
Citation: Salmi, Y.; Bogucka, H.

Poisoning Attacks against

Communication and Computing Task

Classification and Detection

Techniques. Sensors 2024, 24, 338.

https://doi.org/10.3390/s24020338

Academic Editors: Habtamu Abie

and Sandeep Pirbhulal

Received: 10 November 2023

Revised: 20 December 2023

Accepted: 30 December 2023

Published: 5 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Poisoning Attacks against Communication and Computing Task
Classification and Detection Techniques
Younes Salmi *,† and Hanna Bogucka †

Institute of Radiocommunications, Poznan University of Technology, 61-131 Poznan, Poland;
hanna.bogucka@put.poznan.pl
* Correspondence: younes.salmi@doctorate.put.poznan.pl
† Current address: Faculty of Computing and Telecommunications, Poznan University of Technology,

3 Polanka Str., 61-131 Poznan, Poland.

Abstract: Machine learning-based classification algorithms allow communication and computing
(2C) task offloading from the end devices to the edge computing network servers. In this paper,
we consider task classification based on the hybrid k-means and k′-nearest neighbors algorithms.
Moreover, we examine the poisoning attacks on such ML algorithms, namely noise-like jamming and
targeted data feature falsification, and their impact on the effectiveness of 2C task allocation. Then,
we also present two anomaly detection methods using noise training and the silhouette score test
to detect the poisoned samples and mitigate their impact. Our simulation results show that these
attacks have a fatal effect on classification in feature areas where the decision boundary is unclear.
They also demonstrate the effectiveness of our countermeasures against the considered attacks.

Keywords: data poisoning; k-means algorithm; k-nearest neighbors algorithm; clustering; edge computing

1. Introduction

Radio communication technology has continuously been advancing for the past few
decades. Recent developments such as fifth-generation (5G) mobile radio communication
promise to take connectivity to new heights. In comparison with their predecessors, 5G
and 6G wireless communications deliver faster speeds, lower latency, higher reliability,
and increased capacity for anticipated services. The increased bandwidth and reduced
latency of 5G enable a wide range of applications, including autonomous cars, robotics,
virtual reality, and the Internet of Things (IoT). It promotes the establishment of these
new values by enabling the development of new services in three major use case domains:
enhanced mobile broadband (eMBB), ultra-reliable low-latency communication (URLLC),
and massive machine-type communications (mMTC).

While 5G is already pushing the boundaries of wireless communication, researchers,
engineers, and industry practitioners have begun to look beyond it. Beyond 5G, wireless
network development, often called sixth generation (6G) or beyond 5G, aims to break down
barriers and explore new frontiers. One of the primary goals of wireless communication
beyond 5G is to push the boundaries of latency, dependability, connection, and coverage.
Although the specifics of the technology are now speculative, numerous critical areas have
emerged as possible priority areas for future wireless communication system development.

According to the recent Ericsson Mobility Report [1], 5 billion 5G mobile subscribers
will be operating by 2028. Furthermore, wireless communication of 34.7 billion machines
and devices is predicted to compose the IoT by that year. This expected massive human-
machine communication means tremendous data flow across communication channels.
Moreover, emerging applications such as intelligent healthcare, intelligent transportation,
and interactive gaming impose more demanding quality of service (QoS) requirements.
Edge computing is emerging as a unique computing paradigm that leverages cloud com-
puting and pushes it closer to the edge to deal with these challenges.

Sensors 2024, 24, 338. https://doi.org/10.3390/s24020338 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24020338
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9181-7475
https://orcid.org/0000-0002-1709-4862
https://doi.org/10.3390/s24020338
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24020338?type=check_update&version=2


Sensors 2024, 24, 338 2 of 19

The development of edge-computing networks may lead to the reduction of commu-
nication latency since the networking distance between the end devices and processing
(computing) nodes will be shortened. It will also enable local data processing, which is crit-
ical for applications requiring real-time decision making and instant reaction. Furthermore,
rather than burdening the main network or cloud data centers with all computing require-
ments, the edge nodes can execute localized jobs and alleviate the central infrastructure, a
practice known as task offloading.

To fully benefit from edge computing, edge intelligence using artificial intelligence (AI)
and machine learning (ML) is an essential paradigm. For example, optimal communication
and computing (2C) task offloading to the appropriate servers is a challenging problem,
and its optimization is not always possible, given the limited knowledge of the network
components at the edge. Therefore, ML can be used to classify and predict the generated
2C requests. This classification is intended to support the near-optimal delegation of a
request to an appropriate server at the edge of a network.

To enable the execution of edge intelligence apps and services, the mobile edge host in
the future 5G or 6G architecture operates a mobile edge platform. The 5G or 6G network
design will be almost totally virtualized and dependent on the software features. As
a result, it is open to being utilized, attacked, and interrupted by hackers. In the case
of sensitive applications, such as mission-critical ones that need URLLC service, attacks
against ML algorithms used for traffic steering may result in disastrous failures. In the
edge-computing network under consideration, 2C tasks should be classified based on
service performance requirements (for example, end-to-end latency, packet error rate (PER),
or the computational complexity of a delegated task). This in turn would enable 2C task
delegation to the preferred edge-computing machine or server characterized by the delay
associated with the transmission to this server, queuing and computing clock frequency,
packet error probability associated mostly with transmission and networking, and offered
computational power.

The classification criteria may alter, but in the case of multi-class classification with set
sensitivity levels (from noncritical to highly critical actions), any misclassification might
result in a fatal classification error. Adversarial machine learning (AML) [2] is a term
describing the study of the attacks on ML algorithms and the defenses against such attacks.
Attackers can use a variety of tactics to target a system (see Table 1).

Table 1. Attack classification in AML with 2C task classification relevance.

Attack Description Example for 2C Task Classification

Exploratory (Inference) Attacks

Seek to discover the model mechanism using
the training data and then imitate the model

by building a surrogate model. This is
realized by probing the input and the outputs.

Build a surrogate model and use it to find its
decision boundaries. This can be used later to

launch attacks near these
decision boundaries.

Membership Inference Attacks MIA

The adversary aims to determine if a given
data sample is a member of the training data,

and then the design of the attack can be
more successful.

For example, the attacker aims to determine
whether a service is used for clustering. This

allows the attacker to launch a more
sophisticated attack.

Evasion (Adversarial) Attacks

The aim is to manipulate the input test data to
fool the model into making the wrong

decision. An evasion attack determines the
samples that the target classifier is likely

to misclassify.

Inject adversarial examples to the 2C task
allocation ML model to fool the classifier.

Spoofing Attacks
The adversary generates synthetic data

samples from scratch rather than adding
perturbations to the real ones.

Spoof the ML model and use it to classify the
attacker data as high QoS tasks, hence

overloading the dedicated VMs for high
QoS tasks.

