater image processing; multi-stage; deep learning

1. Introduction

Underwater imaging technology has found widespread applications as a vital compo-
nent for understanding underwater marine environments [1]. However, due to the inherent
adverse conditions in underwater imaging, the captured underwater images often suffer
from certain degradation [2–4]. Apart from common issues such as color distortion, marine
snow noise in underwater images is a significant concern. Marine snow refers to tiny
particles that exist in the ocean and sink to the seabed. These speckles are composed of
remnants of underwater organisms, floating fecal matter, suspended sediments, and other
inorganic materials [5]. They exhibit various sizes, shapes, transparency and, as they settle
to the seabed, resemble snowflakes, bearing similarities to atmospheric snow, hence the
name marine snow.

According to the underwater imaging model proposed by Jaffe-McGlamery [6], as
illustrated in Figure 1, the artificial light is scattered by the suspended marine snow parti-
cles and enters the camera [7], which results in the appearance of bright white spots in the
captured images. Due to the high brightness of these spots, they can be mistakenly recog-
nized as real features in object detection and segmentation tasks, consequently affecting
the performance of downstream tasks.
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Figure 1. Schematic diagram of forward and back sca�ering. We use two different dashed lines to 

represent forward sca�ering and backward sca�ering. The backward sca�ering generated by the 

artificial light source on small particles can interfere with the camera’s capture of underwater im-

ages. 
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Figure 1. Schematic diagram of forward and back scattering. We use two different dashed lines to
represent forward scattering and backward scattering. The backward scattering generated by the
artificial light source on small particles can interfere with the camera’s capture of underwater images.

Currently, research on marine snow removal is relatively limited. Most traditional
methods [8–13] treat marine snow as impulsive noise and remove it using techniques like
median filtering or background modeling. However, median filtering inevitably introduces
image blurring, and background modeling is restricted to fixed camera positions, with
non-background parts potentially obscuring background information. In addition, some
sporadic research attempts [14,15] have used deep learning methods for marine snow
removal, such as processing the high-frequency components of separated marine snow
using networks based on residual learning strategies or using image-to-image generation
networks to eliminate marine snow. Nevertheless, the former relies on the premise of
separating the high-frequency components of marine snow, and the latter has limitations in
terms of pattern breakdown and challenging training.

In order to obtain higher-quality underwater images, this paper focuses on the targeted
treatment of the underwater characteristics of marine snow based on the concept of multi-
stage progressive restoration. We have developed the multi-stage progressive marine
snow removal network (MP-MSRN) on the main structure of MPRNet [16]. The primary
contributions of this study are outlined as follows:

1. We incorporate the multi-stage progressive recovery method and a feature fusion
module for the marine snow removal task. This strategy not only gradually enhances
the extraction of marine snow features but also ensures the full utilization of features
at different stages, resulting in favorable outcomes.

2. We propose a novel skip-connection structure, named DCMFT, to ensure comprehen-
sive feature propagation across different scales during the encoding and decoding
processes, thus reducing information loss caused by downsampling.

3. We also design a new weight multi-scale adaptive loss function to accelerate the
convergence speed during the network training process.

2. Related Work

Currently, the focus of underwater vision tasks is primarily centered around under-
water image enhancement [17,18], with relatively little attention given to the removal of
marine snow. Only a small portion of research is dedicated to this specific area. Based on
the different methods for marine snow removal, we can roughly categorize them into two
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types: traditional methods and deep learning methods, which we will discuss in detail in
this section.

2.1. Traditional Methods

Traditional methods for removing marine snow, with the median filter as a representa-
tive, treat marine snow noise as impulsive noise and use the median within the filter kernel
as a replacement. Typically, traditional median filtering methods employ global processing,
which may result in non-marine-snow areas’ pixels also being replaced, thereby reducing
the overall image quality [19].

To overcome this issue, Fahimeh Farhadifard et al. [11] introduced the supervised
median filter. They divided the filtering process into two stages: coarse filtering and fine
filtering. In coarse filtering, they selected image blocks that meet certain constraints, while
in fine filtering, a voting mechanism was employed to determine the removal locations,
avoiding interference with object edges. Banerjee et al. [8] also proposed an adaptive me-
dian filtering method by calculating the probability of high-luminance pixels being marine
snow in each image block and applying median filtering to image blocks with probabilities
exceeding a threshold. However, these two methods impose strict requirements on marine
snow detection, and misjudgments can lead to a decrease in image quality.

