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Abstract: High-quality video object segmentation is a challenging visual computing task. Interactive
segmentation can improve segmentation results. This paper proposes a multi-round interactive dy-
namic propagation instance-level video object segmentation network based on click interaction. The
network consists of two parts: a user interaction segmentation module and a bidirectional dynamic
propagation module. A prior segmentation network was designed in the user interaction segmenta-
tion module to better segment objects of different scales that users click on. The dynamic propagation
network achieves high-precision video object segmentation through the bidirectional propagation
and fusion of segmentation masks obtained from multiple rounds of interaction. Experiments on
interactive segmentation datasets and video object segmentation datasets show that our method
achieves state-of-the-art segmentation results with fewer click interactions.

Keywords: video object segmentation; interactive segmentation; click-based interactive; bidirectional
propagation

1. Introduction

Video object segmentation (VOS) aims to segment objects from the background and
obtain a pixel-level mask. Complex background, motion blur, view angle change, occlusion,
and scaling make high-quality VOS very difficult. In recent years, with the development
of deep learning, many end-to-end VOS models have been proposed. However, how to
predict a more accurate object mask is still a challenging problem.

Research has shown that introducing user interaction in target segmentation tasks
can significantly improve the quality of generated masks [1]. It allows users to carry out
various forms of interaction in a single video frame, such as mouse clicks, box selection, and
graffiti, find all pixels belonging to the target object according to the interactive information,
and output the interactive segmentation mask. The user can continue to supplement the
interaction according to the predicted segmentation result to correct the previous errors
through positive and negative interaction until the output result is satisfactory. Figure 1
shows an example of multi-round interactive segmentation.

Clicking is simply and currently the most popular interaction method. Click-based
interactive segmentation is one of the widely studied topics [2,3]. F-BRS [4] is a back-
propagating refinement scheme that operates on intermediate features in the network
and requires running forward and backward passes just for a small part of a network.
Experiments demonstrated a better convergence of backpropagating refinement schemes
compared to pure feed-forward approaches. FocalClick [5] decomposes the slow predic-
tion on the entire image into two fast inferences on small crops: a coarse segmentation
on the Target Crop, and a local refinement on the Focus Crop. It formulates a sub-task
termed Interactive Mask Correction and proposes Progressive Merge as the solution. It
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shows superiority when making corrections on pre-existing masks. Ref. [6] regards inter-
active segmentation as a pixel-wise binary classification problem and proposes GPCIS,
a Gaussian process classification framework. To solve the proposed model, it has been
proposed to variationally approximate the GP posterior in a data-driven manner, along
with a decoupled sampling strategy with linear complexity. Ref. [1] presents a technique
for automatically estimating the quality of the produced masks, which exploits indirect
signals from the annotation process. It has shown that interactive segmentation can be a
compelling approach for instance segmentation at scale. MiVOS [7] presents a modular
interactive VOS framework that decouples interaction-to-mask and mask propagation,
allowing for higher generalizability and better performance.
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Figure 1. Illustrating of click-based multi-round interactive video object segmentation. 

Many traditional researchers have adopted technologies such as a clustering algo-
rithm, graph model, random walk, random decision forest, and Markov random field to 
deal with VOS. Deep learning-based VOS models have been rapidly developed since 2015, 
surpassing traditional methods [8]. VOS methods can be divided into the following three 
categories, which are online optimization-based, matching-based, and propagation-based 
methods. 

Methods based on online optimization [9–12] focus on optimizing the first frame of 
the video to accurately segment objects and show an effective performance. However, its 
computational cost is high in application. When the object undergoes significant defor-
mation, the algorithm performance deteriorates. 

Matching-based work [13–16] usually calculates the pixel-level or feature-level 
matching score between the template frame and the current prediction frame to segment 
video objects. The matching score is generally obtained by calculating each pixel in the 
current prediction frame and the nearest neighbor pixel in the template frame. In scenes 
with complex backgrounds or fast changes in objects, the performance of matching-based 
methods will be significantly reduced due to the lack of global guidance. 

Propagation-based work [7,17–23] utilizes previously obtained masks or learned fea-
ture embedding to obtain better VOS performance. The main idea is to use the temporal 
and spatial consistency of the target object in the video, such as optical flow, to assist the 
mask prediction of the current frame. The propagation-based model has many parameters 
and the propagation process can lead to the accumulation of errors. The temporo-spatial 
memory network has been a key research method in the field of video segmentation in 
recent years [24]. 