Causative (Poisoning) Attacks

The aim is to manipulate the training process
of models by injecting weaknesses, such as

altering the training data of the model.
Provides erroneous training data samples to

reduce the reliability of the classifier.

Target cluster poisoning by injecting a new
cluster, which will fool the classifier and

reduce the allocation system performance.



Sensors 2024, 24, 338 3 of 19

Table 1. Cont.

Attack Description Example for 2C Task Classification

Trojan (Backdoor) Attacks

Combination of evasion and causative attacks,
where the adversary injects triggers (backdoors)

into training data and then activates them for some
input samples in test time.

This can be used, for example, to target specific
types of data such as mission-critical data, and

these data will be wrongly classified as VMs of 2C
link with lower QoS.

1.1. Scope

This study explores the impact of artificial intelligence security threats on 2C task
classification for edge computing. The research will involve a scientific analysis of the effects
of poisoning attacks on intelligent 2C task classification. As a result, wireless distortions
(e.g., fading) are not considered. This study will also assess the countermeasure solutions
to such threats.

1.2. Originality

This work is original since it addresses intelligent 2C task classification and the security
threats against it. First, to the best of our knowledge, this is the first work that addresses AI
assistance to task classification for both communication and computing parts. Second, the
applications and realization of poisoning attacks and AML threats in general are poorly
covered for wireless communications. Finally, the study of a hybrid k-means and k-NN ML
application technique, poisoning threats, and anomaly detection countermeasures using
statistical tools makes this initial study unique.

1.3. Methodology

Conducting a scientific investigation on poisoning attacks requires a simulation or im-
plementation of the targeted application. The simulation should follow a specific protocol.
The methodology that was followed in this paper incorporates six steps: first, define the
problem intended for simulation; second, formulate the model; third, test the model, and
compare its behavior with the behavior of the actual problem; fourth, identify and collect
the data needed to test the model; fifth, run the simulation; and sixth, analyze the results of
the simulation.

1.4. Contributions

Throughout this article, we propose a machine learning technique based on a hybrid of
k-means clustering and k-nearest neighbors to assist with near-optimal 2C task classification.
In addition, two poisoning attacks will be discussed. These attacks are designed to fool
the ML classifier. The effects of these attacks on the ML classification system will be
briefly shown. Furthermore, two mitigation techniques based on anomaly detection will
be assessed.

2. Literature Review and Paper Contributions
2.1. Classification

Several approaches are designed to address task allocation in edge computing. Some
use a centralized controller that controls the entire network. Others proposed decentral-
ized techniques that allow each node in the network to allocate independently. Hybrid
techniques use the advantages of both of the previous approaches [3–6]. However, these
techniques can be energy-exhaustive and suboptimal due to the lack of global information
about the network. The idea behind addressing the communication part comes from the
analysis of the energy consumption of such systems. As a result, researchers started to
focus on the communication and computing parts jointly [7,8]. However, given the limited
knowledge of the network components at the edge, optimal communication and computing
(2C) task allocation to the appropriate servers is a challenging problem.

Clustering as unsupervised learning is utilized for discovering the patterns of the
data [9–11]. This can be used to assist near-optimal 2C task classification. Clustering



Sensors 2024, 24, 338 4 of 19

algorithms such as density-based spatial clustering of applications with noise (DBSCAN)
were extensively used for general data clustering [12–21]. However, these techniques
are computationally expensive for large datasets. They may thus fail to satisfy the ultra-
low-latency requirement from the communication perspective and the computational
efficiency requirement from the computing perspective. A quick and efficient technique for
huge datasets that addresses this issue is k-means [22]. This technique was used for task
classification in edge computing [23]. But, implementing k-means on 2C classification data
with non-spherical clusters is impracticable. Furthermore, the technique requires an initial
cluster number (k), and the choice can be far from the optimal k value. As a result, extra
tools to define the optimal k value must be considered. In addition, the initial centroids
are chosen randomly from the dataset, and with different combinations, the clustering
results can be different. Moreover, because the clustering scheme will not change after a
few new examples in the dataset, it is impractical to classify each new request using the
same process.

As a result, these new requests will be predicted using a less complex approach. Su-
pervised learning techniques, as they are less complex techniques, are a good choice [24,25].
However, the chosen approach must be adaptable to k-means modifications after each indi-
vidual epoch, and the lack of a training dataset restricts the considerations to non-training
phase techniques. The choice in this case is k′-nearest neighbors (k′-NN) [26], where new
requests are assigned to the nearest cluster based on a metric.

The method allocates each example based on the neighbors’ majority voting, although
the technique is sensitive to the number of k′ neighbors. If k′ is reduced, then k′-NN may
overfit the k-means data. Higher k′ values, on the other hand, lead to greater comput-
ing complexity.

2.2. Poisoning Attacks

In recent years, the data poisoning literature has addressed attacks in a range of
scenarios as well as diverse applications, with threat models ranging from attackers having
only data access to attackers controlling the entire training process. Poisoning attacks were
extensively discussed for other scenarios concerning computer vision (CP) [27–29] and
natural language processing (NLP) [30–32]. In general, AML in wireless communications is
still poorly explored, although adverse wireless channels and introduced distortions are
inherent in mobile radio communication.

Some works discussed the topic in a general way that can be applied to several
classification problems. For example, in [33], the authors discussed their novel poison
threat algorithm to generate adversarial examples that deceive ML classifiers such as k-
means and spatial clustering. Another proposed work [34] dealt with fair ML classification
under these attacks and the high poisoning vulnerability of this classifier.

To launch the attacks against 2C task classification, a variety of techniques can be
borrowed from wireless research works. Some of them are conventional wireless attacks.
Jamming, for example, might prevent an ML model from being trained correctly on data
provided by a given source. This strategy is used to change some training examples, result-
ing in data poisoning [35]. Another example would be wireless medium eavesdropping to
obtain model features, resulting in stealing the trained model or jeopardizing data privacy.
In [36], the authors considered class sniffing and quantity inference attacks. These attacks
find the class (the label) of a certain example and determine the composition proportion of
the training labels owned by selected clients, respectively.

It is worth mentioning that a large group of works consider attacks on ML algorithms
using other ML algorithms or hybrid attacks (conventional or ML attacks). One recent
work [37] discussed generative adversarial networks (GANs) in 5G communication systems.
AML attacks on wireless communication are categorized and summarized in [38].



Sensors 2024, 24, 338 5 of 19

2.3. Paper Contribution

To the best of our knowledge, this paper is the first work that addresses poisoning
attacks against 2C task classification. Our paper is different because, first of all, it sets
the whole problem in the edge-computing scenario and shows the implications of these
attacks and methods in wireless communication and edge computing. Second, in contrast
to the other works that use optimization methods for 2C task offloading, we use more
practical, ML-based tools. Moreover, the existing mitigation techniques such as anomaly
detection [39] and adversarial training [40] abstract from the specifics of wireless communi-
cation and 2C task classification problems. In this paper, we investigate how data poisoning
attacks impact 2C task classification and offloading and how they can be mitigated.