Subsequently, Fahimeh Farhadifard et al. [10], in another paper, addressed marine
snow noise in continuous video frames using a background modeling approach. They
selected image blocks based on previous algorithms, extracted a marine snow position
mask, and used prior information about the scene to restore the scene behind the marine
snow, thereby eliminating the marine snow. By contrast, Cyganek et al. [9] employed a
three-dimensional median filter to address the issue of marine snow noise pixels detected
in the image. The approach involves substituting the median values of adjacent layers for
the identified noise pixels. Additionally, a two-dimensional frame median filter is applied
to further eliminate the remaining small particles’ noise. The former is constrained by a
fixed background, while the latter relies somewhat on the sparse nature of marine snow.

2.2. Deep Learning Methods

With the continuous development of computer vision technology, deep learning meth-
ods are increasingly being applied in the field of oceanography, including the problem of
handling marine snow. Wang et al. proposed a marine snow removal network based on a
residual learning strategy [20]. They used guided filters [21] to separate the white marine
snow information in the high-frequency layer. Subsequently, through the processing of mul-
tiple local residual blocks, they fused it with low-frequency layer information, successfully
achieving marine snow removal. However, it is worth noting that the high-frequency layer
information is not entirely related to marine snow. It also contains background information,
which may lead to the loss of original image information.

On the other hand, Guo et al. [14] adopted a different approach, treating marine snow
removal as an image domain transformation task [22]. They used generative adversarial
network (GAN) models to perform this operation, focusing on overall image transformation
rather than just the marine snow’s location. In this field, CycleGAN [23] is a typical model
that uses the constraint of cycle consistency to train generators between different image
domains, achieving the transformation from snow-covered to snow-free conditions, as does
its derivative networks [24–26]. However, the consistency constraint of GANs pertains to
the overall image and does not focus on pixel-level details. Therefore, in image-to-image
transformation, it may affect parts that are not necessary to change.

Approaching the issue from a different perspective, the elimination of marine snow
falls within the realm of image restoration. Zamir et al. [16] introduced a multi-stage
complementary feature processing strategy, combining an encoder–decoder and an origi-
nal resolution subnetwork, achieving commendable restoration results in recovery tasks.
However, the fixed nature of the multi-stage design hinders the dynamic adjustment
of the network’s depth and complexity based on the degradation level. Consequently,
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targeted improvements addressing the micro-particle characteristics of marine snow are
still necessary.

3. Method

In Figure 2, we present the architecture of the MP-MSRN, which comprises three
main stages. In the initial stage, the network processes the input by dividing it into four
sub-blocks. As the stages progress, the size of the sub-blocks gradually increases, and the
number of sub-blocks decreases until the third stage, where no further sub-blocking is
performed. The purpose of this design is to enable the network to learn as many details
about marine snow as possible in the initial stage, while preserving the original input
information for subsequent restoration operations in the final stage.
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Figure 2. The overall framework of MP-MSRN. The entire network is divided into three stages. The
network structures in the first two stages are similar, employing an encoding–decoding structure
followed by the use of the SAM module for marine snow removal in this stage and passing features
to the next stage. Feature fusion between the two stages is achieved using the iAFF module. In the
third stage, ORSNet is introduced to preserve fine details in the output image.

During the initial two stages, through a U-shaped encoder–decoder structure, the
feature maps of marine snow are separated. Some features are fused with the encoding
results of the next stage using the iAFF [27] module, while another part is used for image
restoration and the enhancement of marine snow features, through a self-supervised
attention module and a skip connection from the original input in this stage. Additionally,
the restored image is compared to the ground truth to calculate a part of global loss, and the
enhanced marine snow features are integrated with the input before the encoder–decoder
in the next stage.
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Finally, in the third stage, an original resolution sub-network (ORSNet) is employed to
generate high-resolution features, ensuring that the final output image includes fine details.

In the following sections, we will provide a detailed description of the composition
details of each module, including the DCMFT, iAFF, supervise attention module (SAM),
ORSNet, and loss functions.

3.1. DCMFT

The U-Net [28] architecture introduced in 2015 is a variant of Fully Convolutional
Networks [29], which are widely adopted in the field of semantic segmentation. The re-
markable performance of U-Net is attributed to the inclusion of skip connections. However,
in the original U-Net, the simplicity of the transmission structure leads to losses in the trans-
mission of multi-scale contextual information. Therefore, to more effectively transmit the
flow of information, especially during the downsampling process in encoding, we focused
on optimizing the skip connections and proposed DCMFT, as illustrated in Figure 3.
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Figure 3. The structural details of DCMFT, with two branches divided to generate channel weights.

