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Abstract: The Internet of Things generates vast data volumes via diverse sensors, yet its potential
remains unexploited for innovative data-driven products and services. Limitations arise from sensor-
dependent data handling by manufacturers and user companies, hindering third-party access and
comprehension. Initiatives like the European Data Act aim to enable high-quality access to sensor-
generated data by regulating accuracy, completeness, and relevance while respecting intellectual
property rights. Despite data availability, interoperability challenges impede sensor data reusability.
For instance, sensor data shared in HTML formats requires an intricate, time-consuming processing
to attain reusable formats like JSON or XML. This study introduces a methodology aimed at con-
verting raw sensor data extracted from web portals into structured formats, thereby enhancing data
reusability. The approach utilises large language models to derive structured formats from sensor
data initially presented in non-interoperable formats. The effectiveness of these language models was
assessed through quantitative and qualitative evaluations in a use case involving meteorological data.
In the proposed experiments, GPT-4, the best performing LLM tested, demonstrated the feasibility
of this methodology, achieving a precision of 93.51% and a recall of 85.33% in converting HTML to
JSON/XML, thus confirming its potential in obtaining reusable sensor data.

Keywords: Internet of Things; sensor data; interoperability; data reusability; data processing

1. Introduction

Internet of Things (IoT) infrastructures generate an abundance of data through devices
equipped with diverse sensors. However, the unexploited potential of these data to drive
innovative data-driven products and services persists due to the dependence on sensor
manufacturers and individual companies for data description, storage, and transmission,
hindering seamless sharing and comprehension by third parties [1].

Efforts to address this issue, such as the European Data Act (https://eur-lex.europa.
eu/legal-content/EN/TXT/?uri=COM:2022:68:FIN, accessed on 20 September 2023), aim
to regulate data accessibility advocating for high-quality access to sensor-generated data.
The proposed European regulation emphasises that data owners must ensure the accuracy,
completeness, reliability, relevance, and currency of data shared with third parties, while
also respecting trade secrets or intellectual property rights.

However, despite initiatives enabling access to sensor-generated data, interoperability
challenges impede the reusability of such data [2]. Sensor data often gets shared in HTML
format, necessitating laborious, resource-intensive, and error-prone data processing for
conversion into reusable formats like JSON or XML. Notably, there are challenges for
making sensor data more interoperable [2]:

• Sensor data exhibit heterogeneous characteristics, impeding the establishment of
standardised data models essential for improving interoperability. Consequently,
sensor data often reside in arbitrary, frequently proprietary formats.
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• Anticipated applications of sensor data remain unknown a priori, necessitating data
formats that facilitate unrestricted and interoperable reuse, rather than catering solely
to specific applications.

• Variations in architecture and network configurations across distinct sensor systems
pose a hurdle. Consequently, manual adaptations are requisite for sensor data acquisi-
tion in each scenario to improve interoperability.

As a result, sensor data remains inaccessible and unprocessable by machines, making
it difficult to reuse [3], as it is often shared in non-interoperable formats like HTML [4] in
web portals.

This study introduces a methodology designed to convert raw sensor data obtained
from web portals into structured, more easily interpretable, and reusable formats (e.g., JSON,
XML, or CSV). The specific objectives pursued in this study are:

1. Enable users to interact by stating their objectives, thereby obtaining the necessary
sensor data to meet these objectives.

2. Provide immediate access to sensor data published in unstructured formats by con-
verting it into interoperable formats, facilitating easier reuse of the data.

3. Achieve a high level of automation regardless of the diversity of topics that sensor
data can cover.

The methodology is driven by the necessity to render sensor data interoperable,
thereby maximising its reuse and addressing the challenges mentioned previously. This
approach prioritises the inclusion of reusers and their information needs as a central
component of the methodology. In practice, reusers need only to specify their objectives in
relation to sensor data applications. Subsequently, the retrieval of the structured sensor
data required to fulfil these objectives is automated using LLMs on a selection of web
portals. Specifically, the methodology comprises four key steps: (i) stating specific objective
requiring sensor data, (ii) identifying the portals hosting the data, (iii) devising data
retrieval procedures, and (iv) leveraging large language models (LLMs) [5] to generate
structured standardised data formats (such as JSON or XML) from raw sensor data initially
in non-interoperable formats (like HTML). This methodology is designed to facilitate the
consumption of sensor data initially published in unstructured formats, such as HTML.
Consequently, the scope of this proposal is specifically limited to certain web portals that
support sensor discovery in IoT networks. An example is Censys (see Section 2.2), known
for its extensive publication of sensor data in HTML format.

The methodology was applied and tested through a specific use case utilising meteoro-
logical data sourced from a web portal hosting sensors. The evaluation conducted gauged
the precision and recall of various state-of-the-art LLMs in converting HTML sensor data
into XML format.

The remainder of this paper is organised as follows: Section 2 presents an overview
of related work encompassing LLMs and IoT platforms; Section 3 details the proposed
methodology for extracting structured information from raw sensor data; Section 4 outlines
a specific use case revolving around meteorological data; Section 5 delves into evaluation,
testing the performance of different LLMs to convert sensor data in HTML into XML
format; and finally, Section 7 provides concluding remarks and outlines potential future
research directions.

2. Related Work

This section describes the related work within the domain of LLMs and offers insights
into existing web portals dedicated to aggregating sensor data. Understanding the land-
scape of LLM research and the scope of sensor data aggregation through existing web
portals provides a foundational understanding for the proposed methodology in this study.
Finally, previous work related to the transformation of sensor data into structured formats
is described, underscoring the contributions of this study to the state-of-the-art.
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2.1. Large Language Models

In recent years, natural language processing (NLP) has experienced a transforma-
tive evolution with the emergence of LLMs. The primary function of a language model
is to predict and generate coherent language. These models evaluate the likelihood of
individual tokens or sequences of tokens within a broader context. Predicting subsequent
elements in a sequence is essential across various tasks, such as text generation [6], language
translation [7], and question answering [8], among others.