The work starts with an introduction of our considered system model. Then, a hybrid
ML technique is proposed to assist the near-optimal 2C classification. Next, two radio
communication-specific poisoning attacks are considered and described. The effects of
these attacks on 2C task classification are analyzed. In the last step, poisoning mitigation
techniques are considered that can detect these attacks. Their effects on the classification
system are shown.

3. System Model
3.1. System Architecture

The considered edge-computing network is an edge-computing network that consists
of diverse servers (with diverse computing and storage capabilities) and diverse IoT devices
(generating diverse communication and computing requests). The network architecture is
presented in Figure 1.

Figure 1. System architecture.

In this work, the 2C tasks (requests) are represented by three features: (1) the required
end-to-end latency in milliseconds, (2) the required reliability (in terms of the packet
error rate (PER)), and (3) the computational complexity in floating-point operations ×109

(GFLOPs). In general, other features might be considered for 2C task classification (although
some may translate to the ones given above, such as the task complexion speed). Here, we
selected the ones that were most relevant for 2C tasks in 5G and 6G services.

The idea was to classify the tasks to delegate each task to the appropriate server or
virtual machine (VM). The allocation might follow several scenarios, but here, for simplicity,
every available server or VM and the associated communication link was considered to



Sensors 2024, 24, 338 6 of 19

serve a given requirement (latency, reliability, or task complexity) either with a high or low
attribute. Hence, eight servers with associated communication links (called 2C links for
simplicity) were possible to consider, which represented eight 2C links, as presented in
Table 2. The links’ features are represented by a single binary digit, with zero being for
low-quality service and one being for high-quality service. The decision about the state of
each 2C link’s feature xn

i , n ∈ {1, 2, 3} was obtained as follows:

xi
n =

{
1(high) xi

n > αn
i

0(low) otherwise
(1)

where αn
i is the middle point of the nth feature’s interval and i is the 2C link ID (i ∈

1, 2, . . . 8).

Table 2. The 2C links, attributes, and representation.

i End-to-End Latency Reliability Computational Capability Representation

0 Low Low Low 000
1 Low Low High 001
2 Low High Low 010
3 Low High High 011
4 High Low Low 100
5 High Low High 101
6 High High Low 110
7 High High High 111

3.2. Dataset

The dataset representing the 2C tasks (requests) with the three mentioned features con-
sisted of l = 1000 examples. For these 2C requests, some representative cases were chosen.

The communication- and computing-related features are described below with labels
as tuples, with latency in terms of [milliseconds, PER]. The communication labels [µ1

j ,µ2
j ]

for each use case were obtained according to the QoS of 5G defined by ETSI in “(2022-05)168
3GPP TS 23.501 version 17.4.0” release 17:

• Process automation [50, 10−3].
• V2X collision avoidance [5, 10−4];
• Mission-critical data [200, 10−6];
• Intelligent transportation system [30, 10−5];
• Low latency eMBB [10, 10−6];
• Live streaming [300, 10−8];
• Conversational video [100, 10−2];
• Interactive gaming [100, 10−3].

For the computational complexity feature, random values following a uniform distri-
bution were selected in the range of [200, 5000] GFLOPs. The choice here can be supported
by the diversity of requests generated. Video processing or ML model training tasks may
have higher complexity than signaling tasks. In addition, the same category of tasks such
as video processing, compression, and size modification may have different complexities.
Moreover, same-category tasks with the same process, such as compression, may differ in
their workloads. All these points make the choice highly random.

The dataset D combining all features consisted of 1000 examples with 3 features each.
The representative cases were modeled with 2D Gaussian distributions for the first two axes
(end-to-end latency and reliability), with the means µn and the variances σn =

√
0.1 × µn.

For the last axis (computational capability), the dataset was modeled with a single uniform
random distribution.



Sensors 2024, 24, 338 7 of 19

4. The Proposed 2C Task Classification Technique

The stochastic nature of the 5G and 6G usage patterns and the unavailable knowledge
about the network nodes make classification optimization of the requests challenging. To
address this, the focus was on self-learning networks and systems that could autonomously
manage resources and control functions.

The method of k-means clustering is a simple, iterative unsupervised technique used
to partition the dataset into distinct groups of 2C requests or clusters. Each request belongs
to the cluster with the closest mean (cluster centers or cluster centroids). This algorithm
aims to minimize the within-cluster variance and maximize the between-cluster variance.

Our k-means algorithm starts by randomly initializing k cluster centroids within the
3D feature space. Then, it assigns each data point to the nearest centroid based on a distance
metric, which is the 3D Euclidean distance here. After that, it recalculates the centroids of
each cluster by taking the mean of all data points assigned to that cluster. It repeats the
assignment step, assigning each data point to the nearest centroid based on the updated
centroids. It continues the update and reassignment steps iteratively until convergence
is reached.

Convergence is achieved when the centroids no longer move significantly or when
a predefined maximum number of iterations is reached. The algorithm converges to a
solution where each data point belongs to the cluster with the closest centroid. The k-means
algorithm seeks to minimize the within-cluster sum of squared distances (inertia) through
iterative optimization of the cluster assignments and updating the cluster centroids. It is
important to note that the k-means algorithm is sensitive to the initial random initialization,
and the algorithm may converge to different solutions depending on the starting points.

However, due to the large number of operations performed by the k-means algorithm,
it is not convenient to repeat the calculations for the arrival of a limited number of tasks. To
handle this, a simple algorithm with lower complexity and a training-free process is used.
Here, we suggest the use of the k′ nearest neighbors algorithm (k′-NN), where k′ is a different
value from k. It focuses on the similarity between the input data and the labeled examples
in the dataset.

The assembled algorithm collects a labeled dataset consisting of the input samples
(2C requests clustered by k-means) and their corresponding class labels (centroids obtained
by k-means). Then, it receives an unlabeled data point (new incoming 2C tasks) that needs
to be classified or predicted. After that, the similarity (distance) between the new request
points and all the labeled requests in the dataset is computed. The used distance metric is
the same as the one used in k-means) (i.e., the 3D Euclidean distance).

The next step of the algorithm is voting; in other words, k′-NN selects the k′ nearest
neighbors to the input data point based on the calculated similarity, and then it determines
the class label of the input data point by majority voting among the class labels of the k′

nearest neighbors. The algorithm returns the predicted class label or the target value for
the new data point.