Skip connections consist of two branches. One branch includes a channel attention
module that aggregates features through convolution, PReLu activation, and global average
pooling. The other branch generates channel weights by performing fast 1D convolutions
with a size of k, where k is adaptively determined based on the channel dimension C, as
expressed in the following equation:

k = φ(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

, (1)

where the parameters b and γ are the settings for the mapping function, with values of 1
and 2, respectively. |t|odd represents the nearest odd value to t. Subsequently, we introduce
a side-branch for cross-layer connections using the generated weights. Finally, these two
branches are fused to transmit information to the decoding part.

These enhancements to the U-Net framework improve its ability to capture multi-scale
contextual information and ensure efficient information transfer within the skip connections.
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3.2. iAFF

To enhance the correlation between features at different stages, we have introduced the
attention feature fusion mechanism, which is located between the first-stage and second-
stage encoder–decoder in the corresponding layer. Its structure is shown in Figure 4.
Typically, simple feature fusion can be achieved through addition or concatenation. How-
ever, this approach fixes the fusion weights. Therefore, we employ a selection mechanism
to dynamically generate fusion weights based on two input features.
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the iAFF module.

First, we will focus on the weight generation part, which is a multi-scale channel
attention module showing in Figure 4. It changes the feature scale by the downsampling
operation and then aggregates features using broadcast addition. Finally, it multiplies the
result with the original input elements using the Sigmoid activation function to obtain the
weights. Assuming the input X ∈ RC×H×W , the expression for the original scale branch is
as follows:

L(X) = B(C2(R(B(C1(X))))), (2)

where C1 and C2 refer to convolution operations, B represents batch normalization process-
ing, and R represents the ReLU activation function. The overall output is then calculated
as

M(X) = X ∗ Sigmoid(L(d(X)) + L(X)), (3)

in which d represents downsampling operation. For the weight M(X), it will be applied to
two features to be fused; we assume two input features, X and Y. The expression for one
fusion process is as follows:

ψ(X, Y) = M(X + Y) ∗ X + (1 − M(X + Y)) ∗ Y. (4)

The entire process iterates twice to ensure the comprehensive fusion of input features,
as shown in Figure 5, thereby achieving feature transfer from the lower stage to the
upper stage.
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Figure 5. The overall structure of iAFF involves the iterative use of MS-CAM twice. The first input to
MS-CAM is the sum of X and Y, and the second input is the output of the first iteration.

3.3. SAM and ORSNet

The two modules adopt the structure used in previous research [16]. The SAM serves
two primary functions: first, it utilizes the marine snow feature maps generated by the
encoder–decoder module for snow removal, and second, it enhances the feature maps of
marine snow using the results after snow removal. The enhanced feature maps are then
concatenated with the untreated input of the next stage to ensure the full utilization of
the marine snow features extracted in the previous stage. The ORSNet does not involve
any downsampling operations and is composed of a concatenation of multiple channel
attention modules, with the aim of preserving the details of the final stage image output.

3.4. Loss Function

The entire network structure employs a staged design, with each stage gradually
deepening and producing its respective output. As a result, the overall loss function
needs to encompass all losses from the three stages for holistic optimization of the entire
marine snow removal network. The constructed loss function consists of three components:
Charbonnier loss [30], Edge loss, and multi-scale structural similarity [31], expressed
as follows:

L =
3

∑
P=1

[

√
∥XP − Y∥2 + ε2 + λ

√
∥∆(XP)− ∆(Y)∥2 + ε2 + µS(X, Y)], (5)

where Y represents the ground truth image, X represents the image after snow removal
at each stage, and ∆ represents the Laplacian operator. In the first two loss terms, E is a
constant set to 10−3, which ensures that gradients close to zero are not too small, preventing
gradient vanishing. Simultaneously, the square root symbol constrains gradients far from
zero from becoming too large, avoiding the problem of gradient explosion. The final term,
S(X, Y), represents multi-scale structural similarity, an improvement based on SSIM [32].
The general expression for SSIM is as follows:

SSIM(X, Y) = l(X, Y)α ∗ c(X, Y)β ∗ s(X, Y)γ, (6)
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where α, β, and γ are typically constants. In Formula (6), l(X, Y) is used to estimate
luminance, c(X, Y) to estimate contrast, and s(X, Y) to estimate structural similarity. Their
expressions can refer to (7)–(9).

l(X, Y) =
2µxµy + c1

µ2
x + µ2

y + c1
, (7)

c(X, Y) =
2σxσy + c2

σ2
x + σ2

y + c2
, (8)

s(X, Y) =
σxy + c3

σxσy + c3
, (9)

where µx represents the pixel average of image X, σx is the standard deviation of the pixels
in image X, and σxy is the covariance between the pixels of image X and image Y. c1, c2,
and c3 are constants used to prevent the denominator from being zero.