LLMs have a significant number of parameters, ranging from hundreds of millions
to billions. This scale empowers them to capture intricate linguistic patterns, harness
contextual cues, and discern nuanced semantic meanings that previously posed challenges
for NLP systems. Constructing LLMs demands a complex and resource-intensive process.
As models expand in size, they concurrently augment in complexity and effectiveness.
These larger-scale language models are often pre-trained on extensive textual corpora,
enabling them to acquire broad language patterns and world knowledge. Subsequent to
pre-training, these models can undergo fine-tuning for specific NLP tasks, rendering them
versatile tools adaptable for a variety of applications.

Earlier models could predict single words, whereas modern LLMs can forecast prob-
abilities for entire sentences, paragraphs, or even whole documents. The rapid expan-
sion of language models in recent years is driven by increased computer memory, larger
datasets, enhanced processing power, and more effective techniques for handling longer
text sequences.

A key advancement in language models emerged in 2017 with the introduction of
Transformers [9], an architecture built around the concept of attention. This innovation
unlocked the ability to handle longer sequences by concentrating on the most salient
components of the input, effectively resolving memory constraints that earlier models
grappled with. Transformers comprise two primary components: an encoder and a decoder.
The encoder converts input text into an intermediate representation, while the decoder
translates this intermediary representation into coherent text output. Transformers have
established themselves as the cutting-edge architectural framework for a diverse array of
language model applications.

The rapid advancements in LLMs have witnessed groundbreaking progress in both
research and industrial applications. In 2018, the advent of the Bidirectional Encoder Repre-
sentations from Transformers (BERT) [10] revolutionised the comprehension and generation
of human languages. Unlike its predecessors that processed text in a unidirectional manner,
BERT introduced bidirectional learning. It simultaneously considered both left and right
contexts when training on a word, enabling a comprehensive understanding of its entire
context. This bidirectional comprehension empowered BERT to capture intricate linguistic
relationships and nuances, leading to state-of-the-art performance across a diverse array
of NLP tasks. BERT’s success spanned applications such as sentiment analysis [11], text
classification [12], machine translation [13], and question answering [14].

The influence of BERT on NLP research and applications has been profound, fostering
the development of more advanced LLMs. It has paved the way for a new era in natural
language comprehension and generation, with its techniques adopted and expanded upon
in various other models [15]. For instance, GPT-3 [16], boasting 175 billion parameters,
demonstrates the capability to generate text and code based on concise written prompts.
Another example, Megatron-Turing [17], among the world’s largest models with 530 billion
parameters, specialises in reading comprehension and natural language inference, facilitat-
ing tasks like summarisation and content generation. Equally noteworthy is BLOOM [18],
an open LLM proficient in generating text across 46 natural languages and more than a
dozen programming languages.

A recent addition to this landscape is ChatGPT (https://chat.openai.com/, accessed
on 18 September 2023), emerging as a state-of-the-art LLM. Developed by OpenAI (https:
//openai.com/, accessed on 18 September 2023), this model, built upon the GPT-3 archi-
tecture, excels in generating human-like texts and engaging in multilingual conversations.

https://chat.openai.com/
https://openai.com/
https://openai.com/
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ChatGPT is specifically fine-tuned to excel in producing conversational responses. It adeptly
furnishes coherent and contextually relevant answers to a diverse array of questions and
prompts. Much like its precursor GPT-3, ChatGPT showcases robust contextual comprehen-
sion, retaining context throughout extended conversations and delivering context-aware
responses based on previous messages. Users interact with ChatGPT by presenting prompts
or inquiries. ChatGPT can process prompts encompassing both images and text, rendering
it a versatile tool adaptable for a multitude of tasks.

Finally, Llama 2 [19], an open-source LLM introduced by Meta AI (https://ai.meta.
com/, accessed on 18 September 2023), represents a versatile tool applicable across various
domains. It encompasses capabilities including text generation, language translation,
and the production of diverse creative content. Additionally, Meta AI introduced Code
Llama [20], tailored specifically for code-related tasks. These models showcase cutting-edge
performance, support for extensive input contexts, and even possess zero-shot instruction-
following abilities for programming tasks. Llama 2 is available in three sizes, delineated by
the number of parameters: 7 billion, 13 billion, and 70 billion.

2.2. IoT Portals

In the realm of IoT device exploration, various platforms have emerged to streamline
the discovery and accessibility of sensors. Shodan (https://www.shodan.io/, accessed on
18 September 2023), an online search engine and scanning service, specialises in detecting
and monitoring Internet-connected devices and systems. Conceived by John Matherly
and launched in 2009, this search engine scans both IPv4 and IPv6 spaces [21]. Shodan is
an interesting option for locating IoT devices owing to its extensive database of devices
and online services, making it a valuable resource for research and analysis. Moreover, it
offers a public API, enabling developers to programmatically access and leverage Shodan’s
data, facilitating research and custom development [22]. Additionally, it features data
visualisation tools that streamline comprehension and analysis of the gathered information.
However, the free version of Shodan imposes limitations on the number of search results,
potentially impeding extensive research efforts. It is noteworthy that Shodan does not
interpret sensor outputs in terms of deciphering analogue or digital data from specific sen-
sors. Its primary function revolves around indexing and presenting information regarding
devices connected to the network.

Censys (https://search.censys.io/, accessed on 18 September 2023), an online search
engine and scanning service akin to Shodan, specialises in tracking and compiling infor-
mation about devices and resources on the Internet. It is open source and freely available
for academic purposes [21]. This platform enables users to conduct advanced searches to
locate devices and services based on diverse criteria. Similar to Shodan, Censys maintains
an expansive database of Internet-connected devices and services, alongside offering a well-
documented public API. Utilising passive scanning techniques, Censys gathers information
without disrupting the regular functioning of the scanned systems. Nevertheless, Censys
presents certain limitations. Its data are typically provided in raw format, requiring users to
possess technical proficiency for effective interpretation. Reports from Censys encompass
information on services, protocols, and SSL/TLS certificates, among others, necessitating
a level of technical understanding for accurate analysis. Moreover, user interaction with
Censys may require account creation after surpassing specific usage thresholds, and API
access is rate-limited by token buckets [23].

