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Abstract: This paper proposed a real-time fault diagnostic method for hydraulic systems using data
collected from multiple sensors. The method is based on a proposed multi-sensor convolutional
neural network (MS-CNN) that incorporates feature extraction, sensor selection, and fault diagnosis
into an end-to-end model. Both the sensor selection process and fault diagnosis process are based on
abstract fault-related features learned by a CNN deep learning model. Therefore, compared with the
traditional sensor-and-feature selection method, the proposed MS-CNN can find the sensor channels
containing higher-level fault-related features, which provides two advantages for diagnosis. First, the
sensor selection can reduce the redundant information and improve the diagnostic performance of the
model. Secondly, the reduced number of sensors simplifies the model, reducing communication bur-
den and computational complexity. These two advantages make the MS-CNN suitable for real-time
hydraulic system fault diagnosis, in which the multi-sensor feature extraction and the computation
speed are both significant. The proposed MS-CNN approach is evaluated experimentally on an
electric-hydraulic subsea control system test rig and an open-source dataset. The proposed method
shows obvious superiority in terms of both diagnosis accuracy and computational speed when
compared with traditional CNN models and other state-of-the-art multi-sensor diagnostic methods.
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1. Introduction

Hydraulic systems are widely used in modern industry. In engineering applications,
failures in hydraulic systems can cause enormous losses. Early stage fault detection
and localization are essential to make hydraulic systems more reliable and efficient [1].
Intelligent fault diagnostic methods of hydraulic systems have been widely studied [2,3]
overtime. Most of the hydraulic systems in practical applications are complex assemblies
involving various mechanical, hydraulic, and electrical components. The coupling effects
between the different components make real-time hydraulic system fault diagnosis a
challenging task. To address this issue, data-driven fault diagnostic methods have attracted
considerable attention from both industry and academia [4–9]. Models that are able to
abstract valuable information from historical data are the key for these data-driven fault
diagnostic methods [10], which have been widely investigated in recent years.

Machine learning (ML) models are used widely in data-driven fault diagnosis tasks.
Many machine learning models, including support vector machines (SVMs) [7,11], neural
networks (NNs) [4,5], random forest [12], and the extreme learning machine (ELM) [13],
have been developed and applied to fault detection and classification. In these methods,
the diagnostic accuracy is strongly dependent on the features that are fed to the classifier.
To obtain more discriminative fault features from historical data, many signal processing
methods, including the wavelet package transform (WPT) [9] and the fast Fourier transform
(FFT) [12], have been used to extract signal features from the time or frequency domains [11].
These methods are usually combined with intelligent feature selection algorithms such as
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decision trees (DT), the binary particle swarm optimization (BPSO) algorithm [7], genetic
algorithms (GAs) [12], and principal component analysis (PCA). In these ML-based meth-
ods, the final performance is affected strongly by feature extraction and selection, which are
exhaustive processes that require expert knowledge of the target system, and they do not
always generate the most discriminative features. These flaws all limit the generalization
and accuracy of diagnostic methods based on ML.

As part of the rapid development of ML, deep learning (DL) [14–16] has shown
enormous capabilities in the fault diagnosis field [17]. When compared with traditional
ML models, DL models a have better nonlinear mapping ability, which allows them to
learn more abstract and high-level fault features directly from raw signals automatically.
Furthermore, many DL-based diagnostic models can integrate the feature extraction, feature
selection, and fault classification processes to provide an end-to-end diagnosis model. Many
new emerging DL techniques, including the deep belief network (DBN) [18], the deep
stacked auto-encoder (DSAE) [19], the recurrent neural network (RNN) [20,21], the long-
short-term-memory (LSTM) [22,23], and the convolutional neural network (CNN) [24,25],
have been applied to fault diagnosis tasks and have demonstrated good performances
when compared with traditional shadow ML methods. In hydraulic system, sensors of
different types are used to collect different physical variables in various components. The
DL-based models can extract fault-related features from the multi-sensor data through
supervised learning. In [26], Huang et al. used a CNN model to extract fault features
automatically from hydraulic sensor signals collected with different sampling rates. In [27],
Zhang et al. applied deep transfer learning in the condition monitoring of a hydraulic
system with multiple sensor signals. In [28], Zheng et al. proposed a LSTM combined with
attention mechanism for tool condition monitoring. However, two issues significant for
real-time diagnostic applications are neglected in these works. First, in hydraulic systems,
not all the signal channels are related to fault. Using all channels of multi-sensors data will
introduce redundant information, which will decrease the diagnosis performance of the
model. Furthermore, from a computational perspective, a larger number of sensor channels
implies a greater computational effort (increase in hardware costs, possibility of storage or
physical space, computational and communication burden).

To address these issues, in this paper, we propose a new DL-based diagnostic method
that is more suitable for real-time diagnosis of hydraulic systems using multi-sensor data.
The proposed method involves an improved CNN model named multi-sensor CNN (MS-
CNN) that integrates the sensor selection and DL-based fault diagnosis. First, the MS-CNN
is trained to extract the fault features from multi-sensor data. The learned features can be
used for both sensor selection and fault diagnosis. Then, a random forest (RF)-based sensor
selector is applied to select the most valuable and discriminative sensor channels using these
learned features. Finally, the MS-CNN diagnostic model is fine-tuned with the signal data
from the selected channels. This strategy reduces the redundant information and model
complexity, which improves the computational speed and diagnostic accuracy significantly,
making the model more generalizable and suitable for use in real-time diagnostic tasks.

