ﬁ Sensors

Article

Convolutional Neural Networks for Real Time Classification of
Beehive Acoustic Patterns on Constrained Devices

Antonio Robles-Guerrero
Daniela Lépez-Betancur !

check for
updates

Citation: Robles-Guerrero, A.;
Gomez-Jiménez, S.; Saucedo-Anaya,
T.; Lépez-Betancur, D.; Navarro-Solis,
D.; Guerrero-Méndez, C.
Convolutional Neural Networks for
Real Time Classification of Beehive
Acoustic Patterns on Constrained
Devices. Sensors 2024, 24, 6384.
https:/ /doi.org/10.3390/524196384

Academic Editor: Marco Leo

Received: 7 September 2024
Revised: 28 September 2024
Accepted: 28 September 2024
Published: 2 October 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Salvador Gémez-Jiménez (¥, Tonatiuh Saucedo-Anaya 2,

David Navarro-Solis 12 and Carlos Guerrero-Méndez 2*

Unidad Académica de Ingenierfa, Universidad Auténoma de Zacatecas, Zacatecas 98000, Mexico;
aroblesp@uaz.edu.mx (A.R.-G.); jimenezs@uaz.edu.mx (S.G.-].); danielalopez106@uaz.edu.mx (D.L.-B.);
david.navarro@uaz.edu.mx (D.N.-S.)

Unidad Académica de Ciencia y Tecnologia de la Luz y la Materia, Universidad Auténoma de Zacatecas,
Campus es Parque de Ciencia y Tecnologia QUANTUM Cto., Zacatecas 98160, Mexico; tsaucedo@uaz.edu.mx
* Correspondence: guerrero_mendez@uaz.edu.mx

Abstract: Recent research has demonstrated the effectiveness of convolutional neural networks
(CNN) in assessing the health status of bee colonies by classifying acoustic patterns. However,
developing a monitoring system using CNNs compared to conventional machine learning models
can result in higher computation costs, greater energy demand, and longer inference times. This
study examines the potential of CNN architectures in developing a monitoring system based on
constrained hardware. The experimentation involved testing ten CNN architectures from the PyTorch
and Torchvision libraries on single-board computers: an Nvidia Jetson Nano (NJN), a Raspberry
Pi 5 (RPi5), and an Orange Pi 5 (OPi5). The CNN architectures were trained using four datasets
containing spectrograms of acoustic samples of different durations (30, 10, 5, or 1 s) to analyze their
impact on performance. The hyperparameter search was conducted using the Optuna framework,
and the CNN models were validated using k-fold cross-validation. The inference time and power
consumption were measured to compare the performance of the CNN models and the SBCs. The
aim is to provide a basis for developing a monitoring system for precision applications in apiculture
based on constrained devices and CNNs.

Keywords: beehive acoustic classification; beehive monitoring; precision apiculture; precision
beekeeping; convolutional neural networks

1. Introduction

The current research in precision apiculture indicates an interest in developing auto-
matic devices to monitor and analyze the health of honey bee colonies. Some monitoring
systems are specifically designed to analyze acoustic patterns. As several studies indi-
cate, bee acoustics can provide important information about their condition, and the
sound of regular activity can be affected by numerous factors, such as the absence of a
queen [1-6], the activity before the swarming phenomenon [7-15], the exposure of bees
to chemicals [16-18], and even the presence of a human, which can lead to stress in the
colony members and result in a hissing sound as a warning. The use of dedicated devices
is expected to address some problems presented in traditional beekeeping; this includes
reducing invasive inspections that cause stress to the colony members, minimizing the loss
of the queen due to poor beekeeping practices, and most importantly, detecting critical
events that can cause the death of bee colonies.

Developing a monitoring system based on a CNN for constrained devices presents
significant challenges, including energy efficiency, computing power, and limited diversity
of samples in datasets. Monitoring honey bee colonies in real-life conditions is challeng-
ing because most apiaries are located in remote areas without access to uninterrupted

Sensors 2024, 24, 6384. https://doi.org/10.3390/s24196384

https:/ /www.mdpi.com/journal /sensors

https://doi.org/10.3390/s24196384
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3226-3038
https://orcid.org/0000-0001-6654-3313
https://orcid.org/0000-0003-0710-6062
https://orcid.org/0000-0002-6099-0814
https://orcid.org/0000-0003-0721-8515
https://doi.org/10.3390/s24196384
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24196384?type=check_update&version=1

Sensors 2024, 24, 6384

2of 16

power sources. For monitoring honey bee colonies, various research projects have sug-
gested system configurations using single-board computers (SBCs) such as the Raspberry
Pi [4,6,17,19-24]. A monitoring system could perform several tasks, including monitoring
and analyzing the parameters of bee colonies, storing data, and identifying the state or
condition of bee colonies, among others. Additionally, some monitoring systems include
additional sensors to measure parameters that can provide information about the beehive
state, such as temperature, humidity, and weight; however, the use of additional sensors
makes the system more power-demanding. In some investigations, the use of solar cells
may not be the optimal solution for powering monitoring systems [20,25]. Hence, power
consumption becomes a primary concern.

CNNs are deep learning algorithms that process input images to learn visual features.
In precision beekeeping, the most common type of image used to train CNN models is
spectrograms of acoustic samples [26]. However, obtaining acoustic patterns and accu-
rately correlating them with the actual colony state is challenging; it is essential to avoid
frequent inspection to prevent affecting regular activity in the beehive. The dataset size
leads to other problems, as having a significant amount of images is necessary to prevent
overfitting of the CNN models [27], provide diversity, and enhance the generalization
capacity. Furthermore, CNNs can require more computational resources in the training
step compared to conventional machine-learning models. Therefore, the inference time
can be longer depending on the complexity of the CNN model. The computational nature
of CNN models may limit the development of dedicated devices for monitoring due to
hardware constraints.

This study examines various aspects of implementing CNNss for classifying bee acous-
tic patterns on resource-constrained hardware. For this purpose, ten CNN models were
selected based on their reported FLOPS as a measurement of their computational complex-
ity. Most of the selected CNN architectures were developed specifically for use on mobile
devices. The CNN models were implemented using PyTorch and Torchvision libraries in
Python. Acoustic patterns from five colonies of Carniola honeybees in different conditions
were recorded for 30 s. For the training step, the original dataset was segmented into
samples of different durations: 10, 5, and 1 s. The aim is to analyze how the duration of the
sample impacts the inference performance. The CNN models were trained on a desktop
PC and then transferred to the SBCs (the Raspberry Pi 5, a Nvidia Jetson Nano, and Orange
Pi 5). The inference time and the power consumption were measured to compare their
performance. The goal is to select the CNN model with the best performance and the SBC
with the best energy efficiency to construct a monitoring system capable of inferring the
state of bee colonies.

The rest of the paper is organized as follows: Section 2 presents an overview of
the applications of CNNs on precision apiculture. Section 3 describes the dataset, the
characteristics of the SBCs, the selected CNN models, the hyperparameter optimization,
and performance evaluation and validation. Then, the results and discussion are presented
in Section 4. Finally, Section 5 provides the conclusions and future work.

2. CNN in Precision Apiculture

Recent advances indicate that convolutional neural networks (CNNs) have proven
to be highly effective in detecting the health of honey bee colonies through the classifica-
tion of acoustic patterns [14,20,28-31]. Furthermore, some studies have shown that the
prediction performance achieved using CNNs is superior to that of conventional machine
learning models [6,28,29]. The following paragraphs review the most significant research
applications of CNNSs in the field of precision apiculture.