Assembling both techniques leads to a hybrid k-means/k′-NN technique described by
the flowchart in Figure 2. Where E is the list of all events (2C requests and their arrivals) and
I is a sub-event list during a single epoch (round). Epsilon and max_iter are the thresholds
and the maximum number of iterations for k_means, respectively, and T is the time of a
single epoch.



Sensors 2024, 24, 338 8 of 19

Figure 2. Hybrid k-means and k′-NN algorithm.



Sensors 2024, 24, 338 9 of 19

5. Poisoning Attacks in 2C ML-Based Classification

Most machine learning algorithms are designed to work on a specific issue, known
as artificial narrow intelligence (ANI) [41], and little modifications in the operating envi-
ronment or operational data impact the effectiveness of ML algorithms. Here, we propose
two attacks to demonstrate the security issues ML approaches may face. The attacks are
channel-independent, and thus the channel characteristics and transmission medium were
not considered.

By carefully inserting new examples into the dataset, the attacks aim to alter the
behavior of the ML model. The objective of the ML technique is to group data points
that are related together or classify them. In a poisoning attack, malicious data points are
purposefully added to the dataset in an attempt to affect the results of the ML algorithm.
The attacks aim to interrupt the clustering process, the classification process, or both. This
can be achieved by fooling the system into forming improper clusters, classifying new
examples correctly, or starting new clusters by intentionally grouping poisoned data points.

The proposed attacks are named attack1 and attack2. Attack1 inserts several poisoning
examples that form uncorrelated poisoning data points into the 3D feature plan. The
targeted examples were chosen to be in the decision regions between the legitimate clusters.
By the decision regions, we mean the regions where the ML algorithms were sensitive
to either clustering or classification, such as the regions between two adjacent centroids.
To target the examples and the decision regions, we assumed that the attacker had full
knowledge of the clustering process. This could be achieved using exploratory attacks.
The attack aims to widen the legitimate clusters, and hence the classification will be
affected later.

For attack2, the scenario is different. The attacker impersonates a legitimate identity
to transmit as a legitimate source. Then, the poisoning examples are grouped (correlated)
to form a cluster called a malicious cluster. This malicious cluster has a mean represented
by an example (centroid) located randomly in the 3D features plan and a variance. The
purpose of this attack is to fool the whole clustering process. The assigned 2C link may
not satisfy the evaluation constraints of the wrongly clustered examples or the next ones
for classification. In addition, servers can be overloaded if they process some heavy tasks
in terms of computational complexity. Both attacks were simplified in a 2D plane for
representation in Figure 3.

Figure 3. The attack1 and attack2 2D representations.



Sensors 2024, 24, 338 10 of 19

Note that attack1 targets the features (altering the examples and labels), and thus the
attack is said to be feature poisoning. On the other hand, attack2 targets the clustering
itself, and it is said to be cluster poisoning. Both attack examples were launched using
MITRE [42] tactics and techniques into the system. The launch time instances followed the
same distribution (Poisson) as the legitimate sources’ transmission distribution. This was
achieved by the combination shown in Figure 4 using cyber security MITRE matrices with
the tactics listed in Table 3. The execution tactic was performed using the Python technique
(T1059.006), where scripts were used to execute all the tactics.

For better understanding, both attacks started by (I) gathering information for future
operations using AML.TA0002 on the machine learning model and TA0043 on the network
nodes. The next step (II) was to gain access to both the machine learning system and
the edge computing model. To achieve this, AML.TA0004 and TA0001 were applied,
respectively. After this step, the attacks differentiated. Starting with attack1, (I I Iattack1) it
gained access to the machine learning model using AML.TA0000. After that, (IVattack1)
the attacker poisoned the dataset using AML.TA0001. The attacker chose the regions
between the clusters since full knowledge about the ML model and system was gained. For
attack2, (I I Iattack2) the attacker chose a legitimate source and manipulated its data using
TA0040. After that, (IVattack2) the source’s manipulated data were injected as poisons using
AML.TA0001. All the previous steps for both attacks were launched using Python scripts
with the TA0002 tactic. Both attacks’ transmissions followed Poisson distributions with the
same parameters as those in the legitimate scenario.

Figure 4. MITRE attacks in the system architecture.

Table 3. MITRE tactics used for attacking the ML system.

ID Name Description Type

AML.TA0002 Reconnaissance Gather information for future operations ATLAS
TA0043 Reconnaissance Gather information for future operations ATT&CK
AML.TA0004 Initial access Enter into the ML system ATLAS
TA0001 Initial access Enter into the edge-computing network ATT&CK
AML.TA0000 ML model access Enter into the ML model ATLAS
TA0002 Execution Run malicious code ATT&CK
AML.TA0001 ML attack staging Poison the data ATLAS
TA0040 Impact Manipulate the data ATT&CK



Sensors 2024, 24, 338 11 of 19

6. Poisoning Attack Detection

Anomaly detection (AD) is a data analysis approach that identifies patterns, instances,
or observations that differ significantly from normal behavior in a dataset. AD can be
accomplished using a variety of statistical, machine learning, or data mining approaches.
In our case, because the dataset consisted of several distinct clusters that followed Gaussian
distributions, the Gaussian mixture model (GMM) [43] was considered to characterize
the 2C task features. The GMM is a probabilistic model used for representing complex
data distributions as a combination of multiple Gaussian distributions. It assumes that
the observed data are generated by a mixture of underlying Gaussian components. Each
component in the GMM reflects a Gaussian distribution defined by its mean and covariance.
To reflect the overall distribution of the data, the model combines these differentiated
Gaussian distributions with mixing coefficients.

The poisoning attack mitigation technique proposed is based on anomaly detection of
the poisoning examples. Once they are detected, they are likely to be removed from the
dataset. The proposed AD technique is a semi-supervised learning technique used to detect
anomalies by modeling the usual behavior of a dataset (reference dataset) and finding data
points that vary considerably from this learned normal distribution. As a result, the only
possible solution is to have some history of old generated requests by sources representing
the 5G and 6G services.

The decision about the anomalous examples is accomplished by using a threshold
that represents the maximum 3D position that is far from the cluster’s centroid. Hence,
examples that are located far from the clusters’ centroids are said to be anomalous. The
other examples with positions near the clusters’ centroids are said to be legitimate. This
threshold is determined by the percentile of the GMM’s log-likelihood score_sample quantity
from the Scikit-learn [44] GMM class.

For attack1, the examples to be monitored are all the dataset examples, while for
attack2, the monitored examples are the centroids of each cluster, since the aim is to detect
the whole malicious cluster. Anomaly detection using the GMM for this attack is named
method1. For attack2, two scenarios might be distinguished: (1) when the malicious cluster
is separated well from the legitimate groups and (2) when it intersects with one or more of
the legitimate clusters. For this, the silhouette score test [45] was employed to first identify
the optimum number of clusters the dataset set could be divided into and second, from the
system’s history and based on the dataset shape, define the number of legitimate clusters
L. Hence, if the silhouette score refers to a greater number of clusters than L, then anomaly
detection is run to detect the malicious centroid. If the detected malicious cluster is found
to be intersecting with legitimate clusters, then quantile-quantile (Q-Q) plots [46] are used to
separate it. Anomaly detection using the GMM with the silhouette score and Q-Q plots is
named method2.