ZoomEye (https://www.zoomeye.org/, accessed on 18 September 2023) serves as an
online search and scanning platform designed to pinpoint and monitor devices and systems
connected to the Internet. Much like Shodan and Censys, ZoomEye specialises in gathering
information about online assets, encompassing servers, cameras, routers, IoT devices, and
various other Internet resources. It provides users with diverse filtering criteria for refining
their searches and offers an accessible API. However, a notable drawback is that this search
engine does not support general searches across all devices, since users must know thee
specific keywords to conduct searches.

https://ai.meta.com/
https://ai.meta.com/
https://www.shodan.io/
https://search.censys.io/
https://www.zoomeye.org/
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2.3. Transforming Sensor Data to Structured Formats

Transforming sensor data into structured formats is a crucial step in rendering the
data usable for various applications. This section reviews key research contributions that
have advanced methods and technologies for this transformation process.

New transformer models have been developed, such as the Soft Sensing Transformer
Model [24], which aims to transform sensor readings into structured formats in the same
way that sentences are structured in natural language, thus providing a novel method to
handle sensor data in industrial settings. Although this model demonstrates the potential
of machine learning techniques in interpreting and structuring sensor data, they do not
consider end users and their information needs.

With respect to structured sensor data formats, the heterogeneity of data formats in
IoT is addressed in [25]. This study proposes converting raw sensor data into the Sensor
Markup Language (SenML) and transforming it into a semantic representation based on
RDF. Another noteworthy contribution [26] introduces a novel script language, Language
for Sensor Data Description (L4SDD), to achieve cross-domain syntactic interoperability.
L4SDD focuses on defining a unified output data format and converting sensor data into
this format, thus facilitating the integration of sensor data from various domains. The
primary limitation of these approaches is the requirement for new languages to be applied
to sensor data, which impedes automation.

In the application of LLMs to sensor data, several approaches focus on specific sce-
narios. For instance, the use of LLMs for forecasting traffic accidents from sensor data are
explored in [27], while integrating LLMs into multiagent autonomous systems to generate
GPT-compatible prompts for unifying collected sensor data are described in [28]. However,
these approaches are limited to specific domains and do not address broader scenarios to
enhance the reusability of sensor data.

These studies collectively contribute to the methodologies for transforming sensor
data into structured and standardised formats. Such transformation is vital for advancing
IoT, industrial automation, and data analytics. Yet, existing work often overlooks data
reusers, lacks automation, or is limited to domain-specific scenarios. To address these gaps,
the present work provides a methodology leveraging LLMs to convert raw sensor data into
structured formats. This methodology considers the objectives of data reusers, achieves a
high level of automation, and is applicable across various domains.

3. Methodology

As mentioned in Section 1, this study introduces a methodology aiming to convert
sensor data and metadata into a more interpretable and reusable format. As stated before,
handling sensor information poses challenges due to system and data heterogeneity, de-
manding substantial effort for effective management. The proposed methodology seeks to
enhance sensor data accessibility by leveraging contextual understanding and text genera-
tion capabilities inherent in modern LLMs to convert raw sensor data into a reusable format.

The methodology involves several steps: defining objectives, identifying sensor data
portals, filtering sensors based on requirements, retrieving data, and utilising a LLM to
parse raw sensor data, transforming it into a structured format suitable for exchange and
reuse. Figure 1 provides a visual overview of this process.

Step 1: Define the objective

Before embarking on any project, the initial step entails thorough contemplation and a
clear conceptualisation of the tasks at hand. It is pivotal to identify the essential data for
achieving the desired outcomes and to choose a compatible output format for subsequent
utilisation. This preliminary phase demands significant time and effort as it lays the
groundwork for subsequent steps.
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Figure 1. Four steps in the proposed methodology for obtaining structured information from raw
sensor data.

Step 2: Identify portals

The second step initiates with the identification of portals potentially beneficial for the
objectives set in the prior phase. As highlighted in Section 2, different portals are available
for IoT device exploration. These portals serve as valuable resources for discovering data
sources aligned with the methodology proposed. Each provides tools, including APIs
enabling programmable queries to their databases and filtering capabilities adaptable to
specific needs.

However, as previously noted, access limitations such as monthly API call quotas
or constraints on the number of search filters exist. Additionally, some portals exhibit
greater coverage in particular geographical regions (e.g., ZoomEye in China). Therefore, it
is imperative to ascertain that the chosen portal aligns with the required data and fulfils
the criteria established in the initial phase of the methodology.

Step 3: Data retrieval and format identification

The third step involves querying sensors within the selected portals by employing
specific search parameters to extract pertinent information. Various filters enable the search
for sensors with distinct features. For instance, in the case of the Censys portal, filters
such as “tag:IoT” or “tag:Sensor” aid in sensor identification. To refine the search within a
specific geographic area, filters like “location.city: Madrid, Spain” can be applied. Filters’
definitions differ across portals, necessitating consideration of each one’s specific syntax.
However, it is crucial to note that all portals share a common syntax foundation.

Significant filters pertain to the services enabling access to sensor data. For instance,
filtering results within the Censys portal using the aforementioned labels reveals that a
majority of sensors have HTTP or MQTT (https://mqtt.org/, accessed on 18 September
2023) services enabled. The frequently open ports are 1883 (typically used by the MQTT
protocol) and 80. Additionally, filtering for a response status of 200 (indicating a successful
response code) using “response.status” is crucial to avoid defunct or malfunctioning sensors.
By employing these filters, the search engine retrieves results wherein sensor data are
primarily shared in HTML format combined with XML or JSON responses.

Step 4: Data transformation

The final step of the methodology involves employing a LLM to parse raw sensor data,
converting it into coherent structured information. This process necessitates defining a com-

https://mqtt.org/
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prehensive prompt outlining the specific data required (e.g., meteorological information)
and specifying the preferred output format (e.g., XML or JSON).