Single-scale methods are limited to specific settings, neglecting the perceptibility of
image details at various resolutions and viewing distances. Based on this, MS-SSIM is
obtained by iteratively applying low-pass filtering and 1/2 downsampling, and finally
concatenating results from different scales, with the ultimate expression as follows:

S(X, Y) = [l(X, Y)]αM ∗
M

∏
j=1

[c(X, Y)]β j ∗ [s(X, Y)]γj , (10)

in which M represents the number of low-pass filtering and downsampling iterations, and
the entire computation process is illustrated in Figure 6.
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Figure 6. MS-SSIM computation flowchart. Calculate initial parameters c1, s1 for the original image.
Apply low-pass filtering and downsampling to compute parameters c2, s2 for a one-level reduced
image. Iterate to determine parameters lm for the minimum-sized image. Synthesize all parameters
to obtain MS-SSIM.

Finally, in the overall loss function (5), the parameters λ and µ control the relative
importance of the three loss components. After comprehensive experimentation, they have
been determined λ = 0.05, µ = 0.01.

4. Experiments
4.1. Experiments Configuration

The hardware and software configurations for all experiments in this paper are as
shown in Table 1.
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Table 1. The software and hardware configurations used for comparison and ablation experiments.

Hardware Software

Divices Model/Size Tool Stack Version

CPU 64 Intel(R) Xeon(R)
Gold 6346 OS Ubuntu 18.04

RAM 256 GB Python 3.9
GPU Nvidia GTX3090 CUDA 11.4
\ \ Pytorch 1.12

4.2. Dataset

In this paper, we adopt the public marine snow dataset MSRB [33], which is currently
only available as a part of our training dataset. This dataset is modeled based on the
pixels of marine snow using observational data from underwater images and consists
of 2300 image pairs. To further enrich the dataset, we expanded the data by randomly
selecting a certain number of underwater snow-free images from other underwater image
datasets, including UFO120 [34] and UIEB [35], and generated marine snow according to
the modeling approach of MSRB. Eventually, the training set of the dataset we constructed
consists of 4439 image pairs, and the test dataset consists of 747 image pairs.

4.3. Parameter Settings

For the input image size, we chose 384 × 384 pixels. The optimization of the network
was performed using the Adam optimizer [36] with an initial learning rate of 4 × 10−5 and
a minimum learning rate of 1 × 10−6. We implemented a step-wise learning rate reduction
strategy, set the batch size to 4, and conducted a total of 100 training epochs.

4.4. Comparative Experiments

To assess the model’s performance, following the evaluation method by Li et al. [37],
we compared the trained model with other mainstream algorithms, using metrics such
as the peak signal-to-noise ratio [38], structural similarity [32], mean squared error [39],
model size, and inference speed.

Qualitative comparison: In Figure 7, we present the results of different methods on a
pre-processed dataset. It is evident that both CycleGAN and CUT [25] exhibit pronounced
color deviations and retain remnants of marine snow. While pix2pix [24] and Bicycle-
GAN [26] exhibit less severe color deviations than the former two, the fading of marine
snow traces is still relatively minor, with some remnants persisting, though less prominently.

Additionally, a closer examination of the magnified details reveals that the processed
images from these four methods suffer from edge blurring. This implies that their snow
removal capabilities come at the expense of image quality.

Regarding the results for DAD [40], despite its superior performance among non-
targeted methods, the details reveal that, although it successfully removes marine snow
and some edge details are preserved, it leaves the marine snow locations unfilled and
results in the appearance of black spots, which also appear in the results of pix2pix. From a
visual perspective, our proposed method appears to be optimal, a conclusion supported by
the subsequent metric analyses.

Quantitative comparison: In addition to qualitative assessments, we conducted an
exhaustive quantitative analysis to comprehensively evaluate the performance of various
methods. Table 2 presents the quantitative comparison results regarding the de-snowing
capabilities of the examined networks. Notably, our method exhibits significantly supe-
rior de-snowing efficacy compared to its counterparts, achieving a remarkable PSNR of
38.9251 dB. However, both CycleGAN and CUT struggle with suboptimal de-snowing
outcomes due to global color discrepancies, yielding PSNR values of only 25.3431 dB and
26.2229 dB, respectively.
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Table 2. Metrics of marine snow removal effects across different methods, with the best results
highlighted in bold.