To summarize, the following apply to (A) application of the detection for attack1:

1. Obtain the optimum number of clusters k in the data using the silhouette score test.
2. Train the GMM model offline with all the examples used as history.
3. Check if the model has intersecting clusters using Q-Q plots for each group. If the line

of the plot is not straight compared with the Gaussian distribution reference, then the
group is detected as not being Gaussian distributed. Hence, a possible intersection is
present, and k is incremented by the amount of intersections detected.

4. Fit the GMM on the model.
5. For each example in the dataset, its 3D position log-likelihood is compared to the

threshold. If it is greater than the threshold, then it is anomalous (i.e., the example
located far from the centroid of the associated cluster). If its 3D position log-likelihood
is lower than the threshold, then the example is said to be legitimate (i.e., it is near the
cluster centroid).

The following apply to (B) application of the detection for attack2:

1. Obtain the optimum number of clusters k in the data using the silhouette score test.



Sensors 2024, 24, 338 12 of 19

2. Train the GMM model offline with the clusters’ centroids only used as history.
3. Check if the model has intersecting clusters using Q-Q plots for each group. If the line

of the plot is not straight compared with the Gaussian distribution reference, then the
group is detected as not being Gaussian distributed. Hence, a possible intersection is
present, and k is incremented by the amount of intersections detected.

4. Fit the GMM on the model.
5. For each centroid in the dataset, its 3D position log-likelihood is compared to the

threshold. If it is greater than the threshold, then it is anomalous (i.e., the centroid is
located at an anomalous position based on the history). If its 3D position log-likelihood
is lower than the threshold, then the centroid is said to be legitimate (i.e., it is located
in a normal position based on the history).

7. Simulation Results
7.1. Constraints

The simulation tools were Jupyter Notebooks with Python3 scripts. We avoided using
some real traffic generators, real environment simulators, and modeling the 5G infras-
tructure because of the distortions modeled under these scenarios. This study aimed to
investigate the effects of poisoning attacks on the classification of 2C requests. With real
wireless and wired channel distortions, the poisoning effects may not have been analyzed.
As a result, environment modeling was not considered.

7.2. Evaluation Tools

The classification algorithm performance was evaluated using three metrics: the
amount of processing time, the number of unaccepted requests, and the number of used
servers. The same metrics were used to evaluate the ML classification under attack and
after applying the mitigation techniques. The processing time is the time a link server takes
to process the task, and it is the time spent by both the CPU and GPU processing units.
This metric was used to evaluate the algorithm for the computing part only. The number of
unaccepted requests represents the number of requests assigned to a link server with either
higher latency, lower reliability, or lower computational complexity. This metric was used
to evaluate both the communication and computing parts of the algorithm. The number
of used servers represents the number of link servers that were not idle during the whole
process. If a link server is assigned to one single request, then it is said to be used.

7.3. Results

In this section, we provide the results of the simulated 2C task classification, the impact
of attack 1 and attack 2 on this classification, and the results of the application of method 1
and method 2 for attack detection (and mitigation).

For reference and comparison with our methods, the 2C requests assigned to the
servers (the serving 2C links) in a round robin fashion [47] were considered. Since the ML
technique is a real-time classifier and has to be data-empty, there was no way to cluster or
classify using the ML algorithm in the first epoch or round. For that, 1000 extra-classified
requests were used as an offline initial state to the ML data. These examples were not
considered in the results. The dataset was fed to the ML classification system. The dataset
(The 1000 examples without consideration of the extra ones was preprocessed using the
PowerTransformer scaler with the Box-Cox method followed by MinMaxTransformer (with
min = 0, max = 100) was from the Scikit-learn library [44]. The PowerTransformer transforms
the data in each axis to be Gaussian-like distributed. In addition, the MinMaxTransformer
gives a range of data between 0 and 100, and this made the k-means and k′-NN metrics (3D
Euclidean distance) fair between all the dataset samples. This choice also came from the
intention to set the third axis (third dimension) of the Gaussian-like distributed dataset.
Keep in mind that this axis was simulated using a uniform distribution. This ensured that
all the 3D dimensions of the dataset followed the same distribution type and range (i.e.,
Gaussian shape with a range [0, 100]).



Sensors 2024, 24, 338 13 of 19

After serving all the 2C requests, the ML classification converged to eight distinct
clusters, as shown in Figure 5. Since the usage pattern of 5G services is stochastic, the
number of needed servers to serve the 2C tasks could not be defined. As a result, the
silhouette score test was used to determine the optimum number of clusters. This was
accomplished by choosing the number of servers (clusters) that had the highest silhouette
score among all the possible combinations. We limited our consideration to only eight
servers, while for future work, more servers will be considered.

(a) Dataset (b) Classified dataset

Figure 5. Attack 3D representations.

The 2C link servers were chosen as shown in Table 2. We considered the CPU and GPU
computing for the servers (computing part) and diverse radio and wired channels with
different propagation conditions that defined the PER and latency introduced by each link
(communication part). The servers were assumed to be buffer unlimited (i.e., no task was
lost). The benefits of the ML classifiers compared with the simple round robin technique
are shown in Figure 6.

Figure 6. Machine learning (ML) vs. round robin (RR) results.

The processing time represents the time all servers took to process the 2C tasks.
The server CPUs were assumed to behave as round robin schedulers with parallel GPU
processing. The 2C request was said to not be accepted if it was allocated to a link server
that did not fulfill the minimum evaluation constraints of this task’s service, while the
quantity of the used server was the total number of servers used by the allocation technique.
The hybrid k-means/k′-NN method showed rather high gains against the round robin
method. Even though only five servers were enabled to serve the eight clusters, around 40
seconds (40 s) less time was observed compared with the round robin method with eight
servers. In addition, only 14 tasks were not accepted in terms of the evaluation constraints
guaranteed by the assigned link server compared with 693 for the round robin method.



Sensors 2024, 24, 338 14 of 19

Because the main focus of this paper is the security aspects of ML, only the round robin
method was compared to the proposed algorithm to show that AI is optimal for assisting
edge intelligence.

Based on the MITRE techniques and tactics discussed earlier, we launched the attacks
on virtual machines that ran the sources and control system infrastructure. This section
discusses the numerical results obtained after the attacks were successfully launched. We
set the rate of success of exploratory attacks to 0.7. This means that in 70% of the attacker’s
attempts, the poisoning examples were located in the decision regions, while the rest (30%)
were randomly located in the 3D plane. Visualizations of both types of attacks are shown
in Figure 7.