Consequently, this prompt facilitates the parsing of sensor data delivered in formats
like HTML, illustrated in Listing 1. The raw data can be transformed by a LLM into a
more usable format, such as JSON, ensuring proper content structuring for reusability. The
resulting output, exemplified in Listing 2, yields data in a more reusable format, aligned
with the FAIR principles [29].

Listing 1. Raw data from sensor in HTML format

1 <table id="datatable" cellpadding="4" width="100%">
2 <tbody >
3 <tr>
4 <td>Backroom </td >
5 <td t="752524375" >5/11/2023 , 19:32:55 </td>
6 <td >19.8 </td >
7 <td> ◦ C</td>
8 <td title=" -78dBm">
9 <div class="rssi" style="width :58%;"></div >

10 </td>
11 </tr>
12 <tr>
13 <td>Bedroom T</td >
14 <td t="752524437" >5/11/2023 , 19:33:57 </td>
15 <td >17.8 </td >
16 <td> ◦ C</td>
17 <td title=" -53dBm">
18 <div class="rssi" style="width :94%;"></div >
19 </td>
20 </tr>
21 <tr>
22 <td>Bedroom rh </td>
23 <td t="752524393" >5/11/2023 , 19:33:13 </td>
24 <td >70.0 </td >
25 <td>RH%</td >
26 <td title=" -53dBm">
27 <div class="rssi" style="width :94%;"></div >
28 </td>
29 </tr>
30 <tr>
31 <td>Front room T</td>
32 <td t="752524404" >5/11/2023 , 19:33:24 </td>
33 <td >15.5 </td >
34 <td> ◦ C</td>
35 <td title=" -64dBm">
36 <div class="rssi" style="width :78%;"></div >
37 </td>
38 </tr>
39 ...
40 </tbody >
41 </table >

Listing 2. Equivalent JSON generated by a LLM.

1 {
2 "Device": "log05",
3 "Sensors": [
4 {
5 "Name": "Backroom",
6 "Time": "5/11/2023 , 19:32:55",
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7 "Value": 19.8,
8 "Unit": " ◦ C"
9 },

10 {
11 "Name": "Bedroom T",
12 "Time": "5/11/2023 , 19:33:57",
13 "Value": 17.8,
14 "Unit": " ◦ C"
15 },
16 {
17 "Name": "Bedroom rh",
18 "Time": "5/11/2023 , 19:33:13",
19 "Value": 70.0,
20 "Unit": "RH%"
21 },
22 {
23 "Name": "Front room T",
24 "Time": "5/11/2023 , 19:33:24",
25 "Value": 15.5,
26 "Unit": " ◦ C"
27 }
28 ...]
29 }

4. Use Case

This section encapsulates the application of the proposed methodology in a specific use
case, demonstrating its practical implementation. It showcases the step-by-step execution
of the methodology, highlighting its real-world applicability and effectiveness in handling
concrete scenarios.

Step 1: Define the objective

The primary goal of the proposed use case revolves around retrieving meteorological
data from sensors. As stated in the methodology, the aim is to transform these data, if
initially presented in an inaccessible format, into a user-friendly structure using a LLM.
Consequently, the focus of the use case is narrowed to meteorology and forecasts data.

Step 2: Identify portals

Initially, the selection of the IoT device information source is imperative. Initially, a
comprehensive search was conducted to identify existing IoT portals in the market. The
selection focused on those offering the most extensive content. Consequently, the primary
portals chosen for this study, as detailed in Section 2, were Censys, Shodan, and ZoomEye.
After evaluating these portals, Censys emerged as the chosen platform. Several factors
contributed to this decision:

1. Extensive API documentation and diverse filter options;
2. Rapid search capabilities;
3. Extensive device database;
4. Intuitive user interface;
5. Cost-effectiveness.

Step 3: Data retrieval and format identification

Next, the data retrieval process from the selected Censys portal is essential. It is
important to highlight that raw data were specifically sought to showcase the capabilities of
LLMs. The decision was made to focus on HTML format, as it is commonly used by most
sensors in the portals analysed. Specifically, information about sensor formats accessible
through HTTP with a response status of 200 is sought. This subset constitutes 46.71% of
the sensors documented in Censys. Regrettably, the remaining 53.29% do not provide
discernible format information—either they don not operate with HTTP, or yield no valid
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response. Among the viable subset, the breakdown of IoT device format percentages is
as follows: 82.9% exclusively provide information in HTML, 0.25% solely furnish details
in XML/JSON, 11.72% offer both HTML and XML/JSON information, while the residual
5.13% present data in other formats. Notably, the small proportion of sensors returning
information in XML/JSON aligns with the objectives of this research proposal, highlighting
the necessity for the proposed methodology to transform data into reusable formats.

Adhering to the proposed methodology, the following steps outline the process for
data retrieval:

1. User poses a query.
2. The query, incorporating pertinent filters, is sent to the Censys API.
3. A set of endpoints/URLs facilitating access to various sensors is obtained.
4. Information from these sensors is retrieved.

Listing 3 provides an example showcasing sensor output retrieved from Censys,
tailored for an average user profile seeking current-day information on temperature and
humidity, among others, in Port Louis (Mauritius).

Listing 3. Data retrieved from Censys in JSON format for an average user profile.

1 {
2 "Current conditions": [
3 {
4 "Location": "Port Louis",
5 "Weather": "partly cloudy day",
6 "Temperature": 24,
7 "Wind": "SE’LY 07 km/h",
8 "Humidity": "70%"
9 }

10 ]
11 }

Step 4: Data transformation

As detailed in Section 3, an LLM is employed to converting the raw sensor information
into a more accessible format. Selecting an LLM involves considering various factors to
ensure alignment with the specific needs and objectives of the task. Key aspects include
precision and recall, which assess the model’s capability to generate structured data from
raw sensor data. These metrics are evaluated for different models in Section 5 of this work.
Customisation possibilities of the model, such as the ability to be fine-tuned for specific
tasks or domains, are also crucial. Security and privacy considerations are paramount. It is
necessary to evaluate the model’s security features, particularly its handling of sensitive
data, to ensure compliance with applicable privacy laws and regulations.