The main contributions made by this study can be summarized as follows:

1. A new multi-sensor diagnostic model, termed a multi-sensor convolution neural
network (MS-CNN), was proposed for hydraulic system diagnosis, which integrate a
random forest (RF)-based sensors selector. This model can process multi-sensor data
collected from different components to extract features for the purpose of both sensor
selection and fault detection;

2. A new MS-CNN-based sensor selection method was proposed to select fault-related
sensor channels from multi-sensor data. The proposed method uses high-level features
learned by a deep learning model for sensor selection. Compared to traditional signal-
processing-based sensor-and-feature selection methods, the proposed method can
find sensor channels containing higher-level fault features;

3. A MS-CNN-based fault diagnostic method was proposed. The proposed method
jointly integrates sensor selection, feature extraction, and fault diagnosis. It can find
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the sensor channels containing the most discriminative fault features through deep
convolutional learning, which can improve the final diagnostic accuracy and reduce
the communication burden and computational complexity in real-time diagnosis tasks.
The experiments results show that the proposed MS-CNN-based fault diagnostic
method offers significant improvements when compared with other state-of-the-art
diagnostic methods in terms of both accuracy and computational speed.

The rest of this paper is organized as follows. Section 2 discusses related work,
including other CNN-based diagnosis methods and existing sensor-and-feature selection
methods. Section 3 introduces the framework of the proposed MS-CNN model and the
diagnostic method based on it. Section 4 presents the results from testing of the proposed
method on a public hydraulic dataset and a dataset collected from an electric-hydraulic
system test rig. Conclusions are drawn and proposed future research areas are presented in
Section 5.

2. Related Studies

In this section, we discuss previous studies on other CNN-based diagnoses and sensor-
and-feature selection methods.

2.1. CNN Models Used in Diagnosis

The CNN is a special type of deep neural network (DNN) that uses convolution
layers rather than fully connected layers for feature extraction. The convolution layer uses
the local connection strategy and the weight sharing strategy to make the model more
focused on local features and invariant to the location. Therefore, the CNNs are suitable for
extracting features from structural data, including images and 1D signals.

In fault diagnosis tasks, 1D CNNs are widely applied to mine the fault features from
the collected time-domain sensor signals. In [22], a 1D CNN was used to extract hydraulic
actuator fault features from 1D pressure signals, thus providing a huge advantage over
other DL models (e.g., the DSAE and the LSTM). Jiang et al. [29] proposed a multi-scale
CNN that made the model robust to the features of the various temporal scales in vibration
signals. Huang et al. [26] proposed a modified 1D CNN that can extract features from
signal data at multiple sampling rates.

Different from 1D CNNs, 2D CNNs are more suitable to process 2D image data, but
they can also be applied to signal-based diagnosis by transforming 1D signals into 2D
images. For example, Wen et al. [30] converted 1D vibration signals into 2D gray-level
images using a signal-to-image conversion approach. Similarly, a method was developed
in [31] to convert 1D signals into a three-channel red-green-blue image. In [32], 1D signals
were transformed into 2D matrices of wavelet packet coefficients and then used in CNN
diagnosis models.

The feature learning ability of the convolutional layers can also be combined with
other deep-learning models. Sun et al. [33] used a backpropagation NN to learn filters that
captured discriminative information through supervised training; these filters were then
used to construct fault feature extraction CNNs. Guo et al. [34] proposed a CNN-based
generative adversarial network (GAN) model to generate real damage data for diagnosis
model training. In [35], a convolutional auto-encoder was applied to hydraulic system
diagnosis.

However, these CNN-based models lack sensor selection capabilities which limits
the diagnostic performance and implies a greater computational effort when dealing with
multi-sensor data composed of various physics variables of complex systems. In contrast,
the proposed MS-CNN model integrates the process of sensor selection, feature extraction,
and fault diagnosis. The model can automatically select the most discriminative and
fault-related signal channels from multi-sensor data to improve the diagnostic accuracy.
Meanwhile, reducing redundant information simplifies the model and thus makes it more
suitable for real-time applications.
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2.2. Sensor Selection and Feature Selection Methods

In order to reduce the redundant information and improve the diagnostic performance,
it is necessary to find the sensor channels that contain the most discriminative and fault-
related features. However, because of the high nonlinear and strong coupling relationships
between the physical variables, finding the most valuable sensor channels or features for
fault diagnostics is challenging. As a result, intelligent sensor selection and feature selection
methods have therefore been widely studied.

In [36], a PCA-based method was used to select sensors that best separated the healthy
components from the faulty components to reduce the computational costs in real-time
wind turbine diagnosis. Fawwaz et al. [23] proposed a GA-based feature selection method
to select the most important features from various sensor data. Other selection algorithms,
including decision trees [11] and the BPSO algorithm [7], were also studied in previous
research. These selection methods are usually combined with ML-based diagnosis meth-
ods [7–9]. However, most of these selection methods use the low-level features (e.g.,
time-domain, frequency-domain) based on expert experience [9] and signal processing
tools (e.g., WPT [7] and FFT [12]), or other methods such as frequency and mode shape as-
sessment [37], and power spectral density of a vibration signal [38]. Therefore, the optimal
sensor channels that contain discriminative high-level features may not be selected.

Motivated by the nonlinear feature learning capabilities of deep learning models, this
paper proposed a new MS-CNN-based sensor selection method for real-time diagnosis
of hydraulic systems. In the proposed sensor selection method, the proposed MS-CNN
diagnostic model is trained to extract the high-level fault-related features from multi-sensor
data, which are used for both sensor selection and fault diagnosis. Then, a random forest
(RF)-based sensor selector selects the most discriminative sensor channels using these
learned features. The selected sensor channels are then used for the fine-tuning of the
MS-CNN diagnostic model. Compared with the traditional sensor-and-feature selection
method, the proposed sensor selection method can find the sensor channels containing
higher level fault-related features, which can improve the final diagnostic accuracy.

3. Proposed Multi-Sensor-CNN Model

This paper focuses on real-time fault diagnosis of an electric-hydraulic system using
multi-sensor data. In hydraulic systems, information contained in the single sensor data is
usually insufficient to improve the diagnosis accuracy, because the features extracted from
single sensor data are often subjected to variations in the operating conditions. Therefore,
multi-sensor data that contain information of different physics variables have been widely
utilized in data-driven diagnostic methods in recent studies. However, processing of
multi-sensor data with numerous channels requires high computational power. In addition,
not all the channels are valuable for diagnosis and the redundant channels will make this
model more difficult to train and will decrease the diagnostic accuracy. To make use of the
multi-sensor data more effectively, this paper proposes a multi-sensor CNN (MS-CNN)
that can learn fault features for both sensor selection and fault detection.