(a) attack 1 (b) attack 2

Figure 7. Attack 3D representations.

The number of injected poisons was equal to the average population between all the
clusters. Both attacks showed dramatic degradation in ML performance. The serving
time increased by 278 and 241 seconds after introducing attack1 and attack2, respectively
(Figure 8). In addition, for attack2, only four servers were active, which means the other
servers were being overloaded, and this demonstrated the increase in processing time with
the grouped poisoning examples. Furthermore, for both attacks, we observed a higher
number of tasks that were not accepted in terms of evaluation constraints. The results refer
to 479 and 551 tasks not accepted for attack1 and attack2, respectively.

Figure 8. Attacks’ effects.

To launch anomaly detection as a mitigation technique, a history was created as a
training (reference) dataset, since the method involves semi-supervised learning. The
history consisted of all the possible 5G services defined by ETSI in “(2022-05)1683GPP
TS 23.501 version 17.4.0” release 17. All the services were created and modeled in the



Sensors 2024, 24, 338 15 of 19

same way as the chosen ones in the previous step. Once the history was created, method1
was launched on attack1. The obtained results are shown in Figure 9. The decision about
anomalies was made based on the percentile of the log-likelihood score of the GMM. The
score that maximized the precision (true positives over true positives and false positives
combined) was −14.52 with a percentile of 9. The choice of precision was justified as follows.
Since the main objective was to detect anomalies without losing legitimate requests, the
minimization of false positives (FP), also called false alarms, was critical, and hence our
maximizing the precision.

Figure 9. Method 1 results.

Anomaly detection using GMM brought about a quite powerful mitigation solution.
The unaccepted tasks based on the evaluation constraints dropped to near the optimal value
(no attack scenario) compared with the attack1 scenario. However, the drawback is that the
solution forced the ML to enable four servers with higher computational capabilities. This
means more power was consumed, and the processing time was rather low compared with
the optimal solution. In addition, only 31 requests were detected as false positives (FP),
also called false alarms, and as a result these requests were lost.

This method was devoted only to attack1, since the attack2 examples appeared to be
legitimate under the method’s constraints and could not be detected. The recall score (the
ratio of true positives to true positives and false negatives combined) dropped when using
method1 as a mitigation solution for attack2. The choice this time was the recall because
the main goal was to not miss the malicious cluster examples (false negatives (FNs)) when
the cluster was distinguished well from the others. To gain insight into this, multiple
simulations were run for different numbers of injected poisons, and the recall test results
were obtained (see Figure 10a).

(a) Recall test (b) Separation limit

Figure 10. Method 2 limitations.

Since the anomaly detection had a history of all the 5G services, the attacker may
have matched a centroid where a 5G service was originally located nearby, and as a result,



Sensors 2024, 24, 338 16 of 19

the technique mistakenly detected these examples. For this, the silhouette score test was
introduced to omit one of the clusters obtained by the GMM. But the history now is different.
Since the aim was to detect and omit the whole malicious cluster, only the centroids of the
groups were present in the history.

To complete this, as mentioned before, Q-Q plots were used in case the clusters
intersected. The Q-Q plots were obtained for each obtained group with the GMM. If the
line was not straight about the normal (Gaussian) theoretical quantiles, this means that
the group was not Gaussian-like. And since all the services were modeled as being 3D
Gaussian, the cluster consisted of intersecting clusters. At some point, where the intersected
clusters’ centroids were quite near to each other, the separation process failed. The results
of this process are presented in Figure 10b.

The minimum Euclidean distance was unit-free since it was a position in the 3D plane.
Note that even if separation was performed, false positives and false negatives might have
been present. The results presented in the figure illustrate that the recall test was enhanced
but was still worse than the attack1 mitigation.

As a result, launching method2 on attack2 yielded the results shown in Figure 11. The
method recovered on average the same clustering scheme with 78 false negatives (FNs, or
missed detections) and 33 FPs (false alarms). These missed detection examples and the lost
ones introduced 10 more seconds of processing time compared with the optimal scenario.
In addition, 24 more 2C requests were unacceptable regarding the evaluation constraints
ensured by the assigned link servers.

Figure 11. Method 2 results.

The simulation parameters used are summarized in Table A2. In addition, the servers
activated by each step are summarized in Table A1.

7.4. Detection Complexity

Since anomaly detection is a semi-supervised learning technique, it can be trained
offline using appropriate tools such as supercomputers. The detection of each example
or centroid required only one real comparison. As a result, the algorithm was of a linear
complexity. The number of comparisons needed equaled the number of examples desired
to be checked.

8. Conclusions

Throughout this article, a hybrid k-means/k′-NN technique was presented to assist with
near-optimal 2C task classification in edge computing for 5G and beyond communication
systems. The technique outperformed the classical round robin scheduling technique in
terms of the processing time of the 2C tasks, the fulfillment of constraints for the assigned
link server to each task, and the number of used servers. After that, two attack types,
named attack1 and attack2, were proposed to weaken the performance of the ML method.
Both methods showed down-degradation in the ML technique. Higher unaccepted 2C
tasks regarding the evaluation constraints were observed, and longer processing times



Sensors 2024, 24, 338 17 of 19

were observed under the presence of these attacks. The later attack successfully launched
cluster poisoning, where the ML classification scheme changed completely and the servers
became overloaded by the examples assigned to other omitted clusters. Finally, to mitigate
these attacks, two anomaly detection methods were proposed. Each one was devoted to a
single attack type due to the limitations they faced. To mitigate attack1, more power was
needed where the end server had higher computational capability, but this ensured the
minimum QoS needed to serve the tasks under this attack. For attack2, extra statistical
tools were used. Both mitigation techniques showed good detection and recovery of the
classification system, where the processing time recovered to near the optimal scenario. In
addition, lower unaccepted 2C requests in terms of evaluation constraints were observed
when applying these solutions.

For future considerations, a complete system will be studied, and link servers with
higher diversity will be addressed. In addition, the propagation conditions in both the radio
and wired media will be studied. A full real environment with real network characteristics
will be modeled. Hence, the impact of poisoning attacks in real-world scenarios will be
covered. Moreover, how the channel can affect the poisons and how the attacker has to be
aware of the channel conditions will be analyzed. Furthermore, the ML technique has to be
more optimized and compared to the state-of-the-art techniques. The exploration phase of
attacks will be analyzed as well.

Author Contributions: Conceptualization, H.B.; methodology, H.B.; software, Y.S.; validation, Y.S.;
formal analysis, Y.S.; investigation, Y.S.; resources, H.B.; data curation, Y.S.; writing—original draft
preparation, Y.S.; writing—review and editing, H.B.; visualization, Y.S.; supervision, H.B.; project
administration, H.B.; funding acquisition, H.B. All authors have read and agreed to the published
version of the manuscript.