Large-scale, accurately labeled image data are one of the key prerequisites for the 
success of deep neural networks in video segmentation. However, collecting and labeling 
these datasets requires significant manpower and resources, which makes video segmen-
tation datasets contain annotation noise. So, learning from noisy labels is an effective 
method to improve video segmentation quality. For example, ref. [25] proposes BPT-PLR, 
a balanced partitioning and training framework with pseudo-label relaxed contrastive 
loss. It introduces a balanced partitioning process with a two-dimensional Gaussian mix-
ture model and a semi-supervised oversampling training process with a pseudo-label re-
laxed contrastive loss. 

Figure 1. Illustrating of click-based multi-round interactive video object segmentation.

Many traditional researchers have adopted technologies such as a clustering algorithm,
graph model, random walk, random decision forest, and Markov random field to deal with
VOS. Deep learning-based VOS models have been rapidly developed since 2015, surpassing
traditional methods [8]. VOS methods can be divided into the following three categories,
which are online optimization-based, matching-based, and propagation-based methods.

Methods based on online optimization [9–12] focus on optimizing the first frame of the
video to accurately segment objects and show an effective performance. However, its com-
putational cost is high in application. When the object undergoes significant deformation,
the algorithm performance deteriorates.

Matching-based work [13–16] usually calculates the pixel-level or feature-level match-
ing score between the template frame and the current prediction frame to segment video
objects. The matching score is generally obtained by calculating each pixel in the current
prediction frame and the nearest neighbor pixel in the template frame. In scenes with com-
plex backgrounds or fast changes in objects, the performance of matching-based methods
will be significantly reduced due to the lack of global guidance.

Propagation-based work [7,17–23] utilizes previously obtained masks or learned fea-
ture embedding to obtain better VOS performance. The main idea is to use the temporal
and spatial consistency of the target object in the video, such as optical flow, to assist the
mask prediction of the current frame. The propagation-based model has many parameters
and the propagation process can lead to the accumulation of errors. The temporo-spatial
memory network has been a key research method in the field of video segmentation in
recent years [24].

Large-scale, accurately labeled image data are one of the key prerequisites for the
success of deep neural networks in video segmentation. However, collecting and labeling
these datasets requires significant manpower and resources, which makes video segmen-
tation datasets contain annotation noise. So, learning from noisy labels is an effective
method to improve video segmentation quality. For example, ref. [25] proposes BPT-PLR, a
balanced partitioning and training framework with pseudo-label relaxed contrastive loss.
It introduces a balanced partitioning process with a two-dimensional Gaussian mixture
model and a semi-supervised oversampling training process with a pseudo-label relaxed
contrastive loss.

This paper combines the advantages of propagation-based and matching-based meth-
ods and proposes a multi-round interactive dynamic propagation video object segmentation
network (MRIDP_VOS). The network consists of two parts: interaction segmentation and
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dynamic propagation. The user interaction segmentation module converts the click-based
interaction into an instance mask, and the dynamic propagation module propagates it to
adjacent frames to predict accurate instance masks in the entire video. Users can dynami-
cally improve segmentation results through multi-round interaction. The contributions of
this paper are as follows.

(1) A multi-round interactive learning video object segmentation network MRIDP_VOS
is proposed, which consists of a click interaction segmentation module and a bidirectional
dynamic propagation segmentation module. In the interactive segmentation module, a
priori segmentation backbone combined with a high-resolution feature extraction net-
work and a convolutional block attention module is proposed to extract a deep semantic
representation of objects with different scales clicked by users.

(2) A bidirectional temporal mask propagation module is proposed to calculate the
differences between masks predicted for different rounds of interaction during mask
propagation and correct the current prediction results. It preserves the user’s intention for
different rounds of interaction.

(3) We design an optimization module to fuse segmentation masks in different frames
of different interaction rounds. This module can retain the user’s intentions in different
rounds of interaction.

2. Methods

The framework of the proposed MRIDP_VOS is in Figure 2. It is composed of a user
interaction segmentation module and a dynamic propagation module. The user interaction
segmentation module receives user clicks to generate a segmentation mask in real time by
using a prior segmentation network (PSNet). The dynamic propagation module propagates
the mask through the temporo-spatial memory network. And then it uses the optimization
module to fuse the mask of the current round with the previous round to generate the final
segmentation mask. MRIDP_VOS allows users to interact in multiple rounds until they are
satisfied with the segmentation result of the whole video.
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Figure 2. The structure of MRIDP_VOS network. 
Figure 2. The structure of MRIDP_VOS network.