3.1. Framework for Proposed MS-CNN Model

The framework for the proposed MS-CNN model is shown in Figure 1. The MS-CNN
model consists of three main parts: a convolutional feature learning structure, a fault
classifier, and a RF-based sensor selector. Furthermore, a random forest (RF)-based sensor
selector is used to select fault-related sensor channels.

3.1.1. Convolutional Feature Learning Structure

The convolutional feature learning structure is used to extract abstract features from
the sensor signal’s time series for fault classification and sensor selection. Similar to
traditional CNNs, the convolutional feature learning structure of the MS-CNN is generally
a cascaded structure composed of 1D convolutional layers and average pooling layers,
followed by a global max pooling layer. The input format for the structure is a 2D matrix,
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formed by the 1D signal time series of multiple sensor channels. The main difference
between the convolutional feature learning structure of MS-CNN and traditional CNNs
is that there are two different 1D convolution layers that are used as the first layers of
the convolutional feature learning structure at different stages, called the partial-input
layer and the full-input layer; the input channel numbers for these layers are NP and NF,
(NP < NF), respectively. Therefore, the input channel number for the MS-CNN is adaptive.
By switching the structure of the first layer, the model can extract features from the signals
from either all NF sensor channels or NP selected sensor channels.
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In a 1D convolutional layer, the input matrix X = [x1, x2, · · · , xN ]
T is formed by N

channels. The 1D time series for each channel is xi = [xi(t)]1×L ,where L is the length of
the time series and i is the channel index. The input matrix is convolved with a group
of filters Wj =

[
Wj(i, k)

]
N×δ

with a shape of (N × δ), where δ is the filter size. The layer
contains M filters, and each filter outputs a transformed feature map that forms a channel
in the output matrix Z, which is given as follows:

Z = [z1, z2, · · · , zM]T

zj(t) = σ

[
N

∑
i=1

δ−1

∑
k=0

Wj(i, k)·xi(t + k) + bj

]
(1)

where zj is the jth transformed feature map and zj(t) is its value in the tth time step, bj is a
bias term, and σ is a nonlinear activation function, which is a rectified linear unit (ReLU)
function here. There are no padding methods in the convolutional layer, and thus the
length of the output feature map is (L − δ + 1).

Then, in the average pooling layer, the pooling operation is performed on the output
matrix Z, and the output is the down-sampled matrix Z, which is given as follows:

Z = [z1, z2, · · · , zM]T

zj(u) = Ave
[
zj(β·u : β·(u + 1))

]
, u = 1, 2, . . . , Int[L/β] + 1 (2)

where zj is the jth channel of the pooled matrix, β is the pooling rate, and Int[·] is the
integer ceiling function. For each time patch in the feature maps, the average pooling
layer abstracts the average value to represent the entire patch. This operation can greatly
reduce the number of feature dimensions while retaining the most important information
to accelerate the calculation. Furthermore, the down-sampling characteristic of the pooling
layers expands the receptive field of the next convolutional layer, which means that the
model can extract the features on larger temporal scales.
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The Z matrix is then fed into the next convolutional and pooling layer pair, where the
multilayer nonlinear transformation of this cascaded learning structure allows the model
to extract more abstract high-level features. After the last convolutional layer, a global
max pooling layer was used to extract the global maximum value of each feature map; the
output of this layer is a feature vector that contains the most representative features of the
input multi-sensor signals. The feature vector P is represented by the following:

pj = MAX
[
zj(1 : L′)

]
P =

[
p1, . . . , pj, . . . , pM′

]T
=

 MAX[z1(1 : L′)]
. . .

MAX[zM′(1 : L′)]

 (3)

where zj is the jth channel of the output matrix of the last convolutional layer Z, and L′ and M′

are the length and the channel number of the output matrix of Z, respectively.
The model can extract the corresponding feature vector from the input multi-sensor

signal matrix X. The feature vector of the sample can also be represented by the following:

P =

{
G(X) , X =

[
x1, x2, . . . , xNP

]T

∼
G(X) , X =

[
x1, x2, . . . , xNF

]T (4)

where G(X) represents the mapping relationship of the partial-input layer-based model,
∼
G(X) represents the mapping relationship of the full-input layer-based model, and xi is
the ith channel of the input matrix.

3.1.2. Fault Classifier

The fault classifier is used to predict the fault conditions with the extracted features.
The classifier only contains a fully connected (FC) layer with a soft-max activation function.
The FC layer transforms the obtained feature vector P into a multi-class probability vector
that indicates the predicted health conditions of the system. The probability vector is
calculated as follows:

Q = so f tmax(ωPT + b) (5)

where Q = [qi]1×C is the probability vector of the shape (1 × C), qi is the predicted
probability value of each class for the input sample, D is the number of labels, ω is the
weight matrix of the shape (M′ × C), b is the bias vector, and so f tmax(·) is the softmax
active function, which can be expressed as the following:

so f tmax([z1, . . . , zC]
T) =

[
ez1

∑C
k=1 ezk

, . . . ,
ezC

∑C
k=1 ezk

]T

(6)

Note that a dropout operation with a drop rate of 20% is used in the FC layer. In each
training epoch, 20% of the nodes in the multi-sensor feature vector are selected randomly
and set to zero. This operation can prevent overfitting and increases the training speed.

To train the diagnosis model, we feed the training samples into the model and acquire
the corresponding predicted probability vectors. Then, the binary cross-entropy loss
between the probability vectors and the label vectors of all the training samples in a
training batch is calculated as the loss function, which is represented by the following:

LossBCE =
1

C·N
N

∑
n=1

C

∑
k=1

l(n)k (7)

l(n)k = −
[
y(n)k log(q(n)k ) + (1 − y(n)k )log(1 − q(n)k )

]
(8)
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where N is the number of samples in a training batch, and y(n)k , q(n)k , and l(n)k are the
training label, the predicted probability, and the corresponding loss of the kth label and
the nth sample, respectively.