Funding: The presented work was funded by the Polish Ministry of Education and Science within
the research bailout in 2022 and 2023.

Data Availability Statement: Data is unavailable due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. The servers activated by each step.

Case Server Number Binary Representation Computational Capability
(GFLOPs)

Round robin 8 1.’000’, 2.’001’, 3.’010’, 4.’011’,
5.’100’, 6.’101’, 7.’110’, 8.’111’

1.1450, 2.4350, 3.1450, 4.4350,
5.1450, 6.4350, 7.1450, 8.4350

Optimal ML 5 1.’101’, 2.’110’, 3.’000’, 4.’001’,
5.’010’

1.4350, 2.1450, 3.1450, 4.4350,
5.1450

ML attack1 5 1.’001’, 2.’010’, 3.’000’, 4.’101’,
5.’110’

1.4350, 2.1450, 3.1450, 4.4350,
5.1450

ML attack2 4 1.’101’, 2.’000’, 3.’110’, 4.’001’ 1.4350, 2.4350, 3.1450, 4.1450,
5.1450

ML attack1, method1 4 1.’001’, 2.’111’, 3.’011’, 4.’101’ 1.4350, 2.4350, 3.4350, 4.4350

ML attack2, method2 5 1.’101’, 2.’110’, 3.’000’, 4.’001’,
5.’010’

1.4350, 2.1450, 3.1450, 4.4350,
5.1450

Table A2. Simulation parameters.

Parameter Symbol Quantity

k′ 50
C random

max_iter 10,000
epsilon 1 × 10−10

T 10



Sensors 2024, 24, 338 18 of 19

References
1. The Ericsson Mobility Report. June 2023. Available online: https://www.ericsson.com/49dd9d/assets/local/reports-papers/

mobility-report/documents/2023/ericsson-mobility-report-june-2023.pdf (accessed on 7 November 2023).
2. Huang, L.; Joseph, A.; Nelson, B.; Rubinstein, B.; Tygar, J. Adversarial machine learning. In Proceedings of the 4th ACM Workshop

on Security and Artificial Intelligence, Chicago, IL, USA, 21 October 2011; pp. 43–58.
3. Yang, X.; Rahmani, N. Task scheduling mechanisms in fog computing: Review, trends, and perspectives. Kybernetes 2020, 50,

22–38. [CrossRef]
4. Asim, M.; Wang, Y.; Wang, K.; Huang, P. A review on computational intelligence techniques in cloud and edge computing. IEEE

Trans. Emerg. Top. Comput. Intell. 2020, 4, 742–763. [CrossRef]
5. Luo, Q.; Hu, S.; Li, C.; Li, G.; Shi, W. Resource scheduling in edge computing: A survey. IEEE Commun. Surv. Tutor. 2021, 23,

2131–2165. [CrossRef]
6. Dinh, T.; Tang, J.; La, Q.; Quek, T. Offloading in mobile edge computing: Task allocation and computational frequency scaling.

IEEE Trans. Commun. 2017, 65, 3571–3584.
7. Kopras, B.; Bossy, B.; Idzikowski, F.; Kryszkiewicz, P.; Bogucka, H. Task allocation for energy optimization in fog computing

networks with latency constraints. IEEE Trans. Commun. 2022, 70, 8229–8243. [CrossRef]
8. Kopras, B.; Idzikowski, F.; Bossy, B.; Kryszkiewicz, P.; Bogucka, H. Communication and Computing Task Allocation for Energy-

Efficient Fog Networks. Sensors 2023, 23, 997. [CrossRef]
9. Greene, D.; Cunningham, P.; Mayer, R. Unsupervised learning and clustering. In Machine Learning Techniques for Multimedia: Case

Studies on Organization and Retrieval; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; pp. 51–90.
10. Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [CrossRef]
11. Chander, S.; Vijaya, P. Unsupervised learning methods for data clustering. In Artificial Intelligence in Data Mining; Academic Press:

Cambridge, MA, USA, 2021; pp. 41–64.
12. Shen, J.; Hao, X.; Liang, Z.; Liu, Y.; Wang, W.; Shao, L. Real-time superpixel segmentation by DBSCAN clustering algorithm. IEEE

Trans. Image Process. 2016, 25, 5933–5942. [CrossRef]
13. Deng, D. DBSCAN clustering algorithm based on density. In Proceedings of the 2020 7th International Forum on Electrical

Engineering and Automation (IFEEA), Hefei, China, 25–27 September 2020; pp. 949–953.
14. Hou, J.; Gao, H.; Li, X. DSets-DBSCAN: A parameter-free clustering algorithm. IEEE Trans. Image Process. 2016, 25, 3182–3193.

[CrossRef]
15. Tran, T.; Drab, K.; Daszykowski, M. Revised DBSCAN algorithm to cluster data with dense adjacent clusters. Chemom. Intell. Lab.

Syst. 2013, 120, 92–96. [CrossRef]
16. Ruiz, C.; Spiliopoulou, M.; Menasalvas, E. C-dbscan: Density-based clustering with constraints. In Proceedings of the Rough Sets,

Fuzzy Sets, Data Mining and Granular Computing: 11th International Conference, RSFDGrC 2007, Toronto, ON, Canada, 14–16
May 2007; Proceedings 11; pp. 216–223.

17. Nazari, Z.; Kang, D.; Asharif, M.; Sung, Y.; Ogawa, S. A new hierarchical clustering algorithm. In Proceedings of the 2015
International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, 28–30 November 2015;
pp. 148–152.

18. Heller, K.; Ghahramani, Z. Bayesian hierarchical clustering. In Proceedings of the 22nd International Conference on Machine
Learning, Bonn, Germany, 7–11 August 2005; pp. 297–304.

19. Karypis, G.; Han, E.; Kumar, V. A Hierarchical Clustering Algorithm Using Dynamic Modeling. 1999. Available online:
https://hdl.handle.net/11299/215363 (accessed on 13 December 2023).

20. Goldberger, J.; Tassa, T. A hierarchical clustering algorithm based on the Hungarian method. Pattern Recognit. Lett. 2008, 29,
1632–1638. [CrossRef]

21. Schikuta, E. Grid-clustering: An efficient hierarchical clustering method for very large data sets. In Proceedings of the 13th
International Conference on Pattern Recognition, Vienna, Austria, 25–29 August 1996; Volume 2, pp. 101–105.

22. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
23. Ullah, I.; Youn, H. Task classification and scheduling based on K-means clustering for edge computing. Wirel. Pers. Commun.

2020, 113, 2611–2624. [CrossRef]
24. Sen, P.; Hajra, M.; Ghosh, M. Supervised classification algorithms in machine learning: A survey and review. In Emerging

Technology in Modelling and Graphics: Proceedings of IEM Graph 2018; Springer: Singapore, 2020; pp. 99–111.
25. Kotsiantis, S.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell.