Method PSNR (dB) SSIM MSE Speed
(FPS)

Model Size
(MB)

CycleGAN [23] 25.3431 0.8382 348.3727 7.26 43.42
pix2pix [24] 30.9850 0.8846 68.8730 16.58 207.64

BicycleGAN [26] 30.4210 0.8653 159.4803 7.10 209.04
CUT [25] 26.2229 0.8440 287.0160 14.25 43.46

MPRNet [16] 38.5108 0.9747 14.2182 10.91 41.97
DAD [40] 34.2794 0.9257 41.4867 2.26 813.70

Ours 38.9251 0.9761 13.4415 10.44 45.23

In contrast, pix2pix and BicycleGAN showcase relatively improved performance
metrics, attaining PSNR values of 30.9850 dB and 30.4210 dB. The incorporation of two
Markov discriminators within DAD’s network architecture enhances perceptual quality,
resulting in an impressive PSNR of 34.2794 dB.

In the latter part of Table 2, we present a comparative analysis of various algorithms
with respect to model size, and real-time performance. The real-time efficiency is quantified
using Frames Per Second (FPS). The results illustrate that while our proposed method may
not achieve the fastest inference speed, lagging behind the swiftest pix2pix inference by
6 FPS, it still stands at a respectable 10.44 FPS among all the compared methods. Notably, the
entire network is compact, measuring a mere 45.23 MB. In contrast, the less effective DAD
processes at a sluggish 2.26 FPS with a colossal model size of 813.70 MB. Consequently,
it is evident that our approach, with its superior snow removal efficacy, also excels in
inference speed.

4.5. Ablation Experiments

In this section, we describe the conducted comprehensive ablation experiments to
validate the role of the improved module within the overall network. Specifically, we
examine the contributions of DCMFT, iAFF, and the final loss function. Additionally, given
that our proposed method is a multi-stage network, we assess the effectiveness of this
multi-stage structure by obtaining outputs at each stage.

Table 3 presents the specific results of the ablation experiments. Analyzing each
corresponding phase reveals PSNR improvement increments of 0.6140 dB, 0.9840 dB, and
0.4143 dB for the first, second, and third stages, respectively. The smaller improvement
in the third stage is primarily attributed to the concentration of the network’s feature
propagation and fusion modules in the preceding phases. Furthermore, in each set of
ablation experiments, there is a consistent improvement of approximately 1–2 dB between
adjacent stages, validating the effectiveness of the multi-stage progressive restoration
network structure.

In addition, we visually represented the variations in the loss functions during each
training epoch for the different ablation experiments as shown in Figure 8. Observing the
line chart, it becomes evident that the introduction of the iAFF module led to a notable
reduction in training loss compared to the baseline. Subsequently, the incorporation of
MS_SSIM, while contributing an additional loss term, resulted in a slight improvement over
the baseline, despite an expected increase in training loss. Finally, with the integration of
DCMFT, the overall loss curve reached its optimal point among all the ablation experiments,
exhibiting the fastest convergence and ultimately achieving the minimum training loss.
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Table 3. Result indicators for different groups in the ablation experiment. For the module part, we
selected MPRNet as the baseline. iAFF is positioned between the first and second stages, serving to
fuse features. Therefore, both stages one and two are selected in the ablation experiment.

Group
Module

Stage PSNR (dB) SSIM MSE
Baseline iAFF MS_SSIM DCMFT

1

√

\ \ \ 1 35.1214 0.9581 26.3924
\ \ \ 2 36.2208 0.9654 21.5644
\ \ \ 3 38.5108 0.9747 14.2182

2

√
\ \ 1 35.3099 0.9600 25.6271√
\ \ 2 36.6715 0.9676 19.5356

\ \ \ 3 38.6133 0.9753 14.1122

3

√ √
\ 1 35.4822 0.9607 24.7388√ √
\ 2 36.7619 0.9678 19.1418

\
√

\ 3 38.7733 0.9756 13.8419

4

√ √ √
1 35.7354 0.9621 23.6104√ √ √
2 37.2048 0.9690 17.7378

\
√

\ 3 38.9251 0.9761 13.4415
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5. Conclusions

In this paper, we introduce the concept of multi-stage processing and propose the MP-
MSRN for the task of marine snow removal. Within the network architecture, we establish
the DCMFT to minimize the loss of features during the encoding process. Additionally,
the introduction of the iAFF facilitates the fusion of features, maximizing the utilization
of marine snow features extracted at different stages. Furthermore, we devise a novel
loss function incorporating MS-SSIM to expedite the convergence speed during training.
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Finally, compared with existing marine snow removal methods, our network achieves a
comprehensive result by iteratively extracting and enhancing marine snow features at each
stage, demonstrating its superior performance through both qualitative and quantitative
analyses. Future work will focus on the real-time removal of marine snow from video
frames. One promising approach involves leveraging information between adjacent frames
while addressing the challenge of minimizing the impact of background motion.
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