One of the first studies published about CNN models to detect the presence of bees
was conducted by Kulyukin et al. [28]. Their study analyzed spectrograms of audio samples
and categorized them into bee buzzing, cricket chirping, and ambient noise. Two CNN
architectures were developed to classify the spectrograms: SpectConvNet, which was
designed to work with spectrograms, and RawConvNet, which was intended for raw audio

Sensors 2024, 24, 6384

30f16

waveforms. The CNN models were compared against standard machine learning models
such as logistic regression, k-nearest neighbors (KNN), support vector machine (SVM),
and random forest (RF). The RawConvNet model achieved the best performance, with
an accuracy exceeding 95% in two datasets. The same dataset was used in another study
developed by Truong et al. [32]; they proposed a new methodology based on a CNN
and Mel spectrograms called Mel-CNN-GRU using PyTorch; (v2.0.1) they claim that they
achieved superior performance compared with previous CNN models mentioned before.

Another study to identify the sounds of bees from environmental sounds of animals,
rain, and others was developed by Nolasco et al. [30]. They compared the performance of a
CNN model against an SVM model. They created a dataset with acoustic samples of the
projects OSBH and NU-Hive. In this instance, the SVM classifier outperformed the CNN
model. Jaehoon et al. [29] performed a study to identify the sound of bees and non-bees;
they compared conventional machine learning models such as SVM, RF, and XGBost with
CNN architectures, shallow CNN, and VGG-13. The identification performance of bee
sound patterns was outstanding, with a precision of 0.99 in all models. However, the
models perform poorly in recognizing non-bee sounds.

In order to identify the difference between regular activity and swarm activity,
Zgank [14] developed a classification model based on deep neural networks using acoustic
samples of the OSBH project dataset. The deep neural network outperformed hidden
Markov models, achieving an accuracy value of 0.94. Dimitrios et al. [6] developed another
method to detect swarm activity using a CNN architecture called U-Net; they compared its
performance against conventional machine learning models such as SVM and KNN. They
classified spectrograms of acoustic samples recorded in two scenarios: 5 and 10 days before
swarming takes place. The accuracy values showed that KNN performed slightly better
than U-Net. Hunter et al. developed a CNN model [31] to predict the swarming state in
bee colonies. The audio data were categorized in days before the swarming event. The
CNN models were trained with short-time Fourier transform (STFT) spectrograms and Mel
spectrograms. According to their findings, the swarming event can be efficiently predicted
at an early stage.

To predict the queenless state, Terenzi et al. [33] conducted a study to analyze methods
for representing acoustic patterns. These methods included STFT spectrograms, Mel
spectrograms, Mel frequency cepstral coefficients (MFCC), Hilbert Huan transform, discrete
wavelet transform, and continuous wavelet transform. Each representation was used as
input for a CNN; according to their findings, the best performance was achieved using
STFT spectrograms.

Researchers have proposed other interesting applications of CNNs, such as classi-
fying the comb cells to estimate the bee colony health, nutrition status, queen quality,
and honey yield [34]; analyzing the traffic of bees at the entrance of the hive using im-
ages [20]; identifying the presence of varroa mites among the colony members using a
Raspberry Pi 4 and a tensor processing unit [21]; predicting the strength of bee colonies
and classifiers in low-disease, medium-disease, and high-disease scenarios [35]; optimizing
CNN models to detect the presence of queen bees in the Arduino nano using a low-power
microcontroller [36]; preprocessing spectrograms to enhance the performance of CNN
architectures [37].

3. Materials and Methods
3.1. Dataset Description

The dataset comprises acoustic samples from five beehives of Apis Mellifera Carnica
(italics) recorded from 22 March to 6 May 2018. The beehives were in crop fields in Zacatecas,
Mexico, far from the city. Beehives with different characteristics were selected from an
apiary comprising 26 beehives by a professional beekeeper. Two of the beehives were
healthy and free of mites or diseases, with a productive queen and a large population of
around 60,000 bees each; only these beehives had a super with honey stored. Two other
beehives were also healthy, free of mites or diseases, and had a productive queen, but these

Sensors 2024, 24, 6384

4of 16

beehives had a lower population compared to the first two, with around 40,000 bees each. A
fifth beehive did not have a queen bee and had a reduced population of around 30,000 bees.
Electret microphones were placed inside the beehive over the frames in the brood chamber
to avoid interfering with the colony members. The acoustic samples were recorded for 30 s
at 10 min intervals, resulting in 144 samples per day; a total of 2147 samples were recorded
over 15 days. The sampling frequency was set to 4 kHz in compliance with the Nyquist
theorem; this frequency is sufficient since most buzzing sounds in a beehive fall within the
low-frequency range of 100-600 Hz [38-41].

3.2. Single-Board Computers

The CNN architectures were tested using three devices: a Raspberry Pi 5 (RPi5), an
Orange Pi 5 (OPi5), and a Nvidia Jetson Nano (NJN). Table 1 summarizes the most relevant
features of the SBCs. The RPi5 is the most popular SBC with excellent operating system
(OS) support and a broad community of developers; however, comparing the hardware
specifications, the RPi5 is the most limited SBC, featuring a quad-core processor. On the
other hand, the OPi5 features an octa-core processor, which can significantly speed up data
processing. The NJN incorporates a graphics processing unit (GPU) with CUDA cores; the
acronym CUDA stands for Compute Unified Device Architecture. The CUDA cores enable
the CNN models to utilize the GPU to accelerate the inference process.

Table 1. Hardware specifications of SBCs.

Nvidia Jetson Nano (NJN) Orange Pi 5B (OPi5) Raspberry Pi 5 (RPi5)
Processor ARM Cortex-A57 quad-core RK3588S octa-core (2.4 GHz) Broadcom BCM2712 quad-core
(1.43 GHz) 4xCortex-A76 + 4xCortex-A55 ARM Cortex-A76 (2.4 GHz)
GPU Nvidia Maxwell ARM Mali-G610 VideoCore VIl GPU
128 CUDA cores
RAM 4 GB LPDDR4 4 GB LPDDR4X 4 GB LPDDR4X
Storage Micro-SD 64 GB 32 GB eMMC Micro-SD 64GB
Recommended 5 V-2 A micro-USB 5V—4 A USB-C 5V-5 A USB-C
power supply 5 V-4 A barrel jack

The SBCs were equipped with heatsinks and fans for cooling; in the RPi5 and the NJN,
the fan turns on when the temperature exceeds a threshold value. In the OPi5, the fan
always remains active, which will impact the power consumption. The SBCs were powered
by a USB-C power supply (5 V, 5 A). The NJN can be powered by micro-USB and DC barrel
jack; when using micro-USB, it is recommended to use a power supply that can deliver
2-3.5 A, and when using the barrel jack, it is recommended to use a power source that can
supply 5 V-4 A for stressful workloads. A USB-C to micro-USB adapter was used with the
same power supply to power the NJN.

A USB-C multimeter TC66C was used to quantify the power consumption during the
inference process. The principal features of the meter are displayed in Table 2. An external
power supply can be used to power the meter, preventing the system from drawing power
from the USB port used for measurement. The sampling rate is 1 Hz, which is sufficient to
measure power consumption accurately.

Table 2. TC66C USB-C multimeter features.