2.1. User Interaction Segmentation Module

The user interaction segmentation module realizes the positioning, segmentation, and
correction of the foreground mask through a small amount of click interaction. The overall
structure of the PSNet network in the user interaction segmentation module is shown in
Figure 3.
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Figure 3. Structure of PSNet in interaction segmentation module.

This paper designs a combination of high-resolution network [26] and CBAM [27]
attention module as the backbone of PSNet. The high-resolution network generates high-,
medium-, and low-resolution feature maps to fully explore the deep representation of
objects of different sizes. CBAM is used to capture the features in different channels after
the output of each layer in the high-resolution network. After feature extraction, the full
connection layer is used to fuse different scale features.

The inputs of the PSNet include RGB image, click map, and segmentation mask. The
click map is a single-channel image created by the user’s selective positive and negative
clicks on one frame of the video. The mask is the object predicted in the previous round
of interaction. If it is the first interaction, a blank mask is used as input. We use the mask
predicted in the previous round to assist in the segmentation of the current frame, thereby
associating it with the results of multiple rounds of interactive prediction.

2.2. Dynamic Propagation Module

The dynamic propagation module includes two parts: temporo-spatial memory net-
work and an optimization module. Given an object mask, the temporo-spatial memory
network tracks the object and generates the corresponding mask in the subsequent frame to
propagate the mask bidirectionally in the time domain. The optimization module fuses the
transmitted mask and the previous round of masks more accurately and smoothly to avoid
forgetting the user’s intention of the previous round of clicks and ensure the temporal and
spatial consistency of video segmentation results.

2.2.1. Temporo-Spatial Memory Network

The structure of the temporo-spatial memory network is shown in Figure 4. The
current frame is called target and the past frames are called memory. The memory encoder
and target encoder are built to extract object features and implement query operations. The
memory encoder encodes the object into key–value pairs, where the key is used for query
and the value is used for subsequent attention calculation. The target encoder extracts the
features of the current frame for matching and associating with the objects in memory. The
input of the memory encoder is RGB images and the corresponding masks stacked along
the channel, and the input of the target encoder is an RGB image.

Key and value form a key–value pair. Vector key is used to evaluate the similarity
between the target frame and the memory frame, and determine which features in the
memory frame should be sampled. The vector value is used to generate the result mask.
After key–value pairs of target and memory are obtained, the target frame is associated
with the memory frame, that is, to retrieve frames in memory that are like the target frame.
This process is called similarity calculation, as shown in the lower right of Figure 4.
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Figure 4. Structure of temporo-spatial memory network.

The decoding module of the temporo-spatial memory network receives the output of
the similarity calculation module and the features of the target encoder. We replaced the
convolutional layer with a residual block in the decoder and named the refinement module
in Figure 4. The decoder of the temporo-spatial memory network includes two refinement
modules with the same structure, two 3 × 3 convolutional layers, and a residual block to
generate the target mask, with the output mask being 1/4 of the input image size. Each
convolutional layer of the refinement module generates a feature map with 256 channels,
and, finally, a 2-channel mask map is generated through a 3 × 3 convolutional layer.

2.2.2. Optimization

1. Mask Bidirectional Propagation

The dynamic propagation module propagates and derives the segmentation mask
of one frame to other video frames. Considering that mask propagation frame by frame
may lead to error accumulation, this paper adopts a bidirectional propagation method
similar to [7], as shown in Figure 5. Mr

t is the mask of frame t after interaction round r. The
mask is propagated in the forward and backward directions until the interactive frame is
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encountered or the start and end of the video are reached. Masks of interactive frames are
reliable.
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2. Optimization module

Since the mask propagation is independent of the masks predicted in previous interac-
tion rounds, the intention of the user in previous interaction rounds may be lost. In order
to avoid this situation, the segmentation mask obtained in the current round needs to be
corrected by the mask obtained in the previous round. We use ∆M to present the difference
between Mr−1

t and Mr
t , and capture the user’s intent.