In each training epoch, the loss is backpropagated to the weights and biases in the FC
layers and the convolutional layers. The Adam optimizer then adjusts these parameters
to minimize the loss. Through an epoch-wise parameter update, the model is trained to
extract fault-related features from the input multi-sensor signal matrix and use them to
classify the system’s health conditions.

3.2. Training of MS-CNN

The MS-CNN training process can be divided into three stages: the pre-training stage,
the sensor selection stage, and the fine-tuning stage. The pre-training stage gives the
model its primary ability to extract the fault features required for fault classification and
sensor selection. At this stage, the model is trained on the pre-training dataset, which is a
randomly selected subset of the training dataset. The full-input layer is used as the first
layer of the model during this stage, and the model thus takes all NF sensor channels as its
input. For each sample, the input matrix is given by the following:

X(n) =
[

φ
(n)
1 , φ

(n)
2 , . . . , φ

(n)
NF

]T
(9)

where φ
(n)
i =

[
φ
(n)
i (t)

]
1×L

is the signal time series of the ith sensor channel and n is the

sample index.
During the supervised pre-training, the model can learn fault-related features from

all sensor channels automatically. Values in vector P are the representation of the fault-
related information in sensor signals. We proposed a sensor selection method based
on the feature vectors to find the sensor channels that contain the most discriminative
fault-related features.

After pre-training, the sensor selection operation is performed. During the sensor
selection stage, the well pre-trained model with the full-input layer is used to select the
optimal sensor channels required for further training and testing. First, we create a single-
sensor signal matrix composed of one signal time series and another (NF − 1) zero time
series for each sensor channel. The new single-sensor signal matrices have the same shape
as the NF-channel multi-sensor signal matrix, and these new single-sensor signal matrices
can be given as the following:

V(n)(i) =
[
O, O, . . . , φ

(n)
i , . . . , O

]T
(10)

where V(n)(i) is the single-sensor signal matrix of the nth sample and the ith sensor channel.
The ith channel of the matrix V(n)(i) is the same as the ith channel of the multi-sensor signal
matrix X(n), while the other channels are zero time series.

The feature vector of each sensor is X(n)(i) =
{

x(n)(i)j

}
ND×1

, where ND is the output

channel number of the last convolutional layer, it can be denoted as the following:

X(n)(i) =
∼
G(V(n)(i)) (11)

where
∼
G(·) represents the mapping relationship of the full-input layer-based model, which

outputs the feature vector of the input single-sensor signal matrix. The feature vec-
tor X(n)(i) only relates to sensor signal φ

(n)
i , and it is the representation of the fault-related

information in its corresponding sensor channel. Therefore, the features in vector X(n)(i) can
be used for sensor selection.
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The global feature vector is denoted as the follows:

X̌(n) =
{

x(n)(1)1 , . . . , x(n)(1)ND
, . . . , x(n)(NF)

ND

}
(12)

Then, a random forest classifier is trained on these features and gains the mean
decrease in Gini impurity (MDG) of each feature, which can be denoted as

MDG
(

x(n)(i)j

)
=

1
M ∑

t∈T

[
GI(A)− nL

n
GI(AL)−

nR
n

GI(AR)
]

(13)

where A is the collection of observations falling in node t, AL, and AR are the observations
collections of its left and right child nodes, respectively. n, nL, and nR are the number of ob-
servations in A, AL, and AR respectively. T is the collection of nodes using feature p(n)(i)j in
the random forest classifier. M is the number of trees in the random forest classifier. GI(A) is
the Gini impurity of A, which is calculated as follows:

GI(A) = ∑Nclasses
k=1 pk(1 − pk) (14)

where pk is the proportion of class k in collection A, and Nclasses is the number of classes in
collection A.

The corresponding feature score of each sensor channel is calculated as follows:

F(i) =
1
N ∑

1≤n≤N
∑

1≤j≤ND

MDG
(

x(n)(i)j

)
(15)

where N is the sample number in the training dataset. This metric measures the forest-wide
contribution of the sensor channel at separating the different classes and constitutes one
measure of sensor importance. The eight sensor channels with the highest feature scores
are selected. In order to further reduce the redundant information, the Pearson correlation
coefficient is used to measure the correlation between selected sensor channels, which is
calculated follows:

ρ
(

x(i), x(j)
)
=

cov
(
σx(i) , σx(j)

)
σx(i)σx(j)

(16)

The sensors with high absolute values of correlation coefficients are screened because
they contain similar information. After sensor selection, the number of sensor channels is
reduced from NF to NP.

Next, the selected sensor channels are used as the input channels for the partial-input
layer for further fine-tuning and testing. Sensor channels with higher feature scores are more
likely to contain more discriminating fault features. Therefore, when compared with the
channels with lower feature scores, the selected channels are considered to be more relevant
to the fault conditions, making them more suitable for further training and online diagnosis.

To accelerate convergence and reduce the computational costs during the pre-training
stage, the pre-training dataset only takes a small proportion of the entire training dataset so
that it does not have a sufficient sample volume to allow the model to achieve satisfactory
diagnostic results. Therefore, the model should be further fine-tuned on the training dataset
in the fine-tuning training stage. During the fine-tuning training stage, the partial-input-
layer is used as the first layer of the model, and the input multi-sensor signal matrix, which
is formed by the selected channels, is given by the following:

X(n) =
[

φ
(n)
1 , φ

(n)
2 , . . . , φ

(n)
NP

]T
(17)

Because only the data from NP selected sensor channels, rather than from all channels,
are selected as inputs to the model during both the fine-tuning and online diagnosis stages,
the model complexity and the computational cost are greatly reduced. More importantly,
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the sensor selection operation ensures that the model is trained on optimal sensor channels
that contain more features that contribute to the prediction accuracy, which accelerates the
model convergence and increases training efficiency.