Voltage Current
Range 030V 0-5A
Resolution 0.1mV 0.01 mA
Accuracy £0.05 % +0.1 %

3.3. Spectrograms of Acoustic Samples

A spectrogram is a visual representation of the frequencies of sound samples as they
change over time. In precision apiculture, spectrograms have been widely utilized to
identify swarming [7,8,31,42,43], the presence of the queen [5,44,45], and the exposure of
bees to air pollutants [17,18], among others. The impact of the spectrogram on inference

Sensors 2024, 24, 6384

50f 16

performance was analyzed by creating datasets of acoustic samples segmented into dif-
ferent durations. The original acoustic samples were recorded at 30 s long, looking for a
balance between preprocessing time, storage space, and the information carried out by the
sample. The acoustic samples were segmented based on the most commonly used sizes by
researchers: 10, 5, and 1 s [6,10,13,26,28,42,46]. Figure 1 shows an example of the spectro-
grams. In Figure 1a, most of the energy signal is concentrated within the frequency range
of 200-400 Hz, which is typically found due to beehive activity, and with less intensity in a
narrow band of 500-600 Hz. As the acoustic sample duration decreases, the spectrogram
resolution also decreases. In the 1 s spectrogram, the narrow band in the 500-600 Hz range
is barely noticeable. Four datasets were created, each consisting of 1000 randomly selected
spectrograms. Also, the labels and tick marks in the spectrograms were removed.

2000 2000y

1800 GRS Ty 1800 (R S S L/ "
ik R § b

1600 1 1600
1400 1400

I 1200 200

£ 1000 |
3

Frequency (Hz)

200

Time (s)

(b)10s

Frequency (Hz)

(¢)5s (d)1s
Figure 1. Spectrograms of one acoustic sample segmented in different sizes to determine the effect on
the inference performance.

3.4. CNN Models

CNN arquitectures are a class of deep learning networks inspired by how human and
animal brains work [47]. CNNs are extensively used in applications such as speech pro-
cessing, natural language processing, and computer vision, among others [47,48]. Figure 2
illustrates the basic representation of how CNNs work. Normally, CNN architectures
comprise five stages: input, convolution, pooling, a fully connected layer, and an output
layer. These stages are grouped into two categories: feature extraction and classification.
The first stage is the input layer, which involves resizing an image to a specific size and
then using it to feed a convolutional layer. Each convolutional layer contains several filters
(kernels) that are convolved with the input, producing a two-dimensional representation of
the image. The pooling layer involves sliding a two-dimensional filter to reduce the spatial
size of the representation while trying to preserve the representative information, and the
resulting output is known as a feature map or activation map, marking the completion
of the feature extraction process. The next step usually involves a fully connected layer,
similar to a regular neural network; the feature map is converted into vector form and
passed to the fully connected layer; in the final layer, output neurons corresponding to
each category of the dataset are used to generate the classification scores that represent the
probability for a given instance.

Sensors 2024, 24, 6384

6 of 16

Convolution

Feature Extraction Classification

Figure 2. Schematic diagram of a basic CNN architecture.

The CNN models used in this research are part of the ML library PyTorch and TorchVi-
sion, which is built in Python. All the architectures in the library are pre-trained. This
means that the CNN models were previously trained on a large-scale dataset with a spe-
cific objective. The weights are used as a starting point for training a model for a new
classification task, which reduces the computational cost of the training process.

Ten CNN models were selected considering the FLOPS (Floating Point Operations
Per Second), which, in deep learning, represents a measure of the model complexity and
computational cost. Higher FLOPS values usually indicate a more complex model, leading
to more extended training and classification times and, therefore, a less energy-efficient
model. However, a more complex model can benefit from a high inference performance.
Most of the models selected have a low FLOPS value, as they were designed to run
on mobile devices. Additionally, the ConvNext model, with a high FLOPS value, was
introduced to contrast the performance of the models with low FLOPS values. Table 3
presents the CNN models and version information.

Table 3. CNN architectures.

Models Version Parameters (Millions) GFLOPS
MNASNet 05 2.21 0.1
MobileNet V220 3.5 0.3
SqueezeNet 1.1 1.24 0.35
EfficientNet b0 5.28 0.39
RegNet y400mf 4.34 0.4
AlexNet - 61.1 0.71
ShuffleNet V2 0.5x 1.36 0.82
GoogLeNet 6.62 1.5
ResNet 1818 11.68 1.81
ConvNeXt tiny 28.58 4.46

3.5. Transfer Learning and Data Arqumentation

In transfer learning, the information of the learning process of a source domain is
transferred to the target domain to reduce the learning cost and improve the performance
of the target learners [49], i.e., it is a process that uses a pre-trained CNN architecture with a
different objective to solve a new classification task, and this procedure aims to reduce the
training time. This research used the fine-tuning method since the dataset size is relatively
small and the images are unrelated to the previous training dataset. The fine-tuning
process involves updating all the weights of the neurons in the CNN model during the
training process while preserving the architecture of the CNN model. Also, the last layer
of the neural network is modified according to the number of classes of the problem—in
this case, the identifier of the beehives. Data argumentation is used in deep learning to
artificially increase the dataset size and provide diversity when the quantity of samples
is limited (e.g., medical images); the aim is to enhance the capacity of the CNN model to
generalize. Data argumentation works by applying a random transformation to the existing
image; these transformations could include geometric transformations such as axis flipping,
argumentation in image color channels, cropping, rotation, and noise injection, among
others [50]. The CNN models tested will classify spectrograms with specific features such
as sampling frequency and duration of the audio samples; therefore, if a new spectrogram

Sensors 2024, 24, 6384

7 of 16

needs to be classified, it will have the exact specifications. At this research stage, the
transformations applied to the images were resize, crop, and horizontal flip.

3.6. Hyperparameter Optimization

The hyperparameters are parameters that can be adjusted to control the learning pro-
cess and optimize the performances of CNN models [51]. The Optuna framework in Python
was used to search for the best hyperparameters. Optuna is an automated search tool that
determines the combination of hyperparameters for a model that optimizes the prediction
performances [52]. By default, Optuna frameworks use Bayesian optimization. However,
hyperparameter optimization can be performed using other methods, such as random
search or grid search. Bayesian optimization builds a probabilistic model of the objective
function, called the surrogated function; then, an acquisition function is used to select the
next potential hyperparameters based on the current posterior distribution [53,54]. Optuna
uses a pruning strategy to reduce the time required for hyperparameter optimization [52].
If, during a single execution of the objective function with a specific set of hyperparam-
eters, the model does not meet a performance minimum after several epochs, the set of
hyperparameters is discarded.

3.7. Performance Evaluation and Validation

The accuracy metric was used to assess the predictive performances of the CNN
models. Accuracy represents the fraction of samples that were correctly classified from the
total of samples. In order to validate the results, a k-fold cross-validation methodology was
implemented; the technique involves segmenting the dataset into k-folds, where one fold is
removed for validation, and the rest of the dataset is used to train the CNN model. The
performance of the model is assessed using the accuracy metric; subsequently, the hold-out
part of the dataset is reintegrated, and a new fold is used for validation. The procedure is
repeated k times, and the performance is calculated as the average of the accuracy values
from all the folds.