The structure of we designed optimization module is shown in Figure 6. The input to
the module is the feature map cascade by ∆M and Mr−1

t . The optimization module aims
to use the difference between the features of the current round and the previous round to
calculate the weight of the features of the previous round and use the weight to supplement
the feature information of the previous round to the current round. These differences
are input into the optimization module as guidance information to help the optimization
module better combine the propagated mask with the mask of the previous round to obtain
a more accurate prediction mask.
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3. Experimental Results
3.1. Datasets, Metrics, and Implementation
3.1.1. Datasets

The user interaction segmentation module and dynamic propagation module in
MRIDP_VOS are trained independently. This paper uses the SBD [28] training set to
train the user interaction segmentation model and verifies it on the SBD test set, DAVIS [29],
and Berkeley [30] dataset. There is no user interactive click information in these datasets.
In order to generate click information similar to multiple rounds of interaction with real
users, this paper uses random sampling at the beginning and then employs the iterative
sampling program proposed by [31] in the subsequent process to generate all subsequent
clicks for the image.

We use DVIS 2017 [32] as the training data of the video segmentation model, without
using any additional training data. MRIDP_VOS is validated on the DVIS 2017 valida-
tion set.

3.1.2. Metrics

The user interaction segmentation module uses NoC@85 and NoC@90 as evaluation
metrics, that is, the number of clicks required to achieve 85% and/or 90% IoU. Regional
similarity J, contour accuracy F, and the average of them Avg(J&F) are used to evaluate the
results of video object segmentation.

Region similarity J is constructed based on area, which measures the similarity between
the predicted segmentation results and the ground truth from the perspective of the region.
The set of annotated masks for all frames of the video is defined as G, and the set of
predicted masks is defined as M. Regional similarity J represents the proportion of correctly
predicted pixels in the predicted mask to all pixels by calculating the intersection to union
ratio, and is calculated by (1).

J =
|M ∩ G|
|M ∪ G| (1)

The contour accuracy F evaluates the similarity between the predicted mask M and
the ground truth G from the perspective of contour. F is calculated by (2)–(4).

F =
2PCRC

PC + RC
(2)

PC =
TP

TP + FP
(3)

RC =
TP

TP + FN
(4)

where TP (true positive) represents the number of boundary pixels predicted as objects
and belonging to ground truth boundary pixels at the same time; FP (false positive) refers
to the number of boundary pixels predicted as objects but not belonging to ground truth
boundary pixels; FN (false negative) refers to the number of boundary pixels that are not
predicted as objects but belong to ground truth boundary pixels.

3.1.3. Implementation

Experiments in this paper were run on the Ubuntu 18.04 operating system. MRIDP_VOS
was trained by four NVIDIA TITAN XP GPUs, and inferenced by a single GPU. The experi-
mental code was written by Python 3.8 and PyTorch 1.6.0. The user interaction segmentation
module used Adam optimizer with a momentum of 0.9. The cross-entropy function was
used to calculate the loss. The number of training batch sizes was set to 8 and the model
training process included 55 epochs. The initial learning rate was set to 5 × 10−5 and was
reduced to 5 × 10−6 after the 50 epochs.

The dynamic propagation module used an Adam optimizer with batch size 8, the
learning rate was set to 5 × 10−5, and the training included 60 epochs. In each epoch, three
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consecutive frames were randomly selected from the video sequence to form a training
batch. The first frame was used as the ground true mask frame, and the first frame was
used to predict the result of the second frame. Then, the predicted second frame was used
as the new reference frame, compared with the first and third frames to calculate their
similarity and predict the mask of the third frame.

3.2. Evaluation of User Interaction Segmentation

The proposed user interaction segmentation module was compared with seven typical
interactive-based segmentation models on the SBD, Davis, and Berkeley datasets.

In Table 1, the proposed PSNet achieved the best performance on the Davis and
Berkeley datasets and the second-best on the SBD dataset. Figure 7 shows the comparison of
the segmentation results of Grabcut, f-BRS-B, and PSNet. Grabcut has a significantly worse
segmentation result than modern methods. f-BRS-B is significantly improved compared to
Grabcut, but not as good as PSNet. For example, for the bus and gazelle in Figure 7, the
PSNet can segment the edge smoothly and accurately, and some occluded areas can also be
well separated.

PSNet uses a high-resolution network combined with CBAM to extract different scales
of features through multiple branches at the same time and integrates these features to
extract user interactive information more accurately. The quantitative and qualitative
experimental results indicate that the proposed PSNet can achieve better interactive seg-
mentation results.
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Table 1. Results of interaction segmentation with different methods. Bold numbers present the best
score, and underlined numbers present the second-best score. ‘85%/90%’ denotes NoC@85/90.