Latency and response time are vital, especially if the LLM is to be used in customer-
facing applications where quick responses are essential. Scalability is another critical factor,
ensuring that the model can handle the anticipated volume of requests and scale up as
system demand increases. The cost and licensing of the LLM are also relevant; some models
are free, while others incur usage fees. It is imperative to ensure that licensing terms align
with the intended use of the technology.

From a more technical standpoint, the support and documentation offered by the
LLM are important. Models with comprehensive documentation and reliable technical
support are preferable. Additionally, the developer and user community surrounding the
model should be considered, as a robust community can provide valuable support and
drive innovation.

Defining an accurate prompt for the language model is crucial to attain the desired
objective. In this use case, the prompt depicted in Figure 2 provides the extraction of
pertinent information from the input it receives, facilitating the transformation into a
structured format. For instance, in this prompt, if the content in Listing 1 was used as the
{input} parameter, the Response generated by the LLM would be as shown in Listing 2.
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Instruction: Extract all the {type} input information and
return this information in {format} format.
Do not add anything else , just the {format} output.
Input: {input}
Response:

Figure 2. Prompt template to transform raw input data of a selected type into a specified structured
output format.

The initial segment of the prompt delineates the directives for the model to accomplish
the proposed objective, providing instructions regarding the desired output format. This
ensures the generation of data by the LLM in the specified format. Subsequently, the
prompt includes unprocessed sensor data (input). The final line (Response) serves as an
indicator that the following text generated by the model will constitute the response. The
roles of the variables within the preceding prompt are described below:

• type: represents the category of data provided by the sensor (e.g., “meteorology”).
• format: specifies the desired format for the model’s output transformation (e.g., “XML”).
• input: denotes the content of the input to be transformed (raw sensor data).

When the input to the model exceeds the model’s input length, it is necessary to split
the input into smaller parts for processing. Subsequently, after processing each segment,
the results are merged into a single file.

5. Evaluation

This section focuses into the testing phase of the use case proposed earlier, encompass-
ing three distinct types of tests: evaluating model performance by assessing precision and
recall in transforming raw sensor data into structured formats, analysing the computational
time required for data transformation, and conducting qualitative assessments by manually
reviewing XML/JSON generated by the models from raw sensor data. Each of these is
described in more detail below.

5.1. Dataset

Before describing the evaluation conducted, this section will first describe the dataset
used in the experiments. To test the performance of the LLMs in the proposed use case,
25 sensor accesses have been compiled from Censys, each of them offering data in both
HTML and XML/JSON formats. These sensors were selected from a subset that provides
data in both formats, facilitating a comparative analysis of the resulting outputs generated
by the LLMs. It is important to emphasise that the information provided in Censys by a
sensor in HTML and XML/JSON formats may not always align. A manual examination
of the dataset revealed that XML/JSON data often encompasses additional fields not
found in the corresponding HTML file. Given that LLMs utilise HTML content to generate
structured output, the comparison between this output and the original XML/JSON format
from the sensor may result in lower performance. This discrepancy is not indicative of an
error in the LLM’s output generation; rather, it stems from the absence of attributes in the
HTML source that are present in the XML/JSON data.

Table 1 offers an overview of the collected dataset for both HTML and XML/JSON
data. This dataset, which provides data in both HTML and XML/JSON formats, was
obtained using the query stated in Listing 4 in Censys.

Listing 4. Query that obtains data from Censys.

(labels:sensors OR labels:IoT OR labels:sensors -data) and
(services.http.response.body: "json" OR
services.http.response.body: "xml") and
services.http.response.body: "html" AND
services.http.response.status\_code =200
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Table 1. Characteristics of the collected HTML and XML/JSON datasets.

Characteristic HTML XML/JSON

Number of tables 25 25
Total number of elements 584 1617
Total number of attributes 395 787
Avg. number of elements 23.36 64.68
Avg. number of attributes 15.8 31.48
Max. number of elements 97 140
Max. number of attributes 23 64

5.2. Model Performance

The primary objective of this evaluation is to assess the quality of XML/JSON gen-
erated by the LLMs from HTML data. The comparative analysis involves measuring the
model’s precision (indicating how many values in the generated file correspond to the orig-
inal HTML and XML/JSON formats) and the model’s recall (denoting how many values
in the original HTML and XML/JSON are present in the generated file). Subsequently,
the F-score is calculated for both the original HTML and XML/JSON, representing the
harmonic mean of precision and recall.

Each of the sensors provides varying meteorological data for diverse global locations.
Some sensors offer a substantial volume of information to structure, while others provide
more limited data. The available data spans from current temperature and humidity to
comprehensive weather forecasts. Evaluating the different types of data from these sensors
is pivotal to observe how diverse models interpret and handle them.

For this evaluation, the selected LLMs included Llama 2 7B (https://huggingface.co/
meta-llama/Llama-2-7b-chat-hf, accessed on 20 October 2023) (the version with 7 billion
parameters) and Llama 2 13B (https://huggingface.co/meta-llama/Llama-2-13b-chat-hf,
accessed on 20 October 2023) (13 billions parameters), from Meta, alongside GPT-3.5 Turbo
and GPT-4 from OpenAI. These choices were made based on specific criteria. OpenAI
models stand as established benchmarks in the field, while Meta models, being close
competitors, are freely accessible. The Llama 2 70B (https://huggingface.co/meta-llama/
Llama-2-70b-chat-hf, accessed on 20 October 2023) (70 billions parameters) model was also
tested, but it was discarded since it was resource-intensive and the initial results did not
justify their inclusion in the evaluation.

Integration of these LLMs was facilitated through LangChain (https://www.langchain.
com/, accessed on 20 October 2023), a framework engineered to streamline LLM application
development. LangChain offers versatility across diverse use cases, including the extraction
of structured information from text, as applied in this methodology.