3.8. Software

The SBCs come with an operating system, each supporting specific versions of Python
packages and libraries. In the NJN, Ubuntu 20.04 was installed; the OS image can be found
on GitHub [55] and includes the PyTorch and TorchVision libraries to implement the CNN
models and CUDA libraries to enable GPU usage. It is important to note that this is not
the official OS provided by Nvidia; the official software is the JetPack SDK, and the last
version that supports the NJN is 4.6.5. However, some conflicts were found when installing
the Pytorch library in the JetPack SDK. In the case of RPi5 and OPi5, the OSs are based
on versions of the Debian distribution. The CNN models were implemented using the
framework PyTorch for deep learning, which is based on the Torch library; the pre-trained
CNN architectures and weights are included in the Torchvision package. In every SBC, the
libraries were installed through Pip (the package installer for Python). The specific Python,
PyTorch, and Torchvision versions used in each SBC are shown in Table 4. The CNN models
were previously trained on a desktop PC with an Intel Core i5 13600k, 32 GB of RAM, and
an Nvidia RTX 3060 GPU. The PyTorch (v2.0.1) and Torchvision (v0.15.2) libraries were
installed on the PC through the Anaconda distribution v23.7.2 and Python v3.11.4.

Table 4. Specification of operating systems, packages, and library versions used in the SBC.

RPi5 OPi5 NJN
o tine Svst Raspberry Pi OS Orange Pi OS Ubuntu
perating oystem (Bookworm v12) (Bullseye v11) (v20.04)
Python 3.11.2 3.9.2 3.8.10
PyTorch 1.13 2.0.1 1.13

Torchvision 0.14.1 0.15.2 0.14.0

Sensors 2024, 24, 6384

8 of 16

4. Results and Discussion
4.1. Hyperparameter Search

For hyperparameter optimization, four datasets (D30, D10, D5, and D1) were created,
each containing spectrograms of acoustic samples with durations of 30, 10, 5, and 1 s.
Each dataset consists of 1000 randomly selected spectrograms. A total of 40 studies were
conducted; that is to say, each CNN model was optimized using four datasets. Hyper-
parameter optimization is a time-consuming task due to the high computational cost; to
accelerate the process, the search space was limited to the learning rate, the batch size,
and the optimizer. The learning rate is considered the most important hyperparameter; it
determines the step size in each iteration, enabling the objective function to converge [56].
The search for the learning rate was in the range of 0.0001-0.01. The optimizers analyzed
were SGD (stochastic gradient descent) with momentum and Adam (adaptive moment
estimation). The SGD optimizer is widely used in machine learning [57] and is known for
its simplicity and effectiveness; on the other hand, the Adam optimizer is one of the most
popular methods for training neural networks [58]. The advantage of Adam against SGD is
rapid progress in the training step [59]. Finally, the analyzed batch sizes were 64, 32, and
16. The search space for the Optuna algorithm is outlined in Table 5.

Table 5. Search space for hyperparameter optimization.

Learning Rate Batch Size Optimizer
0.0001-0.01 16, 32, 64 SGD, Adam

The Optuna package was configured with the following values: 40 trials (a single
execution of the objective function) and 20 epochs, reaching an excellent fit with those
values. The momentum is a hyperparameter used in the SGD optimizer; this value was
set at 0.9; the momentum helps to accelerate SGD in a suitable direction and dampens
oscillations [60]. The results of the hyperparameter search are shown in Table 6. For
every CNN model, the learning rate varies slightly across the different datasets, while the
optimizer is the same in most cases. The batch size is variable in models such as MNASNet,
RegNet, and SqueezeNet and could have minimal impact on performance.

Table 6. Results of the hyperparameter search.

Dataset MobileNet Resnetl8 ConvNeXt AlexNet EfficientNet MNASNet SqueezeNet RegNet GoogLeNet ShuffleNet
Ir 0.0002 0.003 0.0001 0.0012 0.00025 0.0015 0.0001 0.0002 0.00018 0.0013
D30 op Adam SGD Adam SGD Adam Adam Adam Adam Adam Adam
bs 16 16 64 64 16 64 16 64 64 16
Ir 0.0003 0.00015 0.0001 0.0012 0.00021 0.0012 0.0001 0.0002 0.00017 0.0006
D10 op Adam Adam Adam SGD Adam Adam Adam Adam Adam Adam
bs 16 16 64 64 32 16 32 64 32 32
Ir 0.0001 0.0024 0.00012 0.0014 0.0002 0.001 0.0001 0.0002 0.0001 0.0016
D5 op Adam SGD Adam SGD Adam Adam Adam Adam Adam Adam
bs 32 16 32 64 32 16 64 32 32 16
Ir 0.0002 0.00013 0.0001 0.0011 0.00035 0.0028 0.0001 0.0002 0.00018 0.00058
D1 op Adam Adam Adam SGD Adam Adam Adam Adam Adam Adam
bs 64 64 64 64 16 32 16 16 64 16

Ir—learning rate, op—optimizer, bs—batch size.

4.2. K-Fold Cross Validation

In the cross-validation, the dataset was divided into five folds, with 80% for training
and the remaining 20% for validation. The cross-validation was performed using the
four datasets. The CNN models were trained for 50 epochs with the hyperparameters
computed previously. Figure 3 shows the average accuracy through the cross-validation
process for training (solid lines) and testing (dashed lines); the horizontal gray dashed line
marks 0.9 accuracy. The CNN models trained with the D30 dataset exhibit similar behavior,
with accuracy increasing rapidly, achieving a value of 0.9 before ten epochs, except for
the models SqueezeNet, AlexNet, and MNASNet. As the duration of the spectrogram
decreases, the accuracy curves also decrease in most models. The curves of the D10 and
D5 datasets remain very close to the D30 dataset, and before reaching 50 epochs, the CNN

Sensors 2024, 24, 6384

9of 16

models overcome an accuracy of 0.9. The accuracy curves for the D1 dataset are all below
the 0.9 value, except for the ConvNeXt model, which is the most complex CNN model.

Accuracy

Accuracy

Accuracy

Accuracy

Accuracy

0.3

MNASNet
0 10 20 30 40 50
Epochs
SqueezeNet
: === 30s
1] ~—— 10s
"
1 === 10s
i — 55
| --- 55
— 1s
=== 1s
[10 20 30 40 5‘0
Epochs
RegNet

=== 10s
—— 5s
=== 55
—1s
=== 1s

[10 20 30 40 50
Epochs

ShuffleNet

[10 20 30 40 50
Epochs

ResNet18

0 10 20 30 40 50
Epochs

Accuracy

Accuracy

Accuracy

Accuracy

Accuracy

0.3

MobileNet

3 10 20 30 40 50
Epochs

EfficientNet

I —— 30s
! -=- 30s
—— 10s
=== 10s
—— 5s
=== 5s
— 1s
=== 1s
0 10 20 30 40 50
Epochs
AlexNet

i -~ 10s

H — 5s
i ==E 55
= 1s
=== 1s

0 10 20 30 40 50
Epochs

GooglLeNet

=== 30s
i — 10s
d ~-- 10s

— 5s
==R 5g
— 1s
-=-1s

o 10 20 30 40 50
Epochs

ConvNeXt

—— 30s
[~=- 30s
i —— 10s
i

— 5s
=== 5s
— 1s
--- 15

0 10 20 30 40 50
Epochs

Figure 3. Accuracy curves for the k-fold cross-validation of the CNN models: the dashed line
represents the validation step, while the solid line represents the training step.

To compare the performance of CNN models, we extracted the maximum accuracy

values from the validation step, which are outlined in Table 7. Using the D30 dataset, the

Sensors 2024, 24, 6384

10 of 16

EfficientNet and ConvNeXt models achieved the highest accuracy values (0.97), while
the lowest values were obtained with MNASNet and AlexNet (0.91). In every step-down
through the datasets, the accuracy decreases by a percentage. However, the EfficientNet
and ConvNeXt models preserve the best overall performance, achieving an accuracy value
above 0.88 with the D1 dataset.