Method Year
SBD Davis Berkeley

85% 90% 85% 90% 85% 90%

Grabcut [33] ICCV 01 13.60 15.96 15.13 17.41 12.45 14.22
ESC [34] CVPR 10 12.21 14.86 15.41 17.70 - 12.11

DOS with GC [35] CVPR 16 9.22 12.80 9.03 12.58 - -
LD [36] CVPR 18 7.41 10.78 5.05 9.57 - -

f-BRS-B-50 [4] CVPR 20 4.55 7.45 5.44 7.81 2.17 4.22
FocalClick-18s-S2 [5] CVPR 22 4.30 6.52 4.92 6.48 1.87 2.86

GPCIS-50 [6] CVPR 23 3.80 5.71 4.37 5.89 1.60 2.60
PSNet Ours 4.07 6.18 3.34 4.68 1.60 1.76

3.3. Evaluation of Video Object Segmentation
3.3.1. Comparison to the State of the Art

Eight video object segmentation methods are selected for comparison with MRIDP_VOS,
which are IPN, ATNet, GNNannot, MANet, MiVOS, XMem, ISVOS, and MED-VT. Methods
used for comparison are compared using the results obtained from training and validating
on the DAVIS 2017 dataset, without using any additional training data.

Table 2 shows quantitative results on the DAVIS 2017 (instance level VOS dataset)
validation set. MRIDP_VOS obtains the best result among six interactive segmentation
methods and the second best of J and F of all compared methods. MED-VT is an object-level
segmentation method, so the score reported in [23] is on DAVIS 2016 (object-level VOS
dataset). Because instance segmentation is more challenging than object-level segmentation,
the score on DAVIS 2017 is lower than that on DAVIS 2016. Based on the comprehensive
analysis of the experimental results in Table 1, our method is highly competitive compared
to the state of the art. It is worth noting that interactive methods are based on interactive
information for segmentation, without using the mask annotated in the first frame of the
video in the DAVIS dataset, making segmentation more difficult. Therefore, the segmenta-
tion results based on interactive methods are often slightly inferior to the semi-supervised
video object segmentation method that uses the ground truth mask in the first frame.

Table 2. Quantitative comparison of different VOS models on DAVIS 2017 validation set. Bold
numbers present the best score, and underlined numbers present the second-best score. * denotes
results on DAVIS 2016 dataset.

Method Year Interactive J↑ F↑ Avg(J&F)↑
IPN [3] CVPR 19 ✓ 69.6 73.8 71.7

ATNet [37] ECCV 20 ✓ 70.6 76.2 73.4
GNNannot [38] IJCNN 21 ✓ 74.8 79.3 77.1

MANet [39] CVPR 20 ✓ 76.6 80.7 78.7
MiVOS [7] CVPR 22 ✓ 78.9 84.7 81.8

MRIDP_VOS Ours ✓ 79.8 84.9 82.4

XMem [22] ECCV 22
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MiVOS has been a representative interactive VOS method in recent years. From
Table 2, MRIDP_VOS outperforms MiVOS, and the click interaction used by MRIDP_VOS
is more efficient and user-friendly than the graffiti interaction used by MiVOS.

Figure 8 shows a comparison of segmentation results. Both ATNet and MiVOS did
not fully segment the skirt of the dancer in the first row, while the MRIDP-VOS model was
able to correctly segment the middle part of the skirt. In the video of the second pedestrian
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riding a motorcycle, ATNet has many under-segmented areas. MiVOS mistakenly segments
the motorcycle handle as a part of the human hand. MRIDP_VOS separates both people and
motorcycles relatively completely, with only smaller areas not being correctly segmented.
In the third row, ATNet failed to segment two people, and MiVOS did not segment the
head and arm of the left people well. The result of MRIDP_VOS in the third row is the
closest to the ground truth. The experimental results in Figure 8 indicate that PSNet has
stronger feature extraction capabilities than the DeepLabv3+ used in MiVOS, resulting in
better segmentation results after multi-round click interaction.
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Figure 8. Results of qualitative comparison. The bounding boxes highlight the difference between
different methods.