3.3. MS-CNN-Based Fault Diagnosis Method

The framework of the proposed fault diagnostic method is shown in Figure 2. This
framework is built to detect faults in an electric-hydraulic system in real time using raw
multi-sensor data signals. The process to establish this framework can generally be de-
scribed as follows.
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The multi-sensor data and the corresponding working conditions are acquired from
the historical data and the records of the target hydraulic system. Multi-sensor data are
split into 400 s long time segments that are used as training and testing samples while
the corresponding working conditions are used as labels for these samples. The training
dataset and the testing dataset are selected randomly from these labeled samples. The
MS-CNN-based diagnostic model is constructed and trained on the training dataset. The
training stage contains the processes of pre-training, sensor selection, and fine-tuning,
and is performed offline. During training, the optimal sensor channels are selected from
all channels. After training, the model will be tested using the test dataset to assess the
diagnosis accuracy and then used for real-time diagnosis.

During the real-time diagnosis stage, the sensor signals are collected from the target
hydraulic system in real time. Diagnosis is performed every 10 s to predict the system’s
health condition periodically. The input of the model is the matrix of 400 s long signals
from the selected optimal channels, the format of which is the same as the training samples.

Similar to the proposed MS-CNN, in [22,26], the 1D signals from different sensors are
channel-wise packaged to form the input matrix for a deep learning-based diagnosis model
which also enable the model to take advantage of multi-sensor data. However, in these
studies, sensor selection was neglected, which will introduce redundant information into
the deep learning model and limit the diagnostic performance. In contrast, the MS-CNN
proposed in this paper eliminates the redundant sensors automatically and simplifies
the model. Using this simpler model, the training and online diagnosis process can be
performed rapidly. In addition, monitoring of the eliminated sensors can be conducted
at a lower sampling frequency, which also reduces the communication and data storage
costs. All these advantages make the proposed method more suitable for use in real-time
diagnosis applications.

4. Case Study

This section presents the results from testing of the proposed method on a public
hydraulic dataset and a dataset collected from an electric-hydraulic system test rig.

4.1. Case I

The proposed real-time diagnosis method was examined in an electric-hydraulic
subsea control system (EHSCS) [39], which is a typical hydraulic system used in subsea oil
and gas production.

4.1.1. Test Rig

An EHSCS test rig was built to collect the multi-sensor data from the system. The
test rig framework is shown in Figure 3. The test rig mainly consists of a hydraulic power
unit (HPU) with two hydraulic pumps (MP1–2), an umbilical emulator, a subsea control
module (SCM), and a hydraulic test station (HTS). The HTS contains a series of hydraulic
quick couplings (QC1–4), a loading system (MP3), and a group of valves that emulate faults
in the hydraulic components. The SCM mainly contains a hydraulic accumulator (A1), a
hydraulic filter (F3), and a DCV (V6). Note that in a real EHSCS, the hydraulic accumulators
of all the SCMs are connected together, and thus the influence of the other SCMs is emulated
using an accumulator (A2) connected through long pipes. There are 20 sensors mounted on
the test rig and the sensor types are described in Table 1. A programmable logic controller
(PLC) controls the DCV to operate the actuator and collects the multi-sensor signals used as
training and testing samples. Each sample is a 20-channel signal segment of 400 s, and the
sampling frequency is 10 Hz. Therefore, each sample contains 20 × 10 × 400 = 80, 000 data
points. The signal in each sample covers a time period that contains an open-and-close
cycle of the actuator and an HPU switching operation, which is suitable for emulation of a
typical operation in subsea actuators.
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Table 1. Sensors in the hydraulic system.

Sensor Description Unit Range

DP1-2 pressure of filters bar 0 to 50
FS1-5 flow rate L/min −30 to 30
PS1-6 pressure bar 0 to 345
TS1-3 temperature ◦C 0 to 50
VC1-2 current of coils mA 0 to 20
VV1-2 voltage of coils V 0 to 50

In this case, nine types of fault were injected into the different components shown in
Table 2, and thus 10 health conditions (including the normal condition) were studied in
total. Samples with different faults were collected under various operating conditions. The
loading system pressure was set to values of 2, 6, 10, 14, and 18 MPa and the HPU pressure
was set to values of 13, 14, 15, and 16 MPa, and thus 4 × 5 = 20 operating conditions were
emulated. For each operating condition and fault condition, we collected 10 samples, and
thus 20 × 10 × 10 = 2000 samples were collected in total. Figure 4 displays the pressure
sensor signal of PS3 and PS6 under normal situations and a fault of BLK2, with a loading
system value of 2 MPa; the signals of a normal system with a loading system value of
14 MPa are also shown in Figure 4. It could be seen that the waveform of sensor signals can
be significantly influenced by faults in the system, as well as in the operation conditions.

To evaluate the effectiveness of the proposed method, a 10-fold cross-validation [15]
was conducted in this study. The collected samples were divided randomly into 10 groups.
Each group was selected as the test set in turn, while the remaining groups were used as
the training set. The average value and the standard deviation of the accuracy over all
classes in these 10 tests were used to evaluate the method’s diagnosis performance. Further
comparisons were also performed on these terms.

The calculation environment used for the MS-CNN model and for other algorithms
for comparison in the experiments is as follows: Python 3.6, Pytorch; computer operating
system: Windows 10; a CPU frequency of 3.3 GHz, 8192 MB of RAM, and an NVIDIA
RTX3060 GPU.
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Table 2. Hydraulic faults in the test rig.