Table 7. Maximum accuracy achieved in the test step.

Dataset MNASNet

MobileNet SqueezeNet EfficientNet RegNet AlexNet SuffleNet GoogLeNet ResNetl8 ConvNeXt

D30 0.917
D10 0.9176
D5 0.897
D1 0.7596

0.9504
0.9238

0.9346 0.972 0.9694 0.9174 0.9582 0.9658 0.9602 0.9756
0.9104 0.964 0.9534 0.8986 0.9416 0.9526 0.9494 0.9588
0.8948 0.943 0.936 0.8848 0.923 0.9364 0.9276 0.946

0.8458 0.8828 0.8692 0.833 0.864 0.8688 0.8702 0.8922

4.3. Performance in the SBC

In order to determine the performance of the SBCs, the CNN models were previously
trained on a desktop PC using the D30 dataset and 2147 spectrograms per class. The
training stage consisted of 50 epochs; the CNN model with the maximum accuracy at a
particular epoch was saved in a pth file, which is a type of dictionary only containing the
learned parameters from the training process. The pth files were transferred in each SBC
and loaded into a new CNN model. In the study, 200 random spectrograms were classified
to compare the power consumption and inference time. The NJN has two power modes,
5 and 10 W (MAX); this works by limiting the maximum frequency of the CPU and the
GPU [61]. The NJN was powered by the micro-USB port using an adapter. It is important
to note that a warning about the power supply was displayed when the NJN was under
a high workload; however, the classification task continued without interruption. In the
OPi5 and the RPi5, the Wi-Fi was deactivated to reduce the power consumption; the NJN
does not include the Wi-Fi module.

4.3.1. Inference Time

The inference time was measured in two scenarios: the first scenario involved the
execution of the entire code, including the loading of the model parameters and the
inference step, while the second scenario only considered the inference step. The codes
were executed three times, and the average values are shown in Figure 4. The color bars
represent the inference time, and the gray bars indicate the time to load the parameters
into the new CNN models. Analyzing the inference times, the ConvNeXt model has the
longest inference time due to its computational complexity; the intention was to contrast
the CNN models with those with less computational complexity. The models with the
shortest inference time are ShuffleNet and MNASNet; however, the results are very similar
to the rest of the CNN models. When comparing the inference time of the Single-Board
Computers (SBCs), the Nano Jetson (NJN) with the MAX power mode achieves faster
classification times in most cases. However, for the MNASNet and ShuffleNet models, the
OPi5 performs better. This comparison does not consider the time required to load the
parameters of the models. Also, the results achieved by the NJN in the 5W power mode
are very close to the MAX power mode, except in the ConvINeXt model, which presents a
significant difference. The SBC with the slowest inference times is the RPi 5. An exception
to highlight is the inference time achieved by the ShuffleNet model, which is lower than
the NJN and very close to the time achieved by the OPi 5. Finally, the time to load the
parameters of the models is very short in OPi5 and, in some cases, minimum compared
with the inference time.

Sensors 2024, 24, 6384

11 of 16

BN OPi5 NIN (MAX) I NJN (5W) m RPi5

800 ~

700

600 -

500 ~

Time (s)

400

300 -

200 -

100

Figure 4. Inference time of the CNN models.

4.3.2. Power Consumption

The plots in Figure 5 show the power required by the CNN models during the work-
load, specifically during the execution of the classification task. In most cases, the highest
peaks are of the OPi5 computer, followed by the RPi5 and the NJN in MAX power mode.
The CNN models stress the SBCs in different modes; for example, in the OPi5, the models
AlexNet and ConvNeXt have a superior power demand compared to other SBCs. The
maximum required power in the NJN in the 5 W mode is considerably smaller than the
other SBCs. However, the same CNN model does not require double the inference time
of the NJN in MAX mode. Analyzing the initial stages of the NJN plots in both power
modes (MAX and 5 W), it becomes evident that there is a variable workload before the
execution before the inference step. During this period, the power demand is low, but
the total inference time is increased, especially in the 5 W mode. The idle power can be
observed at the end of the plots. The NJN has the lowest idle power demand in both power
modes, at approximately 2.4 W. The highest value is presented in the RPi5 at 3 W and
the OPi5 at 2.7 W. It is important to note that these values are measured using a display;
however, the power consumption can be significantly reduced without a display for the
OPi5 to 1.85 W and NJN to 1.4 W; in the case of the RPi5, the power demand is almost the
same, i.e., about 2.7 W.

Figure 6 presents a comparison of the energy consumption of the CNN models. When
comparing the energy consumption of the NJN in both power modes, the energy con-
sumption is almost the same and slightly lower in the 5 W mode. Contrasting the results
with the inference time is not observed as a lineal behavior, meaning that doubling the
energy consumption does not result in half the inference time. On the other hand, the OPi5
consumes less energy than the RPi5, even though the OPi5 uses an octa-core processor.
Also, the energy consumption of the OPi5 is very close to the consumption of the NJN in
MAX mode. Finally, the RPi5 has the highest energy consumption, except for the case of
the ShuffleNet model. Comparing the CNN models, the ShuffleNet model has the lowest
energy consumption; even without using a GPU, the power consumption is very similar to
the NJN in both power modes. Finally, the energy consumption of the ConvNeXt model is
significantly superior to the rest of the models, without considering the long inference time,
and the accuracy value is similar to less complex models.

Sensors 2024, 24, 6384 12 of 16

Power (W)
N -
Power (W)
o e

60
Time (s)

AX 8

2 2

3 6 3,

& &
4

150
Time (s)

AlexNet

—— RaspberryPi5 —— OrangePi5s ~ —— NJetsonN(MAX) ~ —— NJetsonN(5W)

Power (W)

P
Power (W)
P

80
Time (s)

ShuffleNet

—— RaspberyPis —— OrangePi5s — NJetsonN(MAX) —— NletsonN(5W)

Power (W)
o =

Power (W)

o oo = s

150
Time (s)

ConvNeXt
gePi

Pis —— NletsonN(MAX) —— NletsonN(5W)

| '\H"

W
er (W)

4

!
RSN
it

Figure 5. The power demand in the SBCs in the inference step.

B OPiS I NIN (MAX) N NIN (5W) Bl RPi5

1750
2 1500 1
= 1250 -
£ 1000
2

750
o

2 5001

250

& & & & & & & D Y
o’é‘@A 30?66@\ g@d‘w@ ‘2@@\ P»\d:\A \s«@:\ & 2 v@%&\ (:o‘\ﬁe

S
W

Figure 6. Energy consumption of the CNN models.

Sensors 2024, 24, 6384

13 of 16

5. Conclusions and Future Work

This study aims to analyze relevant aspects in developing a monitoring system based
on constrained devices to classify acoustic patterns of bee colonies using CNN models. The
performance, inference time, and energy efficiency of ten CNN models were analyzed in
three SBCs: an Nvidia Jetson Nano, an Orange Pi 5, and a Raspberry Pi 5. Most of the
CNN models analyzed were specifically designed for constrained devices. Furthermore,
by segmenting a dataset with acoustic samples of 30 s, three datasets were generated with
spectrograms of different durations, 10, 5, and 1 s, to assess the impact on the inference
performance of the CNN models.