Appl. Comput. Eng. 2007, 160, 3–24.
26. Peterson, L. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [CrossRef]
27. Truong, L.; Jones, C.; Hutchinson, B.; August, A.; Praggastis, B.; Jasper, R.; Nichols, N.; Tuor, A. Systematic evaluation of backdoor

data poisoning attacks on image classifiers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 788–789.

28. Radiya-Dixit, E.; Hong, S.; Carlini, N.; Tramèr, F. Data poisoning won’t save you from facial recognition. arXiv 2021,
arXiv:2106.14851.

29. Chan, C.; Huang, S.; Choy, P. Poisoning attacks on face authentication systems by using the generative deformation model.
Multimed. Tools Appl. 2023, 82, 29457–29476. [CrossRef]

https://www.ericsson.com/49dd9d/assets/local/reports-papers/mobility-report/documents/2023/ericsson-mobility-report-june-2023.pdf
https://www.ericsson.com/49dd9d/assets/local/reports-papers/mobility-report/documents/2023/ericsson-mobility-report-june-2023.pdf
http://doi.org/10.1108/K-10-2019-0666
http://dx.doi.org/10.1109/TETCI.2020.3007905
http://dx.doi.org/10.1109/COMST.2021.3106401
http://dx.doi.org/10.1109/TCOMM.2022.3216645
http://dx.doi.org/10.3390/s23020997
http://dx.doi.org/10.1109/TNN.2005.845141
http://dx.doi.org/10.1109/TIP.2016.2616302
http://dx.doi.org/10.1109/TIP.2016.2559803
http://dx.doi.org/10.1016/j.chemolab.2012.11.006
https://hdl.handle.net/11299/215363
http://dx.doi.org/10.1016/j.patrec.2008.04.003
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1007/s11277-020-07343-w
http://dx.doi.org/10.4249/scholarpedia.1883
http://dx.doi.org/10.1007/s11042-023-14695-5


Sensors 2024, 24, 338 19 of 19

30. Wallace, E.; Zhao, T.; Feng, S.; Singh, S. Concealed data poisoning attacks on NLP models. arXiv 2020, arXiv:2010.12563.
31. Marulli, F.; Verde, L.; Campanile, L. Exploring data and model poisoning attacks to deep learning-based NLP systems. Procedia

Comput. Sci. 2021, 192, 3570–3579. [CrossRef]
32. Yang, W.; Li, L.; Zhang, Z.; Ren, X.; Sun, X.; He, B. Be careful about poisoned word embeddings: Exploring the vulnerability of

the embedding layers in nlp models. arXiv 2021, arXiv:2103.15543.
33. Gunasekaran, M. Breaking classification Algorithms: A Black-Box Adversarial Attack for Data Poisoning. In Proceedings of the

2023 International Conference on Innovations in Engineering and Technology (ICIET), Muvattupuzha, India, 13–14 July 2023;
pp. 1–6.

34. Xu, H.; Liu, X.; Wan, Y.; Tang, J. Towards Fair Classification against Poisoning Attacks. arXiv 2022, arXiv:2210.09503.
35. Salmi, Y.; Bogucka, H. Security Threats Against Communication and Computing Task Classification for Edge Computing.

International Conference on Military Communication and Information Systems 2023 (ICMIS). Meeting Proceedings RDP 2023.
Available online: https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-IST-200/MP-IST-200-05
.pdf (accessed on 17 November 2023).

36. Wang, L.; Xu, S.; Wang, X.; Zhu, Q. Eavesdrop the composition proportion of training labels in federated learning. arXiv 2019,
arXiv:1910.06044.

37. Sagduyu, Y.; Erpek, T.; Shi, Y. Adversarial machine learning for 5G communications security. In Game Theory and Machine Learning
for Cyber Security; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 270–288.

38. Adesina, D.; Hsieh, C.; Sagduyu, Y.; Qian, L. Adversarial machine learning in wireless communications using RF data: A review.
arXiv 2020, arXiv:2012.14392.

39. Paudice, A.; Muñoz-González, L.; Gyorgy, A.; Lupu, E. Detection of adversarial training examples in poisoning attacks through
anomaly detection. arXiv 2018, arXiv:1802.03041.

40. Geiping, J.; Fowl, L.; Somepalli, G.; Goldblum, M.; Moeller, M.; Goldstein, T. What Doesn’t Kill You Makes You Robust (er): How
to Adversarially Train against Data Poisoning. arXiv 2021, arXiv:2102.13624.

41. Kuusi, O.; Heinonen, S. Scenarios from artificial narrow intelligence to artificial general intelligence—Reviewing the results of the
international work/technology 2050 study. World Futures Rev. 2022, 14, 65–79. [CrossRef]

42. Mitre Atlas. Available online: https://atlas.mitre.org (accessed on 7 November 2023).
43. Reynolds, D. Gaussian mixture models. Encycl. Biom. 2009, 741, 827–832. [CrossRef]
44. Kramer, O.; Kramer, O. Scikit-learn. In Machine Learning for Evolution Strategies; Springer: Berlin/Heidelberg, Germany, 2016;

pp. 45–53.
45. Shahapure, K.; Nicholas, C. Cluster quality analysis using silhouette score. In Proceedings of the 2020 IEEE 7th International

Conference on Data Science and Advanced Analytics (DSAA), Sydney, Australia, 6–9 October 2020; pp. 747–748.
46. Augustin, N.; Sauleau, E.; Wood, S. On quantile quantile plots for generalized linear models. Comput. Stat. Data Anal. 2012, 56,

2404–2409. [CrossRef]
47. Hahne, E. Round-robin scheduling for max-min fairness in data networks. IEEE J. Sel. Areas Commun. 1991, 9, 1024–1039.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.procs.2021.09.130
https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-IST-200/MP-IST-200-05.pdf
https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-IST-200/MP-IST-200-05.pdf
http://dx.doi.org/10.1177/19467567221101637
https://atlas.mitre.org
http://dx.doi.org/10.1007/978-1-4899-7488-4_196
http://dx.doi.org/10.1016/j.csda.2012.01.026
http://dx.doi.org/10.1109/49.103550

	Introduction
	Scope 
	Originality
	Methodology
	Contributions

	Literature Review and Paper Contributions
	Classification
	Poisoning Attacks
	Paper Contribution

	System Model
	System Architecture
	Dataset

	The Proposed 2C Task Classification Technique
	Poisoning Attacks in 2C ML-Based Classification
	Poisoning Attack Detection
	Simulation Results
	Constraints
	Evaluation Tools
	Results
	Detection Complexity

	Conclusions
	Appendix A
	References