Fault Label Fault Condition Emulation Parameters States Samples

LK1
Flow leakage in quick

coupling (QC3)
Throttles of the flow

restrictor (RV6)

0%: No leakage
2005–10%: Weak leakage

10–15%: Severe leakage

LK2
Flow leakage in quick

coupling (QC1)
Throttles of the flow

restrictor (RV1)

0%: No leakage
2005–10%: Weak leakage

10–15%: Severe leakage

LK3
Flow leakage in quick

coupling (QC2)
Throttles of the flow

restrictor (RV2)

0%: No leakage
2005–10%: Weak leakage

10–15%: Severe leakage

BLK1
Flow blockage in quick

coupling (QC3)
Throttles of the flow

restrictor (RV5)

100%: No blockage
20090–95%: Weak blockage

85–90%: Severe blockage

BLK2 Flow blockage in filter (F3) Throttles of the flow
restrictor (RV3)

100%: No blockage
20090–95%: Weak blockage

85–90%: Severe blockage

BLK3
Flow blockage in quick

coupling (QC4)
Throttles of the flow

restrictor (RV4)

100%: No blockage
20090–95%: Weak blockage

85–90%: Severe blockage

GL1
Gas leakage in

accumulator (A1)
Pre-charge pressure of

accumulator (A1)

80 bar: Optimal pressure
20070–75 bar: Slightly reduced

65–70 bar: Severely reduced

GL2
Gas leakage in

accumulator (A2)
Pre-charge pressure of

accumulator (A2)

80 bar: Optimal pressure
20070–75 bar: Slightly reduced

65–70 bar: Severely reduced

ACF Fault in actuator (AC1)
Stroke length of actuator

cylinder (AC1)
30 cm: No fault

2000–29 cm: Actuator fault
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Figure 4. Sensor signals collected from test rig (a) PS3 and (b) PS6.

The MS-CNN is composed of three convolution layers, two average pooling layers,
and a fully connected layer. The kernel size of the filter is 29 and the pooling rate is nine.
The configuration of the MS-CNN is shown in Table 3. During training, all CNN models
shared the same training parameters. The models were trained using the Adam optimizer
with a step decay in the learning rate. The initial learning rate was set at 0.0005, and the
decay was 0.98. The training was terminated when the training reached the 300th epoch.



Sensors 2024, 24, 353 13 of 21

Both the model structure and the training hyper-parameters are predefined considering the
test performance and the computational cost of the experiment platform.

Table 3. Layer configurations of the MS-CNN models.

Layer Name CNN Models

CL-1 (Full-input-layer) Conv (29 × NF, 16)
CL-1 (Partial-input-layer) Conv (29 × NP, 16)

PL-1 Average pool (9)
CL-2 Conv (29 × 16, 32)
PL-2 Average pool (9)
CL-3 Conv (29 × 32, 64)
GMP Global max pool

FC Fully connected
(64 × NClasses)

CL-1 (Full-input layer) Conv (29 × NF, 16)

4.1.2. Comparison of Results with Other Sensor and Feature Selections Based Methods

The feature extraction ability of the proposed MS-CNN was evaluated through com-
parison with existing data-driven diagnosis methods based on sensor selection and fea-
ture selection algorithms, including PCA [36], DT [11], and GA [23]. The features used
in these methods were extracted from all sensor channels, including the time-domain
features [7,9,11], FFT-based features [12], and WPT-based features [8], which are very com-
monly used in data-driven diagnosis methods. For further comparison, an artificial neural
network (ANN) diagnosis model and a random forest (RF)-based diagnosis model using
all these manual features are considered during this comparison. All methods were trained
on the same dataset for fairness.

The overall accuracy for each method is listed in Table 4 and a receiver operating-
characteristic (ROC) plot is shown in Figure 5. When compared with the other methods,
the proposed method obtained higher diagnosis accuracy, which ranged as high as 99.40%.
In addition, the MS-CNN’s standard deviation was also clearly lower than that of the
other methods, which illustrates that the diagnostic results of the MS-CNN are more
reliable. The steepness and areas of the ROC curves also demonstrate the discrimination
characteristics of the MS-CNN. Among all the sensor-and-feature selection-based methods,
the DT+ANN method achieved the best performance in terms of mean diagnostic accuracy,
with a mean accuracy of 94.10%, which means that the DT algorithm can find the most
valuable and discriminative features from all manually extracted features for diagnosis.
However, the pure sensor-and-feature selection methods can only improve the performance
slightly because when compared with the features learned by the MS-CNN, these manually
designed features are often subject to variations in the operating conditions and are not
sufficiently discriminative for systems with various loading conditions.

Table 4. Hydraulic system fault diagnosis performances of the proposed method with other algorithms.

Method Accuracy

1 PCA + SVM 70.15 ± 4.54%
2 PCA + ANN 78.70 ± 3.41%
3 DT + SVM 87.60 ± 3.15%
4 DT + ANN 94.10 ± 2.06%
5 GA + ANN 85.65 ± 2.84%
6 GA + RF 86.40 ± 2.39%
7 RF 88.65 ± 2.58%
8 ANN 80.65 ± 2.60%
9 MS-CNN 99.40 ± 0.81%
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Figure 5. ROC curves for the MS-CNN and other methods.

To provide a better visualization of the feature extraction capability of the proposed
method, we used the t-distributed stochastic neighbor embedding (t-SNE) technique to
reduce the dimension of the MS-CNN-extracted feature vector and the features selected
by the comparison methods and then plotted them in 2D maps. The results are shown
in Figure 6. Samples with different labels are indicated by different colors. The plots
show that the features extracted using the proposed method are more clearly separated
when compared with the other methods’ selected features, which verifies that the features
extracted by the proposed approach are more discriminative and robust to variations in the
operating conditions.
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4.1.3. Comparison with Other Multi-Sensor Fusion Methods for the CNN Model

To illustrate the effectiveness of the proposed sensor selection ability based on high-
level features, the diagnostic accuracy and computation time of the MS-CNN are compared
with traditional CNN using all sensor channels in this section. In [22], two kinds of
multi-sensor data fusion methods for CNNs were studied, in which the multiple signal
segments were transformed into a long 1D segment in a time domain and a 2D matrix
channel-by-channel, respectively. Inspired by this work, we built CNN models using
these two transformation methods for comparison, which we named CNN-1 and CNN-2,
respectively. A comparison of CNN-1, CNN-2, and MS-CNN was conducted in terms of the
10-fold cross-validation accuracy and average computation time during the training and
200-sample testing stages. Comparison results are shown in Table 5. The hyper-parameters
of these models are the same except for the input channel numbers.