Using the dataset with 30 s samples, the CNN models achieved 96% accuracy. In
models trained using datasets containing samples of 10 or 5 s, the accuracy decreased
by around 1-2% compared to previous models trained with datasets containing larger
acoustic samples. In the models trained with 1 s spectrograms, the reduction in accuracy is
around 5%, and in all the models, the accuracy drops below 90%. In most cases, the dataset
containing 5 s spectrograms provides enough learning to CNN architectures to keep the
accuracy above 90% while saving memory space and reducing the preprocessing step.

Regarding the inference time results, all models showed similar values except for
the ConvNeXt model, which had the highest inference times. Despite the complexity of
the model, ConvNeXt achieved comparable accuracy to less complex architectures like
EfficientNet or RegNet. In addition, the model SuffleNet achieved the fastest inference time
with an accuracy value superior to other models. Therefore, less complex CNN models
accomplish the performance of more complex models with only a negligible reduction
in performance.

In most cases, the GPU included in the NJN provides superior performance, reducing
the inference time and energy consumption. This feature makes the NJN an excellent option
to implement a monitoring system. The downside of the NJN is the software is no longer
supported, which is not a major problem for the RPi5. On the other hand, although the OPi5
does not include a GPU to accelerate CNN architectures, it achieves better inference times
than the NJN, with models such as ShuffleNet, SqueezeNet, or AlexNet. Also, the OPi5 has
approximately the same energy consumption as NJN in MAX mode, for example, in models
such as ShuffleNet, AlexNet, Squeezenet, or RegNet. Despite having an octa-core processor,
the OPi5 exhibits lower power consumption than the RPi5, which has the highest power
consumption, featuring a quad-core processor. The RPi5, having the slowest inference time
and the highest energy consumption, achieves a result similar to the SuffleNet model, with
the same level of energy consumption as NJN and an inference time close to the OPi5.

Models such as EfficientNet, MobileNet, and ResNet18 have an excellent balance
between performance, energy consumption, and inference time. ShuffleNet is the model
with less energy consumption, faster inference time, and a performance classification
superior to other models such as SqueezeNet, MNASNet, or AlexNet.

In future work, new samples will be recorded at a length of 5 s. The acoustic sample
quality will be enhanced by increasing the frequency sampling and bit depth. The original
samples were recorded at a 12-bit resolution with a sampling frequency of 4 KHz. Also,
the original dataset is very limited in diversity, given that the acoustics were captured
in 15 days on dry, sunny days, which is characteristic of the region. Therefore, the CNN
models will be prone to overfitting with limited generalization capacity. Analyzing the
beehive acoustic in different biological and climatic contexts will be necessary for testing a
monitoring system under real-life conditions. Image transformation techniques for data
argumentation will be studied to enhance the generalization capacity of the CNN models.
We will propose a specific image transformation for datasets containing spectrograms of
bee acoustic signals.

Sensors 2024, 24, 6384 14 of 16

Author Contributions: A.R.-G.: conceptualization, data curation, methodology, writing—original
draft, software, validation, formal analysis, investigation. S.G.-].: validation, writing—review and
editing. T.S.-A.: conceptualization, writing—review and editing, supervision, D.L.-B.: data curation,
software, methodology, validation. D.N.-S.: data curation, software, validation. C.G.-M.: data
curation, software, methodology, validation. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: We made use of the publicly available dataset at https://data.mendeley.
com/datasets/t9prmbmdfn, accessed on 6 September 2024.

Acknowledgments: A.R.G. acknowledges the partial support from CONAHCYT México through a
postdoctoral fellowship.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CNN convolutional neural networks

SBC single-board computer

NJN Nvidia Jetson Nano

RPi5 Raspberry Pi 5

Opid Orange Pi 5

PC personal computer

FLOPS floating point operations per second
MFCC Mel frequency cepstral coefficients

SVM support vector machine
KNN k-nearest neighbors
RF random forest

OSBH open-source beehives

GPU graphic processing unit

STFT short-time Fourier transform

SGD stochastic gradient descent

CUDA compute unified device architecture

References

1. Howard, D.; Duran, O.; Hunter, G.; Stebel, K. Signal Processing the acoustics of honeybees (APIS MELLIFERA) to identify the
“queenless” state in Hives. Proc. Inst. Acoust. 2013, 35, 290-297.

2. Cejrowski, T.; Szymaniski, J.; Mora, H.; Gil, D. Detection of the Bee Queen Presence Using Sound Analysis. In Proceedings of the
Intelligent Information and Database Systems, Dong Hoi City, Vietnam, 19-21 March 2018; Springer International Publishing:
Berlin/Heidelberg, Germany, 2018; pp. 297-306. [CrossRef]

3. Robles-Guerrero, A.; Saucedo-Anaya, T.; Gonzédlez-Ramirez, E.; la Rosa-Vargas, J.I.D. Analysis of a multiclass classification
problem by Lasso Logistic Regression and Singular Value Decomposition to identify sound patterns in queenless bee colonies.
Comput. Electron. Agric. 2019, 159, 69-74. [CrossRef]

4. Peng, R.; Ardekani, I.; Sharifzadeh, H. An Acoustic Signal Processing System for Identification of Queen-less Beehives. In
Proceedings of the 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA
ASC), Auckland, New Zealand, 7-10 December 2020; pp. 57-63.

5. Barbisan, L.; Turvani, G.; Riente, F. A Machine Learning Approach for Queen Bee Detection Through Remote Audio Sensing to
Safeguard Honeybee Colonies. IEEE Trans. Agrifood Electron. 2024, 1-8. [CrossRef]

6. Dimitrios, K.I; Bellos, C.V.; Stefanou, K.A.; Stergios, G.S.; Andrikos, I.; Katsantas, T.; Kontogiannis, S. Performance Evaluation of
Classification Algorithms to Detect Bee Swarming Events Using Sound. Signals 2022, 3, 807-822. [CrossRef]

7. Ferrari, S.; Silva, M.; Guarino, M.; Berckmans, D. Monitoring of swarming sounds in bee hives for early detection of the swarming
period. Comput. Electron. Agric. 2008, 64, 72-77. [CrossRef]

8. Bencsik, M.; Bencsik, J.; Baxter, M.; Lucian, A.; Romieu, J.; Millet, M. Identification of the honey bee swarming process by

analysing the time course of hive vibrations. Comput. Electron. Agric. 2011, 76, 44-50. [CrossRef]

https://data.mendeley.com/datasets/t9prmbmdfn
https://data.mendeley.com/datasets/t9prmbmdfn
http://doi.org/10.1007/978-3-319-75420-8_28
http://dx.doi.org/10.1016/j.compag.2019.02.024
http://dx.doi.org/10.1109/TAFE.2024.3406648
http://dx.doi.org/10.3390/signals3040048
http://dx.doi.org/10.1016/j.compag.2008.05.010
http://dx.doi.org/10.1016/j.compag.2011.01.004

Sensors 2024, 24, 6384 150f 16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Eskov, E.K.; Toboev, V.A. Changes in the structure of sounds generated by bee colonies during sociotomy. Entomol. Rev. 2011,
91, 347-353. [CrossRef]

Zgank, A. Acoustic monitoring and classification of bee swarm activity using MFCC feature extraction and HMM acoustic
modeling. In Proceedings of the 2018 ELEKTRO, Mikulov, Czech Republic, 21-23 May 2018; pp. 1-4. [CrossRef]