Figure 9 shows the three-round interactive segmentation effect of MRIDP-VOS on a
segment of two video clips in the DAVIS 2017 validation set, and 0%–100% represents the
progress of the video. As the number of interaction rounds increases, the segmentation
results become more accurate. Under the guidance of the first round of click interaction,
there are obvious mis-segmentation and under-segmentation areas between human and
bicycle, and two judo practitioners. However, after the second and third rounds of inter-
action, the mis-segmentation and under-segmentation areas gradually decrease, and the
boundaries between people and objects, as well as between objects and backgrounds, are
becoming increasingly accurate.
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3.3.2. Ablation Study

We designed three ablation experiments to demonstrate the effectiveness of each
module of MRIDP-VO:

(i) Replace the backbone network in PSNet with DeepLabv3+;
(ii) Remove interactive information in the dynamic propagation module and only

propagate the preceding frames and masks;
(iii) Remove the optimization module from the dynamic propagation module.
Table 3 presents a quantitative comparison of the segmentation performance between

the model variants generated by these three ablation experiments and the MRIDP-VOS
standard model. After replacing the backbone network of PSNet with DeepLabv3+, the
Avg(J&F) decreased the most, from 82.4% to 77.0%, especially contour accuracy F, which
decreased from 84.9% to 77.3%. This indicates that PSNet has played an important role in
improving the details of the object contour. After removing the interaction information
in the dynamic propagation module, Avg(J&F) decreased by 5.2%, indicating that timely
user clicks to correct during the propagation process play an important role in predicting
other frame masks. After removing the optimization module, Avg(J&F) decreased by
6.1%, indicating that the optimization module can effectively integrate the current round
of masks with the previous round of masks, eliminate conflicts, effectively capture user
intentions, and more accurately segment video objects.

Figure 10 shows a qualitative comparison of segmentation results between various
ablation experimental model variants and the MRIDP-VOS standard model. Compared
to the other three variant experiments, the MRIDP-VOS standard model has the smallest
error segmentation area in the results. The use of DeepLabv3+ as the backbone network,
removal of interactive information, and removal of optimization modules significantly lead
to poorer segmentation results and more erroneous segmentation areas in the model.
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Table 3. Quantitative results of ablation study of MRIDP_VOS. Bold numbers present the best score.

J↑ F↑ Avg(J&F) ↑
Standard MRIDP_VOS 79.8 84.9 82.4

(i) 76.6 77.3 77.0
(ii) 77.2 78.9 78.1
(iii) 76.8 78.0 77.4

3.3.3. User Interaction Study

The purpose of interactive video segmentation is to obtain high-precision segmentation
results. Real-time performance is not the first consideration for this task. To evaluate the
effectiveness and efficiency of our method during the execution process, we conduct a user
study to evaluate the human effort required to interactively segment a video using the
proposed method. Specifically, we quantify the required human effort by the total user time,
which includes the time for interaction, searching, or pausing to think, while excluding all
computational time. We compare this with MiVOS [7], which is a good-performing method
with available source code.

We recruited five volunteers who were given sufficient time to familiarize themselves
with MRIDP_VOS and MiVOS and the GUI. They were asked to segment three video clips
in the DAVIS 2017 multi-object validation set with satisfactory accuracy as fast as possible,
within a 3-min limit. To avoid familiarity bias, they studied the images and ground truths
of each video before labeling.

Table 4 reports the Avg(J&F) gain after each interaction. MRIDP_VOS achieves better
results within the same number of interactions, which allows our method to converge faster
and to a higher final accuracy for experienced users.

Table 4. Quantitative results of mean incremental Avg(J&F) after each interaction round. The results
in this table are lower than those in Table 2 because the results in Table 2 are the results of more
interaction rounds without time constraints.

Methods Round 1 Round 2 Round 3 Sum

MiVOS 78.6 1.72 0.87 81.2
MRIDP_VOS 79.4 1.83 0.79 82.0

4. Conclusions

This paper proposes a multi-round interactive bidirectional dynamic propagation
instance-level video object segmentation network MRIDP_VOS. A priori segmentation
backbone combined high-resolution feature extraction network and convolutional block
attention module is proposed to segment objects that the user clicks. In the bidirectional
propagation process of segmentation masks, a fusion optimization module was designed
to ensure that the user’s interaction intention is not forgotten. Experiments show that
compared to the state-of-the-art methods, MRIDP_VOS achieves the best results on various
metrics of both interactive segmentation and video segmentation datasets.
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