Table 5. Diagnosis performances of the proposed method with other CNN-based multi-sensor methods.

Train Accuracy Test Accuracy
Time Cost (s)

Train Test

MS-CNN 99.88 ± 0.14% 99.40 ± 0.81% 56.0 0.27
CNN-1 89.56 ± 0.40% 89.55 ± 0.96% 803.8 0.64
CNN-2 99.56 ± 0.66% 98.30 ± 1.38% 392.6 0.39

The overall testing accuracies of the models are 99.40% (MS-CNN), 89.55% (CNN-1),
and 98.30% (CNN-2). The MS-CNN performs better than CNN-1 and CNN-2 in terms
of both average accuracy and standard deviations. It can be concluded that the features
extracted from the MS-CNN-selected sensors are more discriminative and robust than the
features that were extracted from all channels, and thus the proposed MS-CNN is proved to
be able to find the most fault-related sensor channels effectively from the multi-sensor data.

Furthermore, the time costs during both the training stage and the testing stage for the
MS-CNN are significantly lower than those of the other models because the MS-CNN only
uses the most valuable channels as inputs, which reduces the computational and storage
costs of forward propagation. On the one hand, the MS-CNN’s faster testing speed makes
it more suitable for time-sensitive applications including real-time fault monitoring. On the
other hand, the sensor selection strategy not only accelerates the computation speed for
each training epoch, but it also improves the algorithm’s convergence speed.

4.2. Case II

To further validate the effectiveness of the proposed method, an experiment is con-
ducted on an open-source dataset.

4.2.1. Experiment Description

The experimental data derives from an open-source dataset detailed in [40], which
is also used to validate other state-of-the-art diagnostic methods in [26,27,41,42]. In this
dataset, multi-sensor data are collected from the test rig shown in Figure 7. Several kinds
of faults are simulated in the test rig, which differ in fault types, severity, and duration.
The components and simulated fault conditions are presented in Table 6. The sensors
monitoring the system are shown in Table 7.

In this section, the fault diagnosis tasks for each component are conducted, respectively,
and the severity of the failure is used as the label in each case. For example, in the diagnosis
of the cooler C1, the label can be denoted as Y ∈{full efficiency, reduced efficiency, close to
total failure} = {[1,0,0], [0,1,0], [0,0,1]}. Since the sensor channels in multi-sensor data are
collected with different sampling rates, an unsampling operation is conducted on signals
with sampling rates of 1 Hz and 10 Hz in order to make sure that signals in all channels
have the same length.
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Figure 7. Hydraulic test rig in case II: (a) primary working circuit and (b) secondary cooling
filtration circuit.

Table 6. Hydraulic components and faults simulation methods in Case II.

Component Condition Value Interpretation

Cooler C1 Cooling power decrease (%)
100 full efficiency
20 reduced efficiency
3 close to total failure

Valve V10 Switching degradation (%)

100 optimal switching behavior
90 small lag
80 severe lag
73 close to total failure

Pump MP1 Internal leakage (code)
2 severe leakage
1 weak leakage
0 no leakage

Accumulator
A1−A4

Gas leakage (bar)

130 optimal pressure
115 slightly reduced pressure
100 severely reduced pressure
90 close to total failure

Table 7. Sensors in hydraulic system in Case II.

Sensor Physical Quantity Unit Sampling Rate

PS1−PS6 Pressure bar 100 Hz
EPS1 Motor power W 100 Hz

FS1−FS2 Volume flow L/min 10 Hz
TS1−TS4 Temperature ◦C 1 Hz

VS1 Vibration mm/s 1 Hz
CE Cooling efficiency (virtual) 1 Hz
CP Cooling power (virtual) kW 1 Hz
SE System efficiency factor (virtual) % 1 Hz

In this study, a 5-fold cross validation was performed, similar to the experiment in [26].
The average value and the standard deviation of the accuracy over all classes were used to
evaluate the method’s diagnosis performance. Further comparisons were also performed
on these terms.
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4.2.2. Discussion of Results and Comparison of Performance with Other
State-of-the-Art Methods

The configuration of the MS-CNN is the same as in the former experiment. First, to
verify the effectiveness of the sensor selection, a traditional CNN method was used as the
baseline method for comparison. Here, the hyper-parameters of the traditional CNN model
are the same as the MS-CNN with the fully connected layer, and it uses all channels in the
multi-sensor data as the input. In addition, several state-of-the-art intelligent diagnostic
methods were also introduced for comparison. The comparison results are shown in Table 8.

Table 8. Result of the comparison with published studies and the traditional CNN model.

Sensor Method
Accuracy (%)

Cooler Valve Pump Accumulator Average

Our proposed MS-CNN 100.00 100.00 99.94 99.96 99.98
Traditional CNN 99.85 100.00 99.85 98.95 99.66

Helwig et al. [40] LDA 100.00 100.00 98.00 90.40 97.10
Liu [41] LDA + HKELM 99.94 99.98 99.91 98.31 99.54

Wang et al. [42] PCC + NCA + Deep Learning 99.91 100.00 99.77 98.70 99.60
Zhang et al. [27] Deep transfer leaning 100.00 100.00 98.20 96.40 98.65
Huang et al. [26] Multi-rate CNN 100.00 100.00 98.98 99.35 99.58

In general, in fault detection of all components, the proposed model achieves the best
diagnostic performance compared to state-of-the-art published work in recent years based
on this dataset. In [41], Liu et al. extracted a series of time and frequency domain fault
features for all sensor channels, then, a multi-channel data selection method based on linear
discriminant analysis (LDA) was used to screen out sensitive features for a hybrid kernel
extreme learning machine (HKELM) fault detection model. A similar feature extraction
and selection process can also be found in [40]. Similar to LDA, in [42], Wang et al. used
the Pearson correlation coefficient (PCC) and neighborhood component analysis (NCA) to
select data channels for a heterogeneous ensemble deep neural networks diagnostic model
based on a stacked sparse auto-encoder (SSAE) and a deep hierarchical extreme learning
machine (HELM). In the studies mentioned above, artificially designed features are used
to represent information from multiple sensors; thus, the feature selection and diagnosis
rely heavily on expert knowledge. In contrast, in our proposed method, manual feature
extraction is not required. The CNN model can automatically learn discriminative, robust,
and higher-level features from raw signals of the multi-sensor data, which improves the
diagnostic performance in applications significantly as shown in Table 8.