Krzywoszyja, G.; Rybski, R.; Andrzejewski, G. Bee Swarm Detection Based on Comparison of Estimated Distributions Samples of
Sound. IEEE Trans. Instrum. Meas. 2018, 68, 3776-3784. [CrossRef]

Anand, N.; Raj, V.B,; Ullas, M.S.; Srivastava, A. Swarm Detection and Beehive Monitoring System using Auditory and
Microclimatic Analysis. In Proceedings of the 2018 3rd International Conference on Circuits, Control, Communication and
Computing (I4C), Bangalore, India, 3-5 October 2018; pp. 1-4. [CrossRef]

Zlatkova, A.; Kokolanski, Z.; Tashkovski, D. Honeybees swarming detection approach by sound signal processing. In Proceedings
of the 2020 XXIX International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 16-18 September 2020; pp. 1-3. [CrossRef]
Zgank, A. IoT-Based Bee Swarm Activity Acoustic Classification Using Deep Neural Networks. Sensors 2021, 21, 676. [CrossRef]
Zgank, A. Bee Swarm Activity Acoustic Classification for an IoT-Based Farm Service. Sensors 2020, 20, 21. [CrossRef]

Sharif, M.Z.; Wario, F; Di, N.; Xue, R.; Liu, F. Soundscape Indices: New Features for Classifying Beehive Audio Samples.
Sociobiology 2020, 67, 566-571. [CrossRef]

Zhao, Y.;; Deng, G.; Zhang, L.; Di, N.; Jiang, X.; Li, Z. Based investigate of beehive sound to detect air pollutants by machine
learning. Ecol. Inform. 2021, 61, 101246. [CrossRef]

Pérez, N.; Jests, E,; Pérez, C.; Niell, S.; Draper, A.; Obrusnik, N.; Zinemanas, P.; Spina, Y.M.; Letelier, L.C.; Monzén, P. Continuous
monitoring of beehives’ sound for environmental pollution control. Ecol. Eng. 2016, 90, 326-330. [CrossRef]

Cecchi, S.; Spinsante, S.; Terenzi, A.; Orcioni, S. A Smart Sensor-Based Measurement System for Advanced Bee Hive Monitoring.
Sensors 2020, 20, 2726. [CrossRef]

Kulyukin, V. Audio, Image, Video, and Weather Datasets for Continuous Electronic Beehive Monitoring. Appl. Sci. 2021, 11, 4632.
[CrossRef]

Mrozek, D.; Gorny, R.; Wachowicz, A.; Malysiak-Mrozek, B. Edge-Based Detection of Varroosis in Beehives with IoT Devices with
Embedded and TPU-Accelerated Machine Learning. Appl. Sci. 2021, 11, 11078. [CrossRef]

Edwards-Murphy, E,; Srbinovski, B.; Magno, M.; Popovici, E.M.; Whelan, PM. An automatic, wireless audio recording node for
analysis of beehives. In Proceedings of the 2015 26th Irish Signals and Systems Conference, ISSC, Carlow, Ireland, 24-25 June
2015; pp. 1-6. [CrossRef]

Henry, E.; Adamchuka, V.; Stanhopea, T.; Buddleb, C.; Rindlaubc, N. Precision apiculture: Development of a wireless sensor
network for honeybee hives. Comput. Electron. Agric. 2019, 156, 138-144. [CrossRef]

Qandour, A.; Ahmad, I.; Habibi, D.; Leppard, M. Remote Beehive Monitoring Using Acoustic Signals. Acoust. Aust. 2014,
42,204-209.

Howard, D.; Duran, O.; Hunter, G. A Low-Cost Multi-Modal Sensor Network for the Monitoring of Honeybee Colonies/Hives.
In Proceedings of the Intelligent Environments 2018, Rome, Italy, 25-28 June 2018; pp. 69-78.

Abdollahi, M.; Giovenazzo, P.; Falk, T.H. Automated Beehive Acoustics Monitoring: A Comprehensive Review of the Literature
and Recommendations for Future Work. Appl. Sci. 2022, 12, 3920. [CrossRef]

Santos, C.F.G.D.; Papa, J.a.P. Avoiding Overfitting: A Survey on Regularization Methods for Convolutional Neural Networks.
ACM Comput. Surv. 2022, 54, 1-27. [CrossRef]

Kulyukin, V.; Mukherjee, S.; Amlathe, P. Toward Audio Beehive Monitoring: Deep Learning vs. Standard Machine Learning in
Classifying Beehive Audio Samples. Appl. Sci. 2018, 8, 1573. [CrossRef]

Kim, J.; Oh, J.; Heo, T.Y. Acoustic Scene Classification and Visualization of Beehive Sounds Using Machine Learning Algorithms
and Grad-CAM. Math. Probl. Eng. 2021, 2021, 5594498. [CrossRef]

Nolasco, I.; Benetos, E. To bee or not to bee: Investigating machine learning approaches for beehive sound recognition. In
Proceedings of the Detection and Classification of Acoustic Scenes and Events 2018 Workshop (DCASE2018), Surrey, UK, 19-20
November 2018.

Hunter, G.; Ruvinga, S.; Duran, O.; Nebel,].C. Prediction of Honeybee Swarms Using Audio Signals and Convolutional
Neural Networks. In Workshops at 18th International Conference on Intelligent Environments (IE2022); 10S Press: Amsterdam, The
Netherlands, 2022. [CrossRef]

Truong, T.H.; Nguyen, H.D.; Mai, T.Q.A.; Nguyen, H.L.; Dang, TN.M.; Phan, T.T.H. A deep learning-based approach for bee
sound identification. Ecol. Inform. 2023, 78, 102274. [CrossRef]

Terenzi, A.; Cecchi, S.; Spinsante, S. On the Importance of the Sound Emitted by Honey Bee Hives. Vet. Sci. 2020, 7, 168.
[CrossRef]

Alves, T.S.; Pinto, M.A.; Ventura, P.; Neves, C.J.; Biron, D.G.; Junior, A.C.; De Paula Filho, P.L.; Rodrigues, PJ. Automatic detection
and classification of honey bee comb cells using deep learning. Comput. Electron. Agric. 2020, 170, 105244. [CrossRef]

Zhang, T.; Zmyslony, S.; Nozdrenkov, S.; Smith, M.; Hopkins, B. Semi-Supervised Audio Representation Learning for Modeling
Beehive Strengths. arXiv 2021, arXiv:2105.10536.

Doinea, M.; Trandafir, I.; Toma, C.V.; Popa, M.; Zamfiroiu, A. IoT Embedded Smart Monitoring System with Edge Machine
Learning for Beehive Management. Int.]. Comput. Commun. Control 2024, 19, 1-21 [CrossRef]

http://dx.doi.org/10.1134/S0013873811030092
http://dx.doi.org/10.1109/ELEKTRO.2018.8398253
http://dx.doi.org/10.1109/TIM.2018.2878594
http://dx.doi.org/10.1109/CIMCA.2018.8739710
http://dx.doi.org/10.1109/ET50336.2020.9238260
http://dx.doi.org/10.3390/s21030676
http://dx.doi.org/10.3390/s20010021
http://dx.doi.org/10.13102/sociobiology.v67i4.5860
http://dx.doi.org/10.1016/j.ecoinf.2021.101246
http://dx.doi.org/10.1016/j.ecoleng.2016.01.082
http://dx.doi.org/10.3390/s20092726
http://dx.doi.org/10.3390/app11104632
http://dx.doi.org/10.3390/app112211078
http://dx.doi.org/10.1109/ISSC.2015.7163753
http://dx.doi.org/10.1016/j.compag.2018.11.001
http://dx.doi.org/10.3390/app12083920
http://dx.doi.org/10.1145/3510413
http://dx.doi.org/10.3390/app8091573
http://dx.doi.org/10.1155/2021/5594498
http://dx.doi.org/10.3233/AISE220032
http://dx.doi.org/10.1016/j.ecoinf.2023.102274
http://dx.doi.org/10.3390/vetsci7040168
http://dx.doi.org/10.1016/j.compag.2020.105244
http://dx.doi.org/10.15837/ijccc.2024.4.6632

Sensors 2024, 24, 6384 16 of 16

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
50.
51.