Figure 3 illustrates the results of the precision calculation (the average of the precision
results of the 25 sensors) alongside the standard deviation for each model. The comparison
presented is the outcome of matching fields between the original files (XML/JSON and
HTML) and the file generated by the LLM. For the HTML comparison, fields were manually
checked to evaluate the alignment.

Observing the results, the GPT-4 model demonstrates the highest precision (78.74%
for comparison with XML/JSON and 93.51% for comparison with HTML), while the Llama
2 7B model exhibits the lowest precision (60.24% for comparison with XML/JSON and
75.33% for comparison with HTML). It is noteworthy that comparisons yield better results
for HTML than for XML/JSON. As mentioned earlier in this section, this discrepancy arises
because the original XML/JSON might contain data not included in the corresponding
HTML version, hence is unextractable by the models.

Additionally, substantial deviation is evident in the results. For instance, the GPT-4
model exhibits a notable deviation (78.74 ± 14.24% for comparison with XML/JSON and
93.51 ± 12.43% for comparison with HTML). This deviation implies significant variability
within the model’s performance across different sensor data.

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
https://www.langchain.com/
https://www.langchain.com/
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Figure 3. Average precision of the four models tested on the sensors dataset.

From Figure 4, the recall calculation results are presented, showcasing the average
recall outcomes for the 25 sensors. A significant disparity is evident between comparisons
with original HTML and XML/JSON files. For instance, 37.78% for comparison with
XML/JSON and 81.87% for comparison with HTML for the GPT-3.5 Turbo model. As
mentioned previously, this divergence is due to the nature of the XML/JSON data from the
sensor, which may contain information not present in the original HTML content used by
the model for extraction. Consequently, this inaccessible information can not be reflected
in the output generated by the LLM, leading to a reduced recall when comparing with
XML/JSON, as the model generates information solely from HTML content.

Figure 4. Average recall of the four models tested on the sensors dataset.

It is noteworthy that, once again, the GPT-4 model exhibits the highest recall (39.51%
for comparison with XML/JSON and 85.33% for comparison with HTML). Conversely, this
time, the Llama 2 13B model yields the least favourable results (27.24% for comparison with
XML/JSON and 62.98% for comparison with HTML). Similar to the precision findings,
this numbers also reflects considerable deviation in the results (e.g., 39.51 ± 22.16% for
comparison with XML/JSON and 85.33 ± 16.65% for comparison with HTML for the
GPT-4 model).

Finally, the F-score results are illustrated in Figure 5. Notably, the OpenAI models
demonstrate the most promising overall outcomes. GPT-3.5 Turbo model achieves 46.96%
for comparison with XML/JSON and 83.69% for comparison with HTML, while the GPT-
4 model attains 49.13% for comparison with XML/JSON and 88.21% for comparison
with HTML. Once again, the results exhibit substantial variance (e.g., 46.96 ± 24.54% for
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comparison with XML/JSON and 83.69 ± 18.10% for comparison with HTML for the
GPT-3.5 Turbo model).

Figure 5. Average F-score of the four models tested on the sensors dataset.

5.3. Execution Time

During the assessment of model precision and recall, the time taken by each model to
perform the format transformation of a given input was recorded. The Meta models were
executed on a server equipped with an NVIDIA A100-SXM4-40 GB GPU (manufactured by
NVIDIA Corporation, Santa Clara, CA, USA), an AMD EPYC 7742 64-Core Processor CPU
(manufactured by Advanced Micro Devices Inc., Santa Clara, CA, USA), and 1 TB RAM.
Conversely, the OpenAI models operated on the OpenAI servers, which, while undisclosed
in terms of hardware specifications, are evidently more robust than the server hosting the
Meta models, leading to a substantial disparity in execution times.

Figure 6 shows the time consumption for each model in transforming content from
HTML to structured format. Notably, the Llama 2 13B model exhibits the lengthiest average
transformation time among the four models (1395.75 s), due to its intensive computational
demands. Remarkably, a particular sensor’s data transformation spanned 4.534 s for this
model. The input file in this case comprised 309 lines. Additionally, it is observed that the
GPT-3.5 Turbo model (68.43 s) consumed more time compared to GPT-4 (18.13 s), potentially
owing to API demand fluctuations inherent to the GPT models.

Figure 6. Average execution time (in seconds) of the four models on the sensors dataset.
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5.4. Qualitative Assessment

Following the experiments, a qualitative assessment of the structured data generated
by the different models was conducted using a sample of 10 sensors randomly selected from
the total 25. This manual inspection aims to provide a qualitative evaluation of the results.

As an example, consider the assessment of one such sensor. The original XML data
(Listing 5) displays certain elements such as “Normal” or “0” that are not present in its
corresponding HTML version (Listing 6). Consequently, these elements are unattainable
for the LLMs to generate in the resultant XML (Listing 7), in this case using GPT-4. This
example elucidates the rationale behind comparing both HTML and XML/JSON data as
performed in the earlier analysis.

Listing 5. Original XML data from the sensor.

1 <r>
2 <t>22:28:14 </t>
3 <d>30.10.2023 </d>
4 <x>30.10.2023 , 22:28:14 </x>
5 <s215>17.8 ◦ C</s215>
6 <n215>Sensor Com.</n215>
7 <t215>Temp.</t215>
8 <si215 >Normal </si215>
9 <alse215 >0</alse215 >

10 <s216>23.6 ◦ C</s216>
11 <n216>Sensor SAIS</n216>
12 <t216>Temp.</t216>
13 <si216 >Normal </si216>
14 <alse216 >0</alse216 >
15 </r>

Listing 6. Content from the original HTML data from the sensor.

1 HWg -STE: Ethernet thermometer
2 Home |
3 Graph |
4 General Setup |
5 SNMP |
6 Email |
7 Time |
8 Sensors |
9 System

10 General
11 Base Information
12 Device Name
13 SondaSAI -COM
14 Time
15 22:28:14
16 Date
17 30.10.2023
18 Sensors
19 State
20 Name
21 Type
22 Current Value
23 Sensor Com.
24 Temp.
25 17.8 ◦ C
26 Sensor SAIS
27 Temp.
28 23.6 ◦ C
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Listing 7. XML generated from the original HTML data using GPT-4.