In [27], Zhang et al. transfer a pretrained natural language processing (NLP) model
GPT-2 for a fault diagnosis task using multi-sensor signal data. The self-attention mecha-
nism enables the GPT-2 model to identify the critical fault-related sensor channels, which
improves the effectiveness of handling the multi-sensor data with large sensor numbers.
However, the GPT-2 is a complex model. Such a model requires a large computational
cost, which makes it difficult to apply to real-time diagnosis. Additionally, compared to
the GPT-2 that was developed for NLP tasks, our proposed CNN-based model can be
focused more on local features, which makes it more suitable to deal with data with spatial
or temporal information such as a signal time series. The result shows that the proposed
MS-CNN outperformed the GPT-2 when facing faults in the accumulator and pump.

In [26], Huang et al. used the Pearson correlation coefficient to select fault-related
sensor channels and reduce the redundant information. Then, they used a CNN with
multiple independent parallels to extract features for sensors with different sampling rates.
However, the sensor selection process and feature extraction process are separated in this
framework. The PCC only reflects the linear correlation between signals and fault labels;
thus, the sensor channels selected may not contain the higher-level and nonlinear fault-
related features. In the proposed MS-CNN, the sensor selection is based on the features
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learned through supervised training, and the RF-based sensor selector can find out the
sensor channels containing higher-level fault-related features, which can improve the final
diagnostic accuracy as shown in Table 8.

The results show that the proposed MS-CNN outperformed the traditional CNN
using all channels in multi-sensor data in the diagnosis of all components, especially the
accumulator and pump, which illustrates that the sensor selection of the proposed MS-CNN
can reduce the redundant information of the multi-sensor data and therefore improve the
diagnostic performance of the model. To better illustrate this, we used the t-SNE technique
to visualize the feature vectors extracted with the MS-CNN and the traditional CNN in
the diagnosis of different components. The results are shown in Figure 8. Samples with
different labels are indicated by different colors. The plots show that the features extracted
with the MS-CNN are more clearly separated when compared with the features extracted
with the traditional CNN, which verifies that the sensor channels selected by the MS-CNN
contain the most discriminative fault-related features.
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The sensor channels selected by the MS-CNN for each fault are shown in Table 9. These
optimal sensor channels are selected according to their sensitivity to specific faults and their
robustness to varying operation conditions, which depend on the dynamic characteristics
of hydraulic components and the installation positions of the sensors. Therefore, the
optimal sensor channels differ in different hydraulic systems and faults; the MS-CNN can
automatically select the most discriminative and robust sensor channels for diagnosis.

Table 9. MS-CNN-selected sensor channels for different faults in Case II.

Faults Selected Sensor Channels

Cooler C1 [CE, TS4, PS5, CP, PS6, TS1]
Valve V10 [PS2, PS1, EPS1, PS3, FS1, SE]

Pump MP1 [SE, FS1, PS3, EPS1, PS1, TS2]
Accumulator A1−A4 [PS3, FS1, FS2, TS1, TS4, SE]
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5. Conclusions

The main contribution of this research is the development of a fault diagnosis method
based on the MS-CNN that incorporates feature extraction, sensor selection, and fault
diagnosis into an end-to-end model. Compared with other fault diagnostic methods based
on manually designed fault features, the proposed model takes advantage of the abstract
features extraction ability of the deep learning model, which makes it able to learn fault
features automatically from the raw signals without any signal processing operations. The
comparison of the diagnostic results shows that the proposed MS-CNN outperformed those
low-level features-based methods significantly. That is because the manually designed
and signal processing-based fault features are usually subject to the variation in operation
conditions and signal noise. In contrast, the proposed MS-CNN can learn more robust and
comprehensive features though supervised learning.

In contrast to the traditional CNN diagnostic model, the MS-CNN integrates the
proposed sensor selection in the learning structure. The comparison results between the
MS-CNN and traditional CNN diagnostic models has illustrated that this strategy can
effectively reduce the redundant information of the multi-sensor data to improve the
diagnostic accuracy. The reduction in sensor channels also decreases the cost in calculation,
communication, and data storage; all these advantages makes the MS-CNN more suitable
for the real-time diagnosis of systems with data from multiple sensors.

Moreover, the proposed sensor selection method is based on the higher-level features
learned from the deep conventional structure instead of from manually designed or signal
processing-based features. The result of the experiment conducted on the public hydraulic
dataset shows that the proposed method is more accurate in the fault detection of all
components compared with other deep learning diagnostic methods combined with sensor
selection methods such as PCC, LDA, and NCA.

The proposed MS-CNN model provides a potential method for use in various fault
diagnosis tasks in other complex systems with multiple sensors. Of course, several points
need to be pointed out as further research directions. First of all, since the labeled fault
samples are difficult to obtain in SCSs and many other industrial applications, it is necessary
to investigate the problem of insufficient diagnostic accuracy while, at the same time,
lacking labeled training samples. Secondly, the proposed sensor selection can be combined
with other kinds of deep learning models such as self-attention-based models for the
purpose of improving the efficiency of feature extraction for multi-sensor data.
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