52.

53.

54.

55.

56.

57.

58.

59.

60.
61.

Orlowska, A.; Fourer, D.; Gavini,].P.; Cassou-Ribehart, D. Honey Bee Queen Presence Detection from Audio Field Recordings
Using Summarized Spectrogram and Convolutional Neural Networks. In Intelligent Systems Design and Applications; Abraham,
A., Gandhi, N., Hanne, T., Hong, T.P., Nogueira Rios, T., Ding, W., Eds.; Springer: Cham, Switzerland, 2022; pp. 83-92.

Dietlein, D.G. A method for remote monitoring of activity of honeybee colonies by sound analysis. J. Apic. Res. 1985, 24, 176-183.
[CrossRef]

Kirchner, W.H. Acoustical communication in honeybees. Apidologie 1993, 24, 297-307. [CrossRef]

Hrncir Michael, B.EG.; Jurgen, T. Vibratory and Airborne-Sound Signals in Bee Communication (Hymenoptera). In Insect Sounds
and Communication: Physiology, Behaviour, Ecology and Evolution, 1st ed.; Sakis, D., Claridge, M.F., Eds.; Taylor & Francis: Boca
Raton, FL, USA, 2006; Chapter 32, p. 552.

Schlegel, T.; Visscher, P; Seeley, T. Beeping and piping: Characterization of two mechano-acoustic signals used by honey bees in
swarming. Die Naturwissenschaften 2012, 99, 1067-1071. [CrossRef]

Zlatkova, A.; Gerazov, B.; Tashkovski, D.; Kokolanski, Z. Analysis of parameters in algorithms for signal processing for swarming
of honeybees. In Proceedings of the 2020 28th Telecommunications Forum (TELFOR), Belgrade, Serbia, 24-25 November 2020;
pp. 1-4. [CrossRef]

Cecchi, S.; Terenzi, A.; Orcioni, S.; Spinsante, S.; Primiani, V.M.; Moglie, F; Ruschioni, S.; Mattei, C.; Riolo, P.; Isidoro, N.
Multi-Sensor Platform for Real Time Measurements of Honey Bee Hive Parameters; Institute of Physics Publishing: Bristol, UK, 2019;
Volume 275. [CrossRef]

Kampelopoulos, D.; Sofianidis, I.; Tananaki, C.; Tsiapali, K.; Nikolaidis, S.; Siozios, K. Analyzing the Beehive’s Sound to Monitor
the Presence of the Queen Bee. In Proceedings of the 2022 Panhellenic Conference on Electronics & Telecommunications (PACET),
Tripolis, Greece, 2-3 December 2022; pp. 1-4. [CrossRef]

Terenzi, A.; Cecchi, S.; Orcioni, S.; Piazza, F. Features Extraction Applied to the Analysis of the Sounds Emitted by Honey Bees
in a Beehive. In Proceedings of the 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA),
Dubrovnik, Croatia, 23-25 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3-8. [CrossRef]

Quaderi, S.J.S.; Labonno, S.A.; Mostafa, S.; Akhter, S. Identify The Beehive Sound Using Deep Learning. arXiv 2022,
arXiv:2209.01374

Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaria, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 53. [CrossRef] [PubMed]

Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y; Reyes, M.P; Shyu, M.L.; Chen, S.C.; Iyengar, S.S. A Survey on Deep Learning:
Algorithms, Techniques, and Applications. ACM Comput. Surv. 2018, 51, 1-36. [CrossRef]

Weiss, K.; Khoshgoftaar, TM.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [CrossRef]

Shorten, C.; Khoshgoftaar, TM. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
Feurer, M.; Hutter, F. Hyperparameter Optimization. In Automated Machine Learning: Methods, Systems, Challenges; Hutter, E.,
Kotthoff, L., Vanschoren, J., Eds.; Springer: Cham, Switzerland, 2019; pp. 3-33. [CrossRef]

Akiba, T,; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA,
4-9 August 2019; pp. 2623-2631. [CrossRef]

Frazier, P1. A Tutorial on Bayesian Optimization. arXiv 2018, arXiv:1807.02811

Injadat, M.; Salo, F.; Nassif, A.B.; Essex, A.; Shami, A. Bayesian Optimization with Machine Learning Algorithms Towards
Anomaly Detection. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United
Arab Emirates, 9-13 December 2018; pp. 1-6. [CrossRef]

GitHub—Qengineering/Jetson-Nano-Ubuntu-20-Image: Jetson Nano with Ubuntu 20.04 Image—Github.Com. Available online:
https:/ /github.com/Qengineering/Jetson-Nano-Ubuntu-20-image (accessed on 23 July 2024).

Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,
415, 295-316. [CrossRef]

Kleinberg, R.; Li, Y,; Yuan, Y. An Alternative View: When Does SGD Escape Local Minima? arXiv 2018, arXiv:1802.06175.

Sun, R.Y. Optimization for Deep Learning: An Overview.]. Oper. Res. Soc. China 2020, 8, 249-294. [CrossRef]

Keskar, N.S.; Socher, R. Improving Generalization Performance by Switching from Adam to SGD. arXiv 2017, arXiv:1712.07628.
Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2017, arXiv:1609.04747

NVIDIA Documentation Hub. Available online: https://docs.nvidia.com/jetson/archives (accessed on 1 June 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/00218839.1985.11100668
http://dx.doi.org/10.1051/apido:19930309
http://dx.doi.org/10.1007/s00114-012-0990-5
http://dx.doi.org/10.1109/TELFOR51502.2020.9306562
http://dx.doi.org/10.1088/1755-1315/275/1/012016
http://dx.doi.org/10.1109/PACET56979.2022.9976374
http://dx.doi.org/10.1109/ISPA.2019.8868934
http://dx.doi.org/10.1186/s40537-021-00444-8
http://www.ncbi.nlm.nih.gov/pubmed/33816053
http://dx.doi.org/10.1145/3234150
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1007/978-3-030-05318-5_1
http://dx.doi.org/10.1145/3292500.3330701
http://dx.doi.org/10.1109/GLOCOM.2018.8647714
https://github.com/Qengineering/Jetson-Nano-Ubuntu-20-image
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1007/s40305-020-00309-6
https://docs.nvidia.com/jetson/archives

	Introduction
	CNN in Precision Apiculture
	Materials and Methods
	Dataset Description
	Single-Board Computers
	Spectrograms of Acoustic Samples
	CNN Models
	Transfer Learning and Data Argumentation
	Hyperparameter Optimization
	Performance Evaluation and Validation
	Software

	Results and Discussion
	Hyperparameter Search
	K-Fold Cross Validation
	Performance in the SBC
	Inference Time
	Power Consumption

	Conclusions and Future Work
	References