1 <HWg -STE>
2 <General >
3 <BaseInformation >
4 <DeviceName >SondaSAI -COM</DeviceName >
5 <Time>22:28:14 </Time>
6 <Date>30.10.2023 </Date>
7 </BaseInformation >
8 </General >
9 <Sensors >

10 <Sensor >
11 <State ></State>
12 <Name>Sensor Com.</Name>
13 <Type>Temp.</Type>
14 <CurrentValue >17.8 ◦ C</CurrentValue >
15 </Sensor >
16 <Sensor >
17 <State ></State>
18 <Name>Sensor SAIS</Name>
19 <Type>Temp.</Type>
20 <CurrentValue >23.6 ◦ C</CurrentValue >
21 </Sensor >
22 </Sensors >
23 </HWg -STE>

The structured information in the generated XML shown demonstrates clear and
intuitive formatting, distinct from the original XML, which lacks this level of clarity. Addi-
tionally, the naming of elements in the generated XML (Listing 7) is notably descriptive
and accurate when compared to the original XML (Listing 5).

However, it is important to highlight instances of model hallucination observed in the
analysis. For instance, Listing 8 illustrates this phenomenon in the output generated by
Llama 2 7B, where values such as “Temp.”, “Sensor Com.”, and “Sensor SAIS” from the
HTML content (Listing 6) are renamed by the model to “Temperature”, “Temp. Com.”,
and “Temp. SAIS”, respectively. Another example is the generation of the “Online” value
for sensor status, seemingly without a clear basis or context for assigning this value. It
is worth noting that efforts are underway to address these hallucination issues in model
enhancements [30].

Listing 8. XML generated from the original HTML data using Llama 2 7B.

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <baseInformation >
3 <deviceName >SondaSAI -COM</deviceName >
4 <time>22:28:14 </time>
5 <date>30.10.2023 </date>
6 </baseInformation >
7 <sensors >
8 <sensorCom >
9 <state >Online </state>

10 <name>Temp. Com.</name>
11 <type>Temperature </type>
12 <currentValue >17.8 ◦ C</currentValue >
13 </sensorCom >
14 <sensorSAIS >
15 <state >Online </state>
16 <name>Temp. SAIS</name>
17 <type>Temperature </type>
18 <currentValue >23.6 ◦ C</currentValue >
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19 </sensorSAIS >
20 </sensors >

It is important to highlight the potential variability in structure observed in the gen-
erated data. While a standard structure is predominantly maintained, there have been
instances where certain values are included as attributes of an element, as exemplified in
Listing 9 generated by Llama 2 13B. Specifically, the sensor name, type, and current_value
are attributes within the sensor element, differing from independent elements shown
in the original XML in Listing 5. These structural variations can be adjusted in the
prompt (Figure 2) by indicating a preference for presenting data as attributes or as in-
dependent elements.

Listing 9. XML generated from the original HTML data using Llama 2 13B.

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <weather >
3 <device_name >SondaSAI -COM</device_name >
4 <time>22:28:14 </time>
5 <date>30.10.2023 </date>
6 <sensors >
7 <sensor name=" Sensor Com." type="Temp." current_value ="17.8 ◦

C"/>
8 <sensor name=" Sensor SAIS" type="Temp." current_value ="23.6 ◦

C"/>
9 </sensors >

10 </weather >

6. Discussion

This section discusses the findings from the evaluation presented in Section 5. The
evaluation demonstrated the capabilities of these models in accurately and effectively
converting data from HTML to XML/JSON formats, with GPT-4 showing particularly high
precision and recall rates.

The aim of this study was to develop a methodology for enhancing the reusability and
interoperability of sensor data. The results indicate that GPT-4 achieved the highest preci-
sion at 93.51% and recall at 85.33%, closely followed by GPT-3.5 Turbo and outperforming
other models like Llama 2 7B and Llama 2 13B. This suggests that advanced LLMs like GPT-4
are highly effective in parsing and restructuring complex data formats. The performance of
these models is indicative of their potential in enhancing data reusability and interoperabil-
ity within IoT infrastructures, a key objective of this study. These findings guarantee the
high efficacy of the methodology in transforming raw sensor data into structured formats,
thus fulfilling the primary objective of this work.

Furthermore, GPT-4 not only excelled in accuracy, but also in time efficiency, emerging
as the fastest among the four models in executing the transformations. This efficiency
is noteworthy, considering the complexity of the tasks involved. On the other hand,
Llama 2 13B, despite being a more complex and presumably more capable model, was
the least effective in the experiment and also the slowest. This underperformance is
particularly striking when compared to the smaller Llama 2 7B model. The results indicate
that larger, more complex models do not necessarily guarantee better performance in data
transformation tasks, especially when considering time efficiency as a critical factor.

The unexpected underperformance of Llama 2 13B, compared to its lighter counterpart,
raises questions about the efficiency-accuracy trade-offs in model selection for specific tasks.
While larger models are generally expected to perform better, their increased computational
requirements can lead to longer processing times and diminished practicality, especially in
time-sensitive applications. This finding suggests a need for a more nuanced approach to
selecting models based on a balance between accuracy, processing time, and computational
resource requirements.
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The evaluation of the models not only highlighted GPT-4’s superior performance
in terms of accuracy and time efficiency, but also revealed important insights into the
relationship between model size, complexity, and effectiveness in data transformation tasks.
These insights will be valuable for future research and practical applications involving
large language models in data processing.

A notable aspect of the results is the variability in model performance across different
sensor data types, as evidenced by the standard deviation values presented in Figures 3–5.
Even the top-performing model, GPT-4, exhibits a standard deviation of 12.43 in precision,
16.65 in recall, and 13.51 in F-score. This variability highlights the challenges in achieving
consistent data transformation results in real-world scenarios. The observed differences in
precision and recall across models also underscore the need for careful selection of models
based on the specific requirements of the data transformation task.

In Section 5, the models have been tested in terms of precision, recall, and F-score.
Additionally, it is interesting to analyse how these LLMs compare to traditional data
conversion techniques. Various methods and approaches exist for converting, manipulating,
and optimising data:

• Schema conversion: converts data from one logical structure to another, adapting
from formats like relational to non-relational, hierarchical to flat, or normalised to
denormalised.

• Format conversion: transforms data from one physical representation to another, such
as from binary to text, JSON to XML, or compressed to uncompressed.

• Type conversion: changes data from one type to another, like string to integer, float to
decimal, or boolean to bit.

• Encoding conversion: modifies data from one character set to another, for example,
ASCII to UTF-8, or ISO-8859-1 to UTF-16.

• Date and time conversion: reformats dates and times for consistency, such as changing
2023-09-21 to 09/21/2023.

• Number conversion: alters the representation of numbers, like converting an integer to
a decimal (e.g., 5 to 5.0), significant for precise calculations.

From these traditional methods, LLMs are capable of performing schema conversion,
as they have shown proficiency in programming tasks [20]. They can also execute format
conversion, demonstrated in this study where HTML format was converted to JSON and
XML. Furthermore, models like GPT-4 have demonstrated the ability to compress and
uncompress files. They can also perform type conversion, dealing with string formats
and numerical tasks [31], as well as encoding conversion, date and time conversion, and
number conversion, handling various text formats.

Therefore, the capabilities of these models in the realm of data conversion are vast,
covering traditional techniques previously implemented using separate tools, such as
Apache Sqoop (https://sqoop.apache.org/, accessed on 13 November 2023) for schema
conversion and Apache Avro (https://avro.apache.org/, accessed on 13 November 2023)
for format conversion, but now unified in a one-stop solution offering a more flexible and
efficient proposal. The ability of these models to handle various types of data conversion
positions them as valuable tools in diverse data processing workflows.

7. Conclusions and Future Work

This study detailed the challenges faced in harnessing the potential of sensor-generated
data within IoT infrastructures, proposing a methodology aimed at overcoming barriers
to data reusability and accessibility. Despite the immense volume of data generated by
IoT infrastructures, limitations in data handling, proprietary formats, and interoperability
challenges hinder its effective utilisation by third parties. The European Data Act initiative
endeavours to regulate and enhance access to sensor-generated data, aiming to ensure
accuracy, completeness, relevance, and intellectual property rights. However, challenges
persist in achieving technical interoperability, primarily due to heterogeneous data and
disparate sensor system architectures.

https://sqoop.apache.org/
https://avro.apache.org/
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The methodology proposed in this paper aims to leverage LLMs to convert raw sensor
data (e.g., in HTML format) into standardised structured formats (e.g., JSON or XML),
aiming to facilitate data reuse and comprehension. The outlined methodology involves
defining data requirements, identifying data sources, retrieving data, and utilising LLMs to
transform raw sensor data into structured, reusable formats. A use case focusing on meteo-
rological data retrieval from a sensor web portal was employed to test this methodology,
with an evaluation emphasising precision tests of various LLMs for transforming HTML
sensor data into XML format.

The assessment of LLMs revealed that GPT-4 achieved the highest precision in trans-
forming HTML to structured format, reaching 93.51%. Conversely, the lowest precision was
observed with Llama 2 7B at 75.33%. Similarly, GPT-4 demonstrated the best recall, achiev-
ing 85.33%, while Llama 2 13B had the lowest recall at 62.98%. These results underscore the
high performance of LLMs, rendering them well-suited for the task proposed.

In terms of execution time, OpenAI models (GPT-3.5 Turbo and GPT-4) notably outper-
formed Meta models. However, direct comparison is complex due to different hardware
configurations for running these models.

An interesting point to note is that while OpenAI models involve a subscription fee,
Meta models are freely available and were executed on a personal server without added
cost. In a production environment, these factors, alongside performance metrics, should be
considered carefully.

The manual review of structured outputs revealed both the strengths and limitations
of LLMs. Notably, the clarity and descriptive accuracy of the generated XML, contrasting
the original XML, highlighted the language models’ ability to enhance data presentation.
Yet, instances of hallucination, wherein models incorrectly renamed data elements, were
identified. Addressing such issues remains a significant area for model improvement.

A critical area for future exploration involves the examination of alternative method-
ologies or frameworks dedicated to converting raw sensor data into structured, reusable
formats. Additionally, assessing the practical implementation and scalability of LLMs
in transforming HTML-based sensor data into standardised formats remains a crucial
focal point. This endeavour necessitates a meticulous analysis of potential challenges,
computational requisites, and practical considerations involved in harnessing LLMs. Un-
derstanding these aspects is integral to leveraging LLMs effectively for the transformation
of sensor data.

To enhance the outcomes of the experiments, an instruction fine-tuning process [32] is
planned for implementation in the future. In this process, LLMs are tailored specifically for
the task of data transformation based on explicit instructions. This approach, extending
beyond traditional fine-tuning, incorporates high-level instructions or demonstrations
to guide the model’s behaviour. The process will leverage sensor data from open data
portals, which typically provide datasets in various formats such as JSON, HTML, and CSV.
These data have to be preprocessed to furnish the model with the necessary instructions,
as shown in Figure 2, with the input dataset in HTML format and the desired output in
XML/JSON format.

Furthermore, investigating various use case scenarios and user profiles for sensor
data utilisation presents a significant opportunity. This entails a detailed examination of
specific needs, requirements, and challenges across diverse applications. Understanding
these unique needs is pivotal in tailoring data retrieval and transformation methods to suit
varied end-user requirements.

Lastly, conducting a comprehensive evaluation of different language models in trans-
forming sensor data into structured formats remains a vital pursuit. This involves extensive
testing, model comparisons, and exploration of challenges such as model hallucination and
variations in output structures